Degrees, Neighborhood Unions and Hamiltonian Properties ①

Song Zeng Min

(Department of Mathematics, Southeast University, Nanjing, 210018, P.R.China)

ABSTRACT: Let G be a 2-connected simple graph of order $n \ge 3$ with connectivity k. One of our results is that if there exists an interge t such that for any distinct vertices u and v, d(u,v)=2 implies $|N(u)\bigcup N(v)| \ge n-t$, and for any independent set S of cardinality k+1, $\max\{d(u)|u\in S\}\ge t$, then G is hamiltonian. This unifies many known results for hamiltonian graphs. We also obtain a similar result for hamilton-connected graphs.

This paper uses terms and notations of [1]. Throughout G denotes an undirected connected simple graph of order $n(\ge 3)$ with connectivity k and independence number α . Let L be a subset of V(G), F a subgraph of G and v a vertex in G. Define $N_L(v) = \{u \in L | uv \in E(G)\}$, $N_L(F) = \bigcup_{v \in V(F)} N_L(v)$. Specially, if L = V(G), we simple write it as N(v) and N(F). If no ambiguity can arise we sometimes write F instead of V(F). Let $S \subseteq V$, define $\Delta(S) = \max\{d(u) | u \in S\}$.

The study of the theory of hamiltonian graphs has given rise to many results. Many of these results use edge density conditions to force the existence of a hamiltonian cycle. Recently, it has been determined that less stringent edge density requirements can be placed on a graph by considering the cardinality of neighborhood unions rather than degree sums. In this paper, we establish the relations among these results. The result of [2] is a special case of our result. Ore's [3] Theorem and Chvátal and Erdös's [4] Theorem are corollaries of our result.

Theorem 1 Let G be a 2-connected graph of order $n(\ge 3)$ and connectivity k. If there exists an interger t such that for any vertices u,v, d(u,v)=2 implies $|N(u)\bigcup N(v)|\ge n-t$, and for any independent set S of cardinality k+1, $\Delta(S)\ge t$, then G is hamiltonian.

Proof: Let $C = v_1 v_2 \cdots v_r v_1$ be a longest cycle in G. If G is not hamiltonian, let B be any component of $G \setminus V(C)$, $N_C(B) = \{v_{i_1}, v_{i_2}, \cdots, v_{i_n}\}$

① The project supported by NSFC

 v_{i_m} }. G is k-connected implies $m \ge k$. Let $x_j \in N_B(v_{i_j})$. It is possible that $x_p = x_j$ for $p \ne j$. Put $N^- = \{v_{i_1-1}, v_{i_2-1}, \dots, v_{i_m-1}\}$, $N^+ = \{v_{i_1+1}, v_{i_2+1}, \dots, v_{i_m+1}\}$. The following Claim 1 is clear.

Claim 1 For any j $(1 \le j \le m)$, $N^- \bigcup \{x_i\}$ and $N^+ \bigcup \{x_i\}$ are independent.

For any $j(1 \le j \le m)$, Claim 1 implies $v_{i_{j-1}+1} \notin N(v_{i_j+1})$. Thus, since C is longest and $v_{i_j} \in N(v_{i_j+1})$, there exists a vertex v_{h_i} , $i_{j-1}+1 \le h_j \le i_j-1$, such that $v_{h_j} \notin N(v_{i_j+1})$, yet $v_q \in N(v_{i_j+1})$ for all $h_j+1 \le q \le i_j$. Put $N = \{v_{h_j}, v_{h_j}, \dots, v_{h_k}\}$.

Claim 2 Let p,q be two integers satisfing $1 \le p < q \le m$. Then for any $v_{i_1} \in \{v_{h_p}, v_{h_p+1}, \dots, v_{i_p-1}\}, v_{i_2} \in \{v_{h_q}, v_{h_q+1}, \dots, v_{i_q-1}\}, v_{i_1}, v_{i_2} \notin E(G)$.

If there exist such vertices v_{j_1} , v_{j_2} with v_{j_1} , $v_{j_2} \in E(G)$, the cycle $v_{j_1} v_{j_2} v_{j_2-1} \cdots v_{i_p+1} v_{j_1+1} v_{j_1+2} \cdots v_{i_p} x_p \cdots x_q v_{i_q} v_{i_q-1} \cdots v_{j_2+1} v_{i_q+1} v_{i_q+2} \cdots v_{j_1}$ is longer than C. A contradiction.

Claim 3 $\Delta(V(B)) < t$.

In fact, if $\Delta(V(B)) \ge t$, then for any $u,v \in \{v_{h_1}, v_{i_2-1}, v_{i_3-1}, \dots, v_{l_m-1}\}$ or N^+ , $|N(u) \bigcup N(v)| \le n-m-|B| \le n-t-1$. This and the condition of the theorem imply $N(u) \cap N(v) = \phi$. So, put $D = N(v_{h_1}) \bigcup N(v_{i_1+1})$, $D \cap (N_C(B) \setminus \{v_{i_1}\}) = \phi$. This implies that $|D| \le n-|B|-(|N_C(B)|-1)-2 \le n-t-2$. However, since $d(v_{h_1}, v_{i_1+1}) = 2$, the condition of Theorem 1 implies $|D| \ge n-t$. This leads to a contradiction.

Put $S = \{v_{h_1}, v_{h_2}, \cdots, v_{h_k}, x_1\}$. By Claim 2, S is an independent set of cardinality k+1. Then the condition of Theorem 1 implies $\Delta(S) \ge t$. By Claim 3, without loss of generality, suppose $d(v_{h_1}) \ge t$. Consider $v_j \in F = N(v_{i_2-1}) \bigcup N(x_2)$. By Claim 2, $v_j \notin \{v_{h_1}, v_{h_1+1}, \cdots, v_{i_1-1}\}$. We prove the following Claim 4.

Claim 4 (1) If
$$i_1 \le j \le i_2 - 2$$
, then $v_{h_1} v_{j+1} \notin E(G)$;
(2) If $i_2 \le j \le h_1 - 1$, then $v_{h_1} v_{j-1} \notin E(G)$.

Proof: If there exists j ($i_1 \le j \le i_2-2$) with $v_{h_1} v_{j+1} \in E(G)$, then by the definition of $N_C(B)$, $v_j \in N(v_{i_2-1})$, the cycle

 $v_{h_1} v_{j+1} v_{j+2} \cdots v_{i_2-1} v_j v_{j-1} \cdots v_{i_1+1} v_{h_1+1} v_{h_1+2} \cdots v_{i_1} x_1 \cdots x_2 v_{i_2} v_{i_2+1} \cdots v_{h_1}$ is longer than C. If there exists j ($i_2 \le j \le h_1-1$), $v_{h_1} v_{j-1} \in E(G)$, then by the definition of $N_C(B)$ and Clanim 2, $v_j \in N(v_{i_2-1})$, the cycle

 $v_{h_1}v_{j-1}v_{j-2}\cdots v_{l_2}x_2\cdots x_1v_{l_1}v_{l_1-1}\cdots v_{h_1+1}v_{l_1+1}v_{l_1+2}\cdots v_{l_2-1}v_jv_{j+1}\cdots v_{h_1}$ is longer than C. These are contradiction.

We define the function $f: F \rightarrow V(G)$ by:

$$f(u) = \begin{cases} u & \text{for } u \notin V(C) \\ v_{j+1} & \text{for } i_1 \leq j \leq i_2 - 3 \text{ and } u = v_j \\ v_{h_1} & \text{for } j = i_2 - 2 \text{ and } u = v_j \\ v_{j-1} & \text{for } i_2 \leq j \leq h_1 - 1 \text{ and } u = v_j \end{cases}$$
From the previous arguments and Claim 4, for any $u \in F$, we have $uv_{h_1} \notin F$

From the previous arguments and Claim 4, for any $u \in F$, we have $uv_{h_1} \notin E$. By the condition of Theorem 1, $d(v_{i_2-1}, x_2) = 2$ means $|F| \ge n-t$. Therefore, Note that $x_2 \notin f(F)$ and $x_2v_{h_1} \notin E(G)$, we obtain $d(v_{h_1}) \le n-(|F|)-1=t-1$. This is a contradiction. This implies Theorem 1 holds. \square

Corollary 1^[4] Let G be a simple graph of order $n \ge 3$, connectivity k and independence number α . If $\alpha \le k$, then G is hamiltonian.

Proof: When $\alpha \le k$ this implies that these do not exist any independent set of cardinality k+1. Thus we need only to show that there exists an integer t, such that for any vertices u,v, d(u,v)=2 implies $|N(u)\bigcup N(v)| \ge n-t$. This is clear (for example, taking t=n-1). \square

Corollary 2 Let G be a 2-connected simple graph of order $n(\ge 3)$. If for every pair of nonadjacent vertices u and v, $|N(u) \bigcup N(v)| \ge (2n-2)/3$, then G is hamiltonian.

Proof: Take $t = \left[\frac{n+2}{3}\right]$, where [x] denotes the largest integer to be less than or equal to x. Since $|N(u) \bigcup N(v)|$ is integer, $|N(u) \bigcup N(v)| \ge \frac{2n-2}{3}$ implies $|N(u) \bigcup N(v)| \ge n - \left[\frac{n+2}{3}\right]$. Let S be any independent set of cardinality k+1. If there exist vertices u,veS such that $|N(u) \bigcap N(v)| \ge 2$,

then $\Delta(S) \geqslant \frac{1}{2}(\frac{2n-2}{3}-2)+2=\frac{2n+2}{6} \geqslant t$. Theorem 1 implies the corollary holds. Otherwise, for any $u, v \in S, |N(u) \cap N(v)| \leq 1$. Let u, v, w be any three vertices in $S, p = |N(u) \cap N(v)| + |N(u) \cap N(w)| + |N(w) \cap N(v)|$. Then $p \leq 3$ and

$$\frac{1}{2}(3 \cdot \frac{2n-2}{3}+1) \le d(u)+d(v)+d(w) \le n-(k+1)+p,$$

that is, $p \ge 2k$. $k \ge 2$ implies $p \ge 4$, and this leads to a contradiction. \square Corollary 2 improves Theorem 2 in [2].

Corollary 3 Let G be a 2-connected simple graph of order $n(\geqslant 3)$. If for every pair of distinct vertices u and v, d(u,v) = 2 implies $|N(u) \bigcup N(v)| \geqslant n-\delta$, then G is hamiltonian.

The hypothesis of Corollary 3 is weaker than the hypothesis of Theorem 2 in [5].

Corollary 4 Let G be a 2-connected graph of order $n(\geqslant 3)$. If for any distinct vertices u,v, d(u,v)=2 implies $|N(u)\bigcup N(v)|\geqslant \frac{n}{2}$, and for any independent set S of cardinality k+1, $\Delta(S)\geqslant \frac{n}{2}$, then G is hamiltonian.

Corollary 4 is more general than Ore's Theorem.

Now we discuss hamilton—connected property of graphs.

Theorem 2 Let G be a 3-connected graph of order $n(\ge 3)$ and connectivity k. If there exists an interger t such that for any vertices u,v, d(u,v)=2 implies $|N(u)\bigcup N(v)|>n-t$, and for any independent set S of cardinality k, $\Delta(S)>t$ or there exist two distinct vertices $u,v\in S$ with d(u)=t, d(v)=t, then G is hamilton-connected.

Proof: Suppose that G is not hamilton-connected. Then there exists some pair of vertices u and v such that no hamiltonian u-v path exists in G. Consider a longest u-v path $P = v_1 v_2 \cdots v_r$ in G, where $u = v_1, v = v_r$. Let B be any component of $G \setminus V(P)$, $N_P(B) = \{v_{i_1}, v_{i_2}, \cdots, v_{i_m}\}$. With the assumed connectivity, we have $m \ge k \ge 3$. Let $x_j \in N_B(v_{i_j})$. It is possible that $x_p = x_j$ for $p \ne i$. Put $N^+ = \{v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_m-1}\}$, $N^- = \{v_{i_1+1}, v_{i_2+1}, \cdots, v_{i_m+1}\}$.

Claim 5 For any $j (1 \le j \le m)$, $N^+ \cup \{x_i\}$ and $N^- \cup \{x_i\}$ are independent.

Similar to the proof of Theorem 1, we define h_j for $j(2 \le j \le m)$, and if $i_m = r$, then $h_m = i_m - 1$. Put $N = \{v_{h_1}, v_{h_1}, \dots, v_{h_m}\}$. We have:

Claim 6 Let p, q be two integers satisfing $2 \le p < q \le m$. Then for any $v_{j_1} \in \{v_{h_p}, v_{h_p+1}, \dots, v_{i_p-1}\}, v_{j_2} \in \{v_{h_q}, v_{h_q+1}, \dots, v_{i_q-1}\}, v_{j_1}, v_{j_2} \notin E(G)$.

Claim 7 $\Delta(V(B)) < t$.

Put $S = \{v_{h_2}, v_{h_3}, \dots, v_{h_k}, x_2\}$. By Claim 6, S is an independent set of cardinality k. Then the condition of Theorem 2 implies $\Delta(S) \ge t$. By Claim 7, there exists $v_{h_i} \in N \cap S$ with $d(\bar{v}_{h_i}) \ge t$.

(1) j < m. Let $v_s \in N(v_{i_{j+1}-1}) \bigcup N(x_{j+1})$. By Claim 6, $v_s \notin \{v_{h_j}, v_{h_j+1}, \dots, v_{i_j-1}\}$. Similar to Claim 4, we have:

Claim 8 (1) If
$$s < h_i$$
, or $s \ge i_{i+1}$, then $v_{s-1} \notin N(v_{h_i})$;
(2) If $i_i \le s \le i_{i+1} - 1$, then $v_{s+1} \notin N(v_{h_i})$.

Hence, we obtain at least $|N(v_{i_{j+1}-1})\bigcup N(x_{j+1})|$ vertices which are nonadjacent to v_{k_j} , by defining a function. This implies $d(v_{k_j}) < t$. A contradiction.

(2). j=m. If $i_1>1$, then $S'=\{v_{i_{j+1}-1}, v_{h_2}, v_{h_3}, \cdots, v_{h_{k-1}}, x_2\}$ is also an independent set of cardinality k. By the condition of theorem 2 we have $\Delta(S') \ge t$. By Claim 7 and the argument of (1), we can suppose $d(v_{i_1-1}) \ge t$. Consider $F=N(v_{i_2-1}) \bigcup N(x_2)$, we obtain a contradiction by similar argument of (1). Thus, $i_1=1$. By the symmetry, we can suppose $i_m=r$. Further, we can suppose $d(v_{h_m})>t$ by the argument of (1) and the condition of Theorem 2. Let $v_j \in F$, if $i_2 < j < i_m-1$, then $v_{j-1} \notin N(v_{h_m})$; if $1 < j < i_2-1$, then $v_{j+1} \notin N(v_{h_m})$. Define a function $f:F \to V(G)$ by:

$$f(u) = \begin{cases} u & \text{for } u \notin V(P) \\ v_{j-1} & \text{for } j \ge i_2 \text{ and } u = v_j \\ v_{j+1} & \text{for } 2 \le j < i_2 - 2 \text{ and } u = v_j \\ x_2 & \text{for } j = i_2 - 2 \text{ and } u = v_j \end{cases}$$

We obtain that there exist at least |F|-1 vertices which are nonadjacent to v_{h_m} . this implies that $d(v_{h_m-1}) \le n-(|F|-1) < n+1-(n-t) = t+1$, that is $d(v_{h_m}) \le t$. This is contrary to $d(v_{h_m}) > t$ and the proof of Theorem 2 is completed. \square

Corollary 5 Let G be a simple graph of order $n \ge 3$, connectivity k and independence number α . If $\alpha \le k-1$, then G is hamilton-connected.

Corollary 6 Let G be a 3-connected simple graph of order $n(\ge 3)$. If for every pair of nonadjacent vertices u and $v | N(u) \bigcup N(v) | > (2n-2) / 3$, then G is hamilton-connected.

Proof: Take $t = \left[\frac{n+1}{3}\right]$, where [x] denotes the largest integer to be less than or equal to x. Since $|N(u) \bigcup N(v)|$ is integer, $|N(u) \bigcup N(v)| > (2n-2)/3$ implies $|N(u) \bigcup N(v)| \ge n - \left[\frac{n+1}{3}\right]$. Let S be any independent set of cardinality k. If there exist vertices $u,v \in S$ such that $|N(u) \bigcap N(v)| \ge 2$, then $\Delta(S) \ge \frac{1}{2}(\frac{2n-1}{3}-2)+2=\frac{2n+5}{6} > t$. Theorem 2 implies the corollary holds. Otherwise, for any $u,v \in S, |N(u) \bigcap N(v)| \le 1$. Let u,v,w be any three vertices in $S, r = |N(u) \bigcap N(v)| + |N(u) \bigcap N(w)| + |N(w) \bigcap N(v)|$. Then $r \le 3$ and

$$\frac{1}{2}(3 \cdot \frac{2n-1}{3} + r) \leq d(u) + d(v) + d(w) \leq n - k + r,$$

that is, $r \ge 2k-1$. $k \ge 3$ implies $r \ge 5$, and this leads to a contradiction. \square Corollary 6 improves Theorem 3 in [2].

Corollary 7 Let G be a 3-connected simple graph of order $n(\geqslant 3)$. If for every pair of distinct vertices u and v, d(u,v)=2 implies $|N(u)\bigcup N(v)|>n-\delta$, then G is hamilton-connected.

Corollary 8 Let G be a 3-connected graph of order $n (\ge 3)$. If for any distinct vertices u,v, d(u,v)=2 implies $|N(u)\bigcup N(v)|>\frac{n+1}{2}$, and for any independent set S of cardinality k, $\Delta(S)\geqslant \frac{n+1}{2}$, then G is hamilton-connected.

Corollary 9 Let G be a connected graph. If for any nonadjacent vertices u,v, $d(u)+d(v) \ge n+1$, then G is hamilton-connected.

References

- [1] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Macmillan Co., London, 1976.
- [2] R.J.Faudree, R.J.Gould, M.S.Jacobson and R.H.Schelp, Neighborhood unions and Hamiltonian properties in graphs. J. Combin. Theory B 47(1989), 1-9.
- [3] O.Ore, A note on hamiltonian circuits. Amer. Math. Monthly 67(1960),55.
- [4] V. Chvátal and P. Erdős, A note on hamiltonian circuits. Discrete Math. 2(1972), 111-113.