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Abstract

A graph G = (V(G), E(G)) is the competition graph of an
acyclic digraph D = (V(D), A(D)) if V(G) = V(D) and there
is an edge in G between vertices z,y € V(G) if and only if
there is some v € V(D) such that zv, yv € A(D). The compe-
tition number k(G) of a graph G is the minimum number of
isolated vertices needed to add to G to obtain a competition
graph of an acyclic digraph. Opsut conjectured in 1982 that
if (N (v)) < 2 for all v € V(G), then the competition number
k(G) of G is at most 2, with equality if and only if §(N(v)) = 2
for all v € V(G). (Here, 6(H) is the smallest number of cliques
covering the vertices of H.) Though Opsut (1982) proved that
the conjecture is true for line graphs and recently Kim and
Roberts (1989) proved a variant of it, the original conjecture
is still open. In this paper, we introduce a class of so called
critical graphs. We reduce the question of settling Opsut’s con-
jecture to the study of critical graphs by proving that Opsut’s
conjecture is true for all graphs which are disjoint unions of
connected non-critical graphs. All Ky-free critical graphs are
characterized. It is proved that Opsut’s conjecture is true for
critical graphs which are Ky-free or are Ky4-free after contract-
ing vertices of the same closed neighborhood. Some structural
properties of critical graphs are discussed.

1 Introduction

A graph G = (V(G), E(G)) with vertex set V(G) and edge set E(G)
is the competition graph of an acyclic digraph D = (V(D), A(D)) if
V(G) = V(D) and there is an edge in G between vertices z,y € V(G)
if and only if there is vertex v € V(D) such that zv,yv € A(D). The
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competition graph of an acyclic digraph D is usually denoted by
C(D). Competition graphs were introduced by Cohen in 1968 [1]
when he studied the ecological phase spaces of food webs. Since
then, a large amount of literature has been devoted to them. For
recent surveys, see Kim [3] and Lundgren [5]. In this paper, we
discuss a conjecture in competition graph theory proposed by Opsut
in 1982 [7]. Opsut proved [7] that his conjecture is true for line
graphs. Kim and Roberts [4] proved a variant of Opsut’s conjecture
which generalizes Opsut’s result. Here, we introduce a class of so
called critical graphs. The question of settling Opsut’s conjecture is
reduced to the study of critical graphs.

In section 2, we show that Opsut’s conjecture is true for graphs
which are disjoint unions of connected non-critical graphs. Hence Op-
sut’s conjecture is true if and only if it is true among critical graphs.
This generalizes the results of Opsut [7] and Kim and Roberts [4]. In
section 3, K4-free critical graphs are characterized and it is proved
that Opsut’s conjecture is true for all K4-free critical graphs. In
section 4, we study the approach of characterizing critical graphs
by minimal critical graphs under the process of taking induced sub-
graphs and by critical lift operations. It is proved that Opsut’s con-
jecture is true among what are called K4-free reducible graphs. Fi-
nally, further problems are discussed in section 5.

To end this section, we define some terms and notation.

All graphs considered here are simple graphs, i.e., without loops
and parallel edges. Given a graph G = (V(G), E(G)), we denote by
z ~ y that zy € E(G), and by z # y that zy € E. Ng(v) = {z|zv €
E(G)} and Ng[v] = Ng(v)U{v} (or N(v) and N{v] when there is no
ambiguity) are the open neighborhood and closed neighborhood of
vertex v € V(G), respectively. The degree d, of v € V(G) is |N(v)],
the cardinality of N(v). v is a simplicial vertex if §( N(v)) = 1.

Let S C V(G). Let G(S) be the subgraph of G induced by S.
For convenience, we also use S instead of G(S) when there is no
ambiguity. Let G — S be the graph with vertex set V(G) — S, edge
set E(G)— {zy|z € S}. When S = {v}, an one vertex set, we denote
G - S by G - v for convenience.

A clique of a graph G is a complete subgraph (not necessarily
maximal). (N (v)) is the minimum number of cliques needed to cover
the vertices of the subgraph induced by N(v). Following Kim and
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Roberts [4], for v € V(G) we say that 6*(N(v)) = 2 if (N(v)) = 2
and there are two cliques C and C; covering vertices of N[v], both
containing v, so that for all w € C;, N(w) — C; is either empty
or a clique of G. We say that 6*(N(v)) < 2 if 6(N(v)) < 1 or
*(N(v)) = 2.

Other terminologies not defined here are defined in [8].

2 Opsut’s Conjecture and Critical Graphs

In 1978, Roberts [9] proved that given a graph G, by adding suffi-
ciently many isolated vertices, one can obtain a competition graph
of some acyclic digraph. The competition number of a graph is then
defined as the minimum number of isolated vertices needed to add
to G to obtain a competition graph. The competition number of a
graph G is usually denoted by k(G). Opsut [7] proved that com-
puting competition number is an N P-complete problem. Therefore,
the competition number of a graph is difficult to compute for gen-
eral graphs. Nevertheless, Roberts [9] showed that the competition
number of a triangulated graph is at most 1, and the competition
number of a connected triangle free graph is |E(G)| - |V(G)| + 2.
Opsut [7] also proved that if G is a line graph, then k(G) is at most
2 and k(G) can be efficiently determined. Some more results on com-
petition number can be found in (3, 5, 7, 9] and in references cited
there. In looking for a generalization of the result on line graphs,
Opsut conjectured the following (which he proved for line graphs):

Conjecture 2.1 (Opsut [7]) If6(N(v)) < 2 for allv € V(G), then
k(G) < 2, and k(G) = 2 if and only if §(N(v)) = 2 for allv € V(G).

Recently, after introducing the parameter 6*, Kim and Roberts
generalized the proof in [7] to obtain the following theorem, which
Proves a variation of Conjecture 2.1:

Theorem 2.2 (Kim and Roberts [{]) If0*(N(v)) < 2 for allv ¢
V(G), then k(G) < 2, and k(G) = 2 if and only if 6*(N(v)) =2 for
allv € V(G).

It is easy to show that line graphs satisfy the condition in Theo-
rem 2.2. There are also graphs which are not line graphs satisfying
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Theorem 2.2. Therefore Theorem 2.2 generalizes Opsut’s result on
line graphs. On the other hand, the graph in Figure 2.1 satisfies the
condition in Conjecture 2.1 but does not satisfy the condition in The-
orem 2.2. Nevertheless, it is not a counterexample of Conjecture 2.1.
The digraph in Figure 2.2 shows that its competition number is at
most 2. Using the following Lemma 2.3, we have that its competition
number is 2. Hence Conjecture 2.1 remains open.

VAVAVAVAYS

Figure 2.1

Figure 2.2

The following is a useful lemma due to Opsut. _
Lemma 2.3 (Opsut [7]) For any graph G, k(G) > min,0(N(v)).

Now let Gi, G2 be two graphs such that V(G,) N V(G;) = 0.
G1UGy = (V(Gl) U V(Gz), E(Gl) U E(Gz)) is the disjoint union of
G1 and Gz.

Lemma 2.4 Suppose that V(G1) N V(Gz) = 0 and k(G;) < 2.
If [V(G1)| > 2, then k(G1 U G2) < k(G1). If [V(G1)| = 1, then
k(Gl) U Gz) <1.

Proof. Let Dy, D; be two acyclic digraphs such that C(D,) =
G1 U Iig,), C(D2) = G2 U IiG,) and such that there is no vertex
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in these two digraphs having only one incoming arc. (If any vertex
has only one incoming arc, eliminating that arc will not change the
competition graph.) Then because D, is acyclic and |V(G,)| > 2,
it has at least two vertices z,y with no incoming arcs. The lemma
follows from letting D be the digraph obtained from the union of
D,, D, such that the isolated vertices in Ii(G,) are removed and all
-arcs going to them are instead going to z or y, or both, depending
on k(Gz) = 1 or 2. The rest of the lemma is obvious. 0O

By Lemma 2.4, Conjecture 2.1 only needs to be considered on
connected graphs. Therefore, in the rest of this paper, any graph
without special notice is always connected. Now we introduce the
critical graphs which will play the central role in this paper. We
call a graph critical if for all complete subgraphs C' (not necessarily
maximal) of G, there is a w € C such that §(N(w)-C) = 2. A
non-critical graph is simply a graph not critical, i.e., there is a clique
C such that either for all w € C we have §(N(w) — C) = 1 or for
some w € C we have §(N(w) - C) > 3.

It follows from the definition of critical graphs that line graphs
and graphs satisfying the conditions in Kim and Roberts’ Theorem
2.2 are non-critical. We will show that Conjecture 2.1 is true for
non-critical graphs.

Now we prove that collection of non-critical graphs satisfying
6(N(v)) < 2 for all v € V(G) are closed under taking induced
subgraphs. One fact used throughout the rest of this paper with-
out further notice is that if §(Ng(v)) < 2 for all v € V(G), then
6(Ng(v)) < 2 for all v € V(H) for all induced subgraphs H of G.

Theorem 2.5 Let G be a graph such that 6(N(v)) < 2 for all
v € V(G). G has no critical induced subgraphs if and only if G is
non-critical.

Proof. To prove the "if” part, suppose on the contrary that there
are connected non-critical graphs such that (Ng(v)) < 2 for all
v € V(G) and such that some of their induced subgraphs are critical.
Let G be such a graph with smallest number of vertices. Then by
the minimality of G, for any w € V(G), G - w is critical. On the
other hand, by G critical, there is a complete subgraph C of G such
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that for all w € C, 8(Ng(w) — C) < 1. Let vg € G — C (exists since
G cannot be a complete graph). Then we have that for all w € C,
O(NGg-v,(w) — C) < 1. This is contrary to G — vp critical. The
"only if" part is trivial. So the theorem is proved. O

Theorem 2.6 Suppose that G is connected and (N (v)) <2 Vv €
V(G). Then k(G) = 1 if and only if G has a simplicial vertez.?

Proof. The "only if” follows from Lemma 2.3. To prove the "if”
part, inductively suppose that the lemma is true for graphs of fewer
vertices. (For graph of at most 2 vertices, the theorem is true.)
Suppose that there is vg € V(G) such that §(Ng(vo)) = 1. If the
subgraph G(Ng[vo)) is G, then G is a complete graph and k¥(G) =1
since k(K,,) = 1 for any complete graph of size m > 2.

If G(Ng[vo]) is not G, let C = Ng[vo] and let Gy, ...,Gi be the
connected components of G — C. Then k > 1. For each G;, choose
a vertex v; € C such that N(v;) N V(G;) # 0 if and only if i = j.
Such v; exits since G is connected. Let G; = G; U {v;}. Since v; is
a simplicial vertex of G;, it follows from induction that k(G ) =1
Since IV(G )| > 2, by Lemma 2.4, k(G) = 1 where G = U;G:;.

Let D be an acyclic digraph such that C(D) = G U {a} where a
is an isolated vertex. Let {vk41,...;Un,Unsy1 = vo} be the remaining
vertices in C — {vy, ..., u}. Notice that for any v;, N(v;) N v(G) is a
clique (possibly empty). Now it is easy to check that the following
digraph D is such that C(D) = G U {a}:

V(D) =V(G) U {a} _

A(D) =A(D) - {(v,a)|(v,a) € A(D)}
U{(v, vk41)I(v, @) € A(D)}
Usks1{(v,vi41)l(v, %) € E(G) and v ¢ Ng[v]}
Uick1 {(vi, vig1)}
Uizo{(vi, a)}

So k(G) =1. O

Theorem 2.7 Conjecture 2.1 is true for non-critical graphs.

2The author thanks the referee for suggesting this theorem.
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Proof. Let G be a non-critical graph. Then G has no critical induced
subgraphs by Theorem 2.5. By Lemmas 2.3 and Theorem 2.6, we
only need to show that if §(Ng(v)) = 2 for all v € V(G), then
k(G) = 2. We do induction on [V(G)|. When |V(G)] is small, say
[V(G)| < 4, it can be checked that the theorem is true. Inductively
assume that the theorem is true for graphs of fewer vertices than G.
Now suppose §(Ng(v)) = 2 for all v € V(G). Since G is not
critical, there is a clique C' such that §(Ng(v) - C) < 1 Wv € C.
Let C; = C = {vo,vl, -s¥} and C; = (Ng(v) — C) U {w}.
Then NA(vo) inG=G- {v1,...,v,} is a non-empty clique since
0(Ng(vo)) # 1. By Theorem 2.6, E(G) = 1. Let D be an acyclic
digraph such that G U {a} = C(D). Then the following is an acyclic
digraph D = (V(D), A(D)) such that C(D) = G U {a, b} where a,b

are two isolated vertices:

V(D) =V(G) U {a, b} i
A(D) =A(D) - {(v,a)|(v,a) € A(D)}
U{(v,21)I(v,a) € A(D)}
Ui=2{(v, w)lv € Na(vi_1) - V(Ch)}
U{(v,a)lv € N(v,) - V(C1)}
Uizo{(vie1,v)}
Ui=o{(v:, 8)}
U{(v., a)}
Combining this result with Lemma 2.3, we see that k(G) = 2. The
theorem is proved. O

The digraph construction in the proof of Theorem 2.7 is similar
to the constructions Kim and Roberts used in [4], which in turn are
generalizations of those used by Opsut in [7). Now our main result
of this section is ready.

Theorem 2.8 Conjecture 2.1 is true if and only if k(G) = 2 for
critical graphs.

Proof. The “only if" part is trivial. The “if" part is a corollary of
Theorems 2.6 and 2.7. |

Theorem 2.7 generalizes the results of Opsut 7] and Kim and
Roberts [4] since it is easy to see that graphs satisfying conditions in

189



their results are non-critical graphs and there are non-critical graphs
which do not satisfy conditions in their results. The graph in Figure
2.1 is a such example.

3 K,-free Critical Graphs

In this section, we characterize K4-free critical graphs. This will
enable us to prove that Conjecture 2.1 is true for K4-free graphs.

Before beginning our discussion on Ky-free graphs, we mention
that it is easy to show that Conjecture 2.1 is true for K3-free graphs.
For if G is a K3-free graph such that §(N(v)) < 2 for all v € V(G),
then each connected component of G is either a path or a cycle of
length larger than 3. So G is non-critical. Then that Conjecture
2.1 is true for K;-free graphs follows from Theorem 2.7. Now we
characterize Ky4-free critical graphs.

Let G = (V(G), E(G)) be a graph. For S C V(G), let G*(S)
denote the complement of the subgraph of G induced by S. A claw
is a graph G = ({a,d,¢,d},{ab,ac,ad}). If §(N(v)) < 2, G°(N(v))
induces a bipartite subgraph of G¢. The converse is also true. Thus
we have

Lemma 3.1 Let G = (V(G), E(G)) be a graph. (N (v)) < 2 for
all v € V(G) if and only if G°(N(v)) is bipartite for allve V.

Lemma 3.1 implies that if (N (v)) < 2 for all v € V(G), then G
is claw-free.

Lemma 3.2 Let G = (V(G), E(G)) be a critical graph, v € V(G).
Let Cy, C, be two cliques covering vertices of N[v] and v € C1 N C;.
Then there is a vertez w € C; such that I z,y€ N(w)—-Cy, 24 y
and z ~ v.

Proof. Let v € V(G) be a vertex of G. Since G is critical, if C;, C;
are two cliques covering vertices of N[v] and v € C; N C; then there
must be some w € C; such that 3z,y € N(w)-Cy, z + y. If
z 4 v, yitv, {z,y,v,w} would induce a claw, which is impossible.

So {z,y} N\ N(v) #0. O
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Theorem 3.3 Let G be a critical graph, and let §g be the minimum
degree of a vertez of G. Then §g > 4. In particular, K. 4-free critical
graphs are {-regular.

Proof. It is clear that G has no vertex of degree < 1. Suppose that
G has a vertex v of degree 2 with two distinct neighbors a, b. By
Lemma 3.2 one of those, say a, must have two non-adjacent neighbors
in N(a)— {v}, one of them adjacent to v. Thus one has to be b and
6(N(v)) = 1, contradicting that G is critical.

Now, we prove that G has no vertex of degree 3. Suppose on
the contrary that there is a vertex v € V(G) such that d, = 3, with
neighbors a,b,¢c. Since (N (v)) = 2 for all v € V(G), without loss
generality, suppose a ~ b and a % c. Let C; = {v,¢c}, C; = {v,a,b}.
C1, C; cover vertices of N[v] and v € C;, N C,. By Lemma 3.2 ¢ has
two non-adjacent neighbors outside of C;. One of them is adjacent
to v. It can only be b. So ¢ ~ b. Let the other neighbor of ¢ be d.
Then d # b and d # v.

Since d, = 3 and (N (v)) = 2, all neighbors of ¢ other than b
must be in a clique with d. Let C; = {v,b, c} and let C, contain ¢, d
and all other neighbors of ¢. Then C;, C; are two cliques covering
vertices of N[c] and ¢ € C; N C;. By Lemma 3.2 there are two non-
adjacent vertices, say e, f, in N(b)—C, such that one of them, say e, is
adjacent to c. It cannot be d. Therefore e is another neighbor of ¢. If
a# f, {b,e, f,v} would induce a claw. So a = f. Thus, we conclude
that there is e ¢ {a,b,c,v} sothat e~ ¢, e~ b, e *a, e v. Also,
e # d. By symmetry of a and ¢, there is a vertex g & {a,b,¢c,v}, so
that g ~a, g ~ b, g £ ¢, g % v. Moreover, g # e because e ~ c.
(Figure 3.1) It follows that {a,c,e,g,v} C N(b)and a, c, g, ¢, v, a
is a 5-cycle in G°(N(b)). Thus G°(N (b)) is not bipartite contrary to
Lemma 3.1.
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Hence if G is critical, g > 4. When G is K,,-free critical, by
6(N(v)) = 2 for all v € V(G), we have that the maximum of degrees
of vertices of G is at most 2m — 4. Hence the theorem follows. O

Lemma 3.4 Let G = (V(G), E(G)) be a K4-free critical graph,
v € V(G). If Cy, Cy are two cliques covering vertices of N(v], both
containing v, then there are z € C1, y € C3 such that z and y are
non-adjacent and (N (y) — C2) = 2.

Proof. Since §(N(v)) = 2 for all v € V(G), we have that §(N(v) —
S)< 2 forall § C V(G). Let v € V. By Theorem 3.3, d, = 4.
Let N(v) = {a,b,¢c,d}. Let C; = {v,a,b} and C; = {v,c,d} be two
cliques covering vertices of N[v]. ( neither C; nor C; could be Kj).
Since 8(N(v)) = 2, without loss of the generality, we may assume
that @ % c. If (N(c) — C;) = 2, thenlet 2 = a and y = ¢, and
we are done. If §(N(c) — C;) < 1, by Lemma 3.2, d must have two
non-adjacent neighbors in G — C> so that one of them is either a or
b.Ifitisa,letz =0,y =d;if it is b, let z = a, y = d. The lemma
follows since d could not be adjacent to both a and b (else G has a
K4). (m]

Let B,,,n > 4, be a graph of 2n vertices such that there is labeling
vy, ,V2, ..., V2 of V(By,) so that the adjacency of B, is given as
follows (Figure 3.2):

Vi1 ~ V2i41, i=12,..,n-1;
V2i ~ V2i42, 1=1,2,..,n-1;
Vi ~ Vitl, 1= 1,2,...,211. - l;
V2n-1 ~ V1, V2 ~ Vi, Vo ~ Uz

Let M., n > 4, be a graph of 2n — 1 vertices such that there is
labeling vy, vz, ..., V2n—1 of V(M) so that the adjacency of M, is
given as follows (Figure 3.3):

V2i-1 ™~ V2i41, i=1,2,.,n-1;
V2i ~ V2i42, 1= 1,2, ey — 2;
v ~ Vig1, 1=1,2,...,2n—2;
V2n-1 ~ V1, V2n-1 ~ V2, V2n-2 ~ V1.
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Figure 3.2 Figure 3.3

Let C be the collection of all B,,’s and M,,’s, n > 4. It is easy to
check that all graphs in C are K4-free and critical. We are going to
show that these are the only connected Ky4-free critical graphs.

Let graph D,, n > 3, be a graph of 2n — 1 vertices such that
there is a labeling of its vertices with adjacency given as the following

(Figure 3.4):

V241 ~ V2441, 1=1,2,.,n-1;
V2i ~ Va(i41)s 1=12,.,n-2
v; ~ V41, 1=1,2,.,2n-2
’ 2 4 € o o e 2n2
1 3 5 e o o 2'“'1

Figure 3.4

Lemma 3.5 If G is a K4-free critical, then every closed neighbor-
hood N[z}, z € V(G) of G induces a subgraph Dj.

Proof. By Theorem 3.3 d, = 4 for all v € V(G). Thus |V(G)| =
n > 5. So by 8(N(v)) = 2, for all v € V(G), N[v] is covered by
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two triangles. Suppose that vg € V(G). We show that N[vg] induces
a D3. Let C; = {v1,v2,%} and C, = {vp,v3,v4} be two triangles
covering vertices of N[vy]. By Lemma 3.4 there are, say v, € Ci,
vy € Cs, such that v; # v4 and N(v4) — C2 has two non-adjacent
vertices. By 8(N(v4)) = 2, one of them is adjacent to vy (otherwise
there would be a claw in G). Since G is 4-regular and vy % vy, it
must be v,. Let the other one be vs. Then vs o v,. Since G is
K4-free and §(N(vyq)) = 2, we have vy o v3, vs o vo and vs ~ vs.

Now we show that v3 %% v;. Suppose on the contrary that vz ~
v;. Let the other neighbor of v, other than vy, vp,v4 be z. Since
vs % vg, 2 # vs and z, vz, v1,v4 cannot induce a claw, z is adjacent
to either v; or v4. It follows from N(v4) = {vo, v2,v3,vs} that z ~ v;.
C! = {z,v1,v,} and C) = {v1,vp,v3} are two cliques covering N[v,]
such that v; € C{ N Cj. But for all w € C3, N(w) — Cj is a clique.
Therefore, v3 7 v;. It follows that N[vg] = {vo, v1,v2,v3, v4} induces
a D3 shown in Figure 3.5. O

Figure 3.5

Theorem 3.6 A graph G is K4-free critical if and only ifG eC.

Proof. Let G = (V(G), E(G)) be a Ky-free critical graph. By
Lemma 3.5 every closed neighborhood of G induces a subgraph Dj.
Let m be the maximum such that G contains an induced subgraph H
which is isomorphic to D,,. Without loss of the generality, suppose
that the vertices in subgraph H of G are labeled in the same way
as in the definition of adjacency of D,, and other vertices of G are
unlabeled. We now prove by induction on m that G = M, or
G = Bm+1.

If m = 3, then H = N[vs]. vs must have two neighbors which
are unlabeled. Label them vg, v7 respectively. vg % v3,v7 % v3 since
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N(v3) = {v1,v2,v4,v5}. Applying Lemma 3.5 to N[vs], we have that
vg ~ v7 and one of them, say vg, is adjacent to vy.

If v ~ vy, applying Lemma 3.5 to N[vg] we have v; ~ v;. Ap-
plying Lemma 3.5 to N[v,] we have (since d,, = 4) v; ~ v7. Then
we have My as an induced subgraph of G. Since G is 4-regular and
G is connected, G = Mj.

Now suppose that vg % vi. Applying Lemma 3.5 to N|[vg), we
have vy % vg. If v ~ v7, applying Lemma 3.5 to N[v,], it follows
(since dy,, = 4) that v; ~ v;. By d,, = 4, vg has a neighbor other
than vy, v,,v3,v4,vs,v7 but not adjacent to any of vy, vs, v7 since
dy, = dy, = dy, = 4. Thus N[vg] has a claw, which is impossible.
So vz % v7. Then it must be v; ~ v; otherwise G would have D,
as an induced subgraph, contrary to the choice of m. vg must have
a neighbor which is not labeled. Label it vs. Applying Lemma 3.5
to N[vg], it follows that vs ~ v7. Applying Lemma 3.5 to N[v;] we
have that vg ~ v;. Finally, applying Lemma 3.5 to N[v;] we have
that v ~ vs. Now, all labeled vertices induce B, as subgraph of G.
Since G is 4-regular and connected, G = By.

Now let m > 3 and suppose that G has D,, as an induced sub-
graph, but not D,, ;. Suppose by using induction that if m -1 > 3
and G has D,,_; as an induced subgraph but not D,,, then G = M,,
or G = B,,. Now we replace vertices v3 and vs by a new vertex
v3s, replace vertices v, and v4 by a new vertex v4 and remove all
edges incident with v,, v3,v4,vs5. Let N(v3s) = {v1,v24,v6,v7}. Let
N(vag) = (N(v2) U N(vg) U {vas5}) — {v2,v3,v4,us}. It is easy to
see that the newly obtained graph G’ is still K4-free critical and the
largest k such that Dy is an induced subgraph of G’ is k = m - 1
(since the adjacency of the neighborhood of any vertex other than
V24, U35 is unchanged and the neighborhoods of v34, v35 are similar to
those of vs,v3). By induction, G’ = By, or G' = M,,. So it follows
that G = Bm+1 or G = Mm+1. O

Now we are going to show that k(G) = 2 for all G € C. The
following theorem was first given by Lundgren and Maybee in [6]
with a small error, and was corrected by Kim [3].

Theorem 3.7 (Lundgren and Maybee [6], Kim [3]) IfG is a graph
with n vertices and m < n, then k(G) < m if and only if G has an
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edge clique covering {Cy,C3,...,Cnym-2} and a labeling vy, vy, ..., v,
of V(G) so that if v; € Cj, theni > j — m + 1, where n = |V(G)|.

Lemma 3.8 k(B,) =2 and k(M,) =2, forn > 4.

Proof. By Lemma 2.3, we only need to show that k¥(G) < 2 for all
G €C. Let By, n > 4, be re-labeled as shown in Figure 3.6. An edge
clique covering is given as follows:

C1 = {1,n,2n};

Ci={i-l,i,n+i-1}, i=2,..,n;
Cnyi = {i— 1,4}, i=n+2,..,2n;
Cn+l = {n + 1’2"'};

Let M, n > 4, be re-labeled as shown in Figure 3.7. An edge
clique covering of M, is given as follows:

Cl = {1,n,2n—1};
Ci={i-1,n+i-1,i}, i=2,..,n;
C; = {i-1,i}, izn+1,..,2n—1.

" Then by Theorem 3.7, k(M,)<2,k(B,)<2. O

Figure 3.6 Figure 3.7

Theorem 3.9 Conjecture 2.1 is true for K4-free graphs.
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Proof. This follows from Theorem 3.6, Lemma 3.8, Theorems 2.6
and 2.7. (] .

Though characterizing critical graphs can be a possible approach
to settle Conjecture 2.1, we expect that it is difficult. We shall see in
the next section that there are critical graphs with arbitrarily large
induced complete subgraphs and their structures are not as “regular”
as those K4-free critical graphs which we just characterized. Another
approach to characterize critical graphs is proposed in'next section.

4 Lift Critical Graphs

In this section, we study a graph operation as an approach to char-
acterize critical graphs and to tackle Conjecture 2.1. We extend our
results in section 3 to a larger class of critical graphs.

It is easy to see that any proper induced subgraph of a Ky-free
critical graph is non-critical. So K4-free critical graphs are minimal
critical graphs under the process of taking induced subgraphs.

Let G = (V(G), E(G)) be a graph. If § C V(G), a lift of
G is the graph obtained by adding a new vertex w and a set of
new edges B’ = {(z,w)|z € S} to G. Denote the new graph as
Gs = (V(Gs), E(Gs)). S is called a lift set of G.

Lemma 4.1 Any critical graph can be obtained from some minimal
critical graph by applying a series of lifts.

Proof. Let G be a critical graph. Suppose that H is a minimal crit-
ical induced subgraph of G. If G = H then we are done. Otherwise
for any induced subgraph F of G such that H is an induced subgraph
of F, F is critical by Theorem 2.5. So the lemma follows. O

We call a lift Gs a critical lift of a critical graph G if Gy is

critical.

Theorem 4.2  Conjecture 2.1 is true if and only if the following
hold:

(1)  k(G) = 2 for all minimal critical graphs; and

(#3)  Critical lifts do not increase competition number of a critical
graph.
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Proof. The "only if” part is trivial. The "if" part follows from
Theorem 2.8 and Lemma 4.1. a

We have seen that all K4-free critical graphs are minimal critical
graphs. But K-free critical graphs are not the only minimal critical
graphs known to date. Incidently, all critical graphs we have encoun-
tered can be obtained from the minimal critical graphs known by a
series of special lifts which we will describe later and Conjecture 2.1
is true for them. While the problem of characterizing all minimal
critical graphs remains open, in the following, we study some lift
operations.

Lemma 4.3 Let G be a critical graph. A lift Gs of G is critical if
and only if 8(Ng,(v)) = 2 for all z € V(Gs).

Proof. The "only if" part is trivial. The "if” part is also easy since
if G is not critical, neither can G be by Theorem 2.5. o

An immediate observation is that a critical lift set must be the
union of two distinct cliques. Among lift operations, we present three
critical lifts defined by lift sets in the forms of § = N[v], S C N[v]
and S O N[v] for some v € S.

A critical lift called multiplication is defined by a lift set as fol-
lows: let v be a non-isolated vertex of G and let the lift set S = Ng[v].
Then the corresponding lift of G is Gs = (V(G) U {w}, E(G) U
{(w,2)lz € No[v]}).

Lemma 4.4 (a) Multiplications (on non-isolated vertices) do not
increase competition number.

(b) G is critical if and only if any graph obtained by applying a
series of multiplications (on non-isolated vertices) G is critical.

Proof. We only need to show that the theorem is true after applying
one multiplication on a critical graph.

(a) Let G’ be the graph obtained from G by multiplying a non-
isolated vertex v € V(G) by w. Let k(G) = m and |V(G)| =
By Theorem 3.7, G U I, has an edge clique covering C,, Cs, ... ,
Cnim-2 and a labeling vy, v,,...,v, of V(G) such that if v; € Cj,
then i > j —m+ 1. Now label w as vpyppy1. Fori=1,...,n4+m -2,
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let C; = Ciif v ¢ C;,and C; = C; U {w} if v € C;. Let Cryms1 = 0.
Now C;, «.Crtms1 is an edge clique covering of G and if v; € Cj,
then i > j. So k(G") < k(G) by Theorem 3.7.

(b) Since multiplication does not change adjacency between ver-
tices of V(G), it follows that 8(Ng:(z)) > 8(Ng(z)) for all z € V(G).
On the other hand, let C),...,Cj cover Ng(z), z € V(G). Now let
C:=C;Uu{w}ifveC;andlet C! =C;ifv g C;, i=1, ...,k Then

1 - C} cover Ng/(z) and §(Ng(z)) > 6(Ng:(z)). Thus we have
that 8(Ng(z)) = 0(Ng/(z)) for all z € V(G). It is also clear that
0(Ng(w)) = 6(Ng(v)). Therefore 8(Ng(z)) = 2 for all z € V(G) if
and only if 8(Ng:/(y)) = 2 for all y € V(G'). By Lemma 4.3, G’ is
critical if G is.

Conversely, suppose G’ is critical. We know that 8(Ng(v)) = 2
for all v € V(G) since 8(Ng/(y)) = 2 for all y € V(G'). Let C be
a clique of G. C is also a clique in G’. First suppose that v & C.
Since G’ is critical, there is u € C (u # w) in G’ such that u has two
non-adjacent vertices z,y € Ng/(u) — C. If w ¢ {z,y} then we are
done since z, y € V(G) and z 4 y in G. If w € {z,y}, say w = =z,
then u # v since u ~ y but w ¢ y. It follows that v ~ u and v o y.
Then {y, v} € G —-C are two non-adjacent neighbors of u in G. Now
suppose that v € C. Let C' = C U {w}. Similarly, there is u € C’
such some z ¢ y are neighbors of u in G’, but z,y ¢ C’. Therefore
z.y are neighbors of u in G which are not in C. So G is critical. The
proof is finished. O

Given a graph G = (V(G), E(G)), vertices of G z,y € V(G) are
called equivalent if N[z] = N[y]. Graph G is called reduced if it
has no pair of distinct equivalent vertices. If z,y are two distinct
equivalent vertices of G, the operation from G to G — z is called
contracting equivalent vertices. Repeating contraction, we obtain a
graph without equivalent vertices, which we called the reduced graph
of G. If the reduced graph of G does not contain H as an induced
subgraph, we say that G is H-free reducible. Now, we can state
Theorem 3.9 in a broader content.

Theorem 4.5 Conjecture 2.1 is true for K4-free reducible graphs.

Proof. By Theorem 2.6 and 2.7, we only need to show that if G is
critical, then k(G) = 2. Let G be a K -free reducible critical graph.
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Let H be the reduced graph of G. Then by Lemma 4.4, H is critical
and k(G) = k(H). By Theorem 2.8 k(H) = 2. So it follows that
k(G) = 2,i.e., Conjecture 2.1 is true for G. O

It is clear that the size of maximum cliques among Ky-free re-
ducible graphs can be arbitrarily large. We list two other types of
critical lift sets as follows. Let G be a critical graph. Then G has
no isolated vertices. For a vertex v € V(G) there are always two
cliques Cy, C; covering vertices of N(v) (v & C; U C3). Let C be a
clique of G such that CNN(v) = 0. Iffor all z € C, C; C N(z) and
N(z) - (C1UC) is a clique of G, then we call the critical lift defined
by lift set S = N[v]UC an eztended multiplication of v.

Proposition 4.6  The eztended multiplication on a critical graph
defines a critical lift.

Proof. Let the extended multiplication of G be given by Gs =
(V(G)u{w}, B(G)U {(w,z)|z € S}). It is clear that §( Ng(v)) > 2
for all v € V(Gs). We only need to check that neighbors of any
z € V(Gs) can be covered by exactly two cliques. Since C; C N(z)
for all z € C' we have that C; U C is a clique of G. So it is a clique
of Gs. Hence, Ng¢(w) can be covered by two cliques C; U {v} and
C1UC. Ngg(v) can be covered by C, and C, U {w}. If z € C,
then Ng(z) can be covered by two cliques (C — z) U C; U {w} and
Ng(z) - (C1UC). If z € Ng(v), Ng(z) can be covered, say, by Cy
and C; where v € C; in G, then Ng,(z) can be covered by C} and
CoU{w} in Gs. If z ¢ S, the neighbors of x in G5 have the same
adjacency as in G, so the lemma follows. O

The graph in Figure 4.1 is a critical graph obtained by applying
one extended multiplication on Bg. It can be checked that after
deleting any vertex other than the newly added one w the graph is no
longer critical. So it cannot be obtained by applying multiplications
on any other smaller critical graph. Nevertheless, its competition
number is 2.

Another class of critical lifts analogous to multiplication arises
if instead of requiring § = Ng[v], we have that § C Ng[v], v € S.
We call it a partial multiplication of v. The graph in Figure 4.2
is a critical graph obtained by applying one partial multiplication
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on Bs. Similarly, it can be checked that after deleting any vertex
other than the newly added one w the graph is no longer critical.
Hence G cannot be obtained by applying multiplications or extended
multiplications on any other smaller critical graph. It is easy to check
that its competition number is also 2.

Figure 4.1 Figure 4.2

Our interests on the critical lifts multiplication, extended mul-
tiplication and partial multiplication given by S = N[v], § O N[v]
and § C N[v] for some v € S are that these critical lifts are the
only critical lifts which we know to date. It can be proved that these
three types of critical lifts are the only critical lifts on K4-free criti-
cal graphs. We might ask if multiplications, extended multiplications
and partial multiplications are the only possible critical lifts. Though
we have not been able to answer this question completely, to end this
section, we prove that N(v) can never be a critical lift set for any

v € V(G).

Proposition 4.7 Let G be a connected graph such that (N (v)) =
2 for allv € V(G). If there are z % y € G such that N(z) = N(y)
then G contains no critical induced subgraph and Conjecture 2.1 is
true for G.

Proof. Let A= N(z)= N(y). Let w € A. If there is 2 € N(w) such
that z ¢ A, then {2z, y, w, z} induces a claw, which is impossible.
Hence N(w) C Afor all w € A. So V(G) = AU {z,y}. To show
that G has no induced critical subgraph, we only need to consider the
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induced subgraphs H of G such that §( Ny (v)) =2 forallv € V(H).
Let H be such an induced subgraph of G. Since §(Ng(z)) = 2,
let Cy1, C2 be two cliques covering A with z ¢ C;. Then for all
w € (C1U{y})NH we have that Ng(w)—-(C1U{y}) C Hn(C.u{z})
which is a clique. So §(Ng(w)— (C1U{y})N H) < 1. Hence H is
not critical. O

Corollary 4.8 If G is a critical graph then for any v € V(G),
N(v) cannot be a critical lift set.

Proof. If N(v) is a critical lift set for some v € V(G) then in the
lift Gn(y) of G obtained by adding new vertex w and new edges
{wyly € N(v)}, we have that N(v) = N(w). By Proposition 4.7,
GN(v) is not critical. Since G is an induced subgraph of Gy(v), G
cannot be critical, contrary to our assumption. m]

5 Closing Remark

Some problems related to Conjecture 2.1 remain unanswered. By
Theorem 2.7, Opsut’s Conjecture 2.1 now is true for all graphs which
are disjoint unions of connected non-critical graphs and the settling
of Conjecture 2.1 is reduced to connected critical graphs. Though we
characterized all K4-free critical graphs and proved that Conjecture
2.1 is true for those graphs and some other critical graphs, critical
graphs have not been completely characterized. Also, the problems
of characterizing all minimal critical graphs (under the process of
taking induced subgraphs) and characterizing all critical lift sets re-
main unsolved. If Conjecture 2.1 is false, either there is some minimal
critical graph G with k(G) > 2 or some critical lift increases compe-
tition number of some critical graph. Incidently, it is noticed that all
critical lift sets known are in the forms of multiplication, extended
multiplication and partial multiplication. Also, those critical lifts do
not increase competition numbers in all encountered cases (otherwise
we would have had a counterexample already).
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