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ABSTRACT: Let G be a 2—connected simple graph of order n (> 3) with
connectivity k. One of our results is that if there exists an interge  such that for
any distinct vertices u and v, d(u,v)=2 implies | N()|JN(v)| > n—t, and for any
independent set S of cardinality k+1, max{d(u)lueS}=t, then G is
hamiltonian. This unifies many known results for hamiltonian graphs. We also
obtain & similar result for hamilton—connected graphs.

This paper uses terms and notations of [1]. Throughout G denotes an
undirected connected simple graph of order n(> 3) with connectivity k and
independence number a. Let L be a subset of V(G), F a subgraph of G and
v a vertex in G. Define N,(v)={ue LluveE(G)}, N (F)= |J Ny(v).

e (M)
Specially, if L = V(G), we simple write it as N(v) and N(F). If no ambiguity
can arise we sometimes write F instead of V(F). Let ScV, define A(S)=
max{ d(u)|ueS}.

The study of the theory of hamiltonian graphs has given rise to many re-
sults. Many of these results use edge density conditions to force the exist-
ence of a hamiltonian cycle. Recently, it has been determined that less
stringent edge density requirements can be placed on a graph by consider-
ing the cardinality of neighborhood unions rather than degree sums. In this
paper, we establish the relations among these results. The result of [2] is a
special case of our result. Ore’sP!'Theorem and Chvétal and Erdés’s“Theo-
rem are corollaries of our result.

Theorem 1 Let G be a 2—connected graph of order n( > 3) and connectivity
k. If there exists an interger t such that for any vertices u,v, d(u,v) =2 im-
pliesl N@@)UN (v)| = n—t, and for any independent set S of cardinality k+1,
A(S) > t, then G is hamiltonian.

Proof: Let C=v,v,>> v,v; be a longest cycle in G. If G is not
hamiltonian, let B be any component of G\ V(C), N¢(B)={v A PR
1
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v, }. G is k—connected implies m > k. Let xgeNgy(v, ). It is possible that
m /
x,= x; for p¥j. Put N_={Vz,-|’ Vi Y } N+={vl|+|, Vi

YL }. The following Claim 1 is clear.

Claim 1 Foranyj (1<j<m), N U{x} and N"U{x} are independent.

For any j(1<j< m), Claim 1 implies Vi e ¢ N(v, o ). Thus, since C is
1- !
longest and v . €N(v, o ), there exists a vertex v » Pl < hy<i—1, such
1 1 !
that v, ¢ N(v, ,,), yet v,€ N(v, 41) forall hi+1<q<i. Put N={v
! 1

vhz 5 o--’ vh" }_

1 hy?

Claim 2 Let p,q be two integers satisfing 1< p<q< m. Then for any v ) €
1

{Vh’ 5 Vh,“ P VI’_l }’ vi, e{vhq 3 V"q"" 5 %% v‘q_l}’ V,.| vi, ¢ E(G)'

If there exist such vertices v iV with v, v, €E(G), the cycle
t 2 1 2

v" vI’ v;,—]'"v oocv"xpoooxqv' vl _ eseey v v sy

41V 41V 42 1 1Yo 2°
RIMTIAA ) netVe eV 4 i

is longer than C. A contradiction.

Claim 3 A(V(B))<t.

In fact, if A(V(B)) > t, then for any uve{v, ,v, _ ,v, _,
1 2 3

N*, |N @y N(v)| < n—m—|B| < n—t—1. This and the condition of the theo-
rem imply N(u)\N(v)=¢. So, put D=N(v,.' )UN(v" +1): DN(N(B) \

{v, D =¢. This implies that |D| < n-|B|—(] NC(B)I—-])—2< n—t—2. How-
1

ever, since d(v, ,v
1

v.-’ v‘m 1 } or

i +1)=2, the condition of Theorem 1 implies |D| > n—t.
1

This leads to a contradiction. )
Put S={v, ,v, ,~,v, ,x }. By Claim 2, S is an independent set of
1 2 k

cardinality k+1. Then the condition of Theotem 1 implies A(S)>t. By
Claim 3, without loss of generality, suppose d(v .. )= t. Consider veF
1

=N(v, _,) UN(x,). By Claim 2, v, ¢ {v,.l , v
2
the following Claim 4.

btV }. We prove

Claim4 (1) If i;<j<i;=2, thenv, v,“¢ E(G);
1
C(2)If i,<j<h—1, then Vi vl_lq‘-. E(G).
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Proof: If there exists j (i, < j< i,~2) with v, v, €E(G), then by the defini-
1
tion of N(B), v ; eN(v, _,), thecycle
2
Vi VitV ie2 "V Ve TV eV e Ve a2 T K0T XY Y

Vi, €E(G), then by the
definition of N«(B) and Clanim 2, v ; eN(v -1 ), the cycle

is longer than C. If there exists j (i, <j< h,—1), v

- e
Vi Vi V=2tV Xt Y Ve Y eV a2 VY e,

is longer than C. These are contradiction.
We define the function f: F=V(G) by: .
u for u¢V(C)
Vit for_i <j<i,-3 and u=v

v, for j=i,—2 and u=v
1

i
flu) =
i
v, , fori,<j<h —1and u=v
From the previous arguments and Claim 4, for any ueF, we have uv, ¢
1

E. By the condition of Theorem 1, d(v, _,, x,)=2 means |F| >n-t.
2

Therefore, Note that x, ¢ f(F) and x,v, ¢ E(G), we obtain d(v , )<n—
1
( F|)-1=t—1. This is a contradiction. This implies Theorem 1 holds. (]

Corollary 1" Let G be a simple graph of order n> 3,connectivity k and in-
dependence number o.. If o< k, then G is hamiltonian.

Proof: When a < k this implies that these do not exist any indcpendent
set of cardinality k+1. Thus we need only to show that there exists an inte-
ger t, such that for any vertices u,v, d(u,v)=2 implies |N(u)UN(v)I = n—t.
This is clear (for example, taking t=n—1). []

Corollary 2 Let G be a 2—connected simple graph of order n( > 3). If for
every pair of nonadjacent vertices u and v, |N (u)UN (v)| > (2n-2)/ 3, then
G is hamiltonian.

Proof: Take t=[£~'3tz] , where [x] denotes the largest integer to be less

2n—-2
3

]. Let S be any independent set of

than or equal to x. Since IN(u)UN(v)Iis integer,

impties [NGUNW)| > n-{ 232
cardinality k+1. If there exist vertices u,veS such that | N(u)(\N(v)| > 2,
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then A(S); (2n — 2n6+ 2
holds. 0therw1se, for any u, veS, |N w(N (v)l < 1. Let u,v,w be any three
vertices in S, p=|N(@@)YN®)|+ |N@)\N(w)|+ | N(w)(YN(v)|. Then p< 3
and

—2)+2= 2 t. Theorem 1 implies the corollary

= (3 +1 )< d(w)+d(v)+d(w) < n—(k+1)+p,

thatis, p> 2k. k=2 1mpl|es p > 4, and this leads to a contradiction. O
Corollary 2 improves Theorem 2 in [2].

Corollary 3 Let G be a 2—connected simple graph of order n( > 3). If for
every pair of distinct vertices u and v, d(u,v) =2 impIies| N(u)UN(v)| = n—9,
then G is hamiltonian. -

The hypothesis of Corollary 3 is weaker than the hypothesis of Theorem 2
in [5].

Corollary 4 Let G be a 2—connected graph of order n( = 3). If for any dis-
tinct vertices u,v, dfu,v)=2 impliesi N(u)UN(v)| > ’2—1,and for any indepen-

dent set S of cardinality k+1, A(S) > %, then G is hamiltonian.

Corollary 4 is more general than Ore’s Theorem.
Now we discuss hamilton—connected property of graphs.

Theorem 2 Let G be a 3—connected graph of order n( > 3) and connectivity
k. If there exists an interger t such that for any vertices u,v, d(u,v)=2 im-
plies |N(u)UN(v)| >n—t, and for any independent set S of cardinality k,
A(S)>t or there exist two distinct vertices u,veS with d(u)=t, d(v)=t,
then G is hamilton—connected.

Proof: Suppose that G is not hamilton—connected. Then there exists
some pair of vertices u and v such that no hamiltonian u—v path exists in
G. Consider a longest u—~v path P= v,v,*rv, in G, where u=v,, v=v,.

Let B be any component of G\ V(P), Nyx(B)= {v VY }. With the
assumed connectivity, we have m> k> 3. Let x;e NB(v ) It is possible that
Xp = Xj for p#i. PutN+={V,|_l,v‘1_l, }’ { i +l’vl +1°

oes p .
Viand
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Claim 8 Foranyj(1<j<m), N'U{x} and N U{x} are independent.
Similar to the proof of Theorem 1, we define h; for j2<j<m), and if
in=t, thenh, =i ,—1. Put N= {"h, Vi, 2TV, }. We have:
- Claim 6 Let p, q be two integers satisfing 2< p<q< m. Then for any v ;
1

G{vh’ ’ v,,’,._l"“’ v’,_l }’ vl, e{vh' ’ vll,'l'l’.." vl'-l }’ v’l V’, ¢ E(G)‘

Claim7 A(V(B))<t.
Put S={v, ,v, ,,v, , x,}. By Claim 6, S is an independent set of
2 3 k

cardinality k. Then the condition of Theorem 2 implies A(S) > t. By Claim
7, there exists v, eN\S withd(v, )>t.
1 !

(1)j<m.Letv eN(v, _ )UN(x,,,).ByClaim6,v ¢ {v, v
1+1 !

Vi }. Similar to Claim 4, we have:

KLl
"I +1

j+1
Claim 8 (1) If s<h, ors>iy,, then v‘_léN(v,‘ );
1
(2) If i <s<iy;—1, then v'“éN(vhl ).

Hence, we obtain at least |N(v o _DUNG, +')| vertices which are
i+1
nonadjacent to v, , by defining a function. This implies d(v . )<t. A con-
1 1

tradiction. _
(2). j=m. Ifi;>1, then §’={v 5V, 5V, . v. ,x_}isalsoan
Gay =17 "hy 7 Ty By 772

independent set of cardinality k. By the condition of theorem 2 we have
A(S’) > t. By Claim 7 and the argument of (1), we can suppose d(v h) =
1

t. Consider F=N(v -t u N(x,), we obtain a contradiction by similar

argument of (1). Thus, i, =1. By the symmetry, we can suppose i, =r. Fur-
ther, we can suppose d(v , )>t by the argument of (1) and the condition

of Theorem 2. Let v,eF, ifi,<j<i,—1, then Vo4 ¢ N(v, ) ifl<j<ipj1,
thenv, ¢ N(v , ). Define a function f:F — V(G) by:

j+1
u for u¢Vv(pP)
v, for j=i, and u=v,
flu) = L for 2<j<i, -2 andu=vl
x, ‘for j=i,—2 and u=v,
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We obtain that there exist at least | F]—1 vertices which are nonadjacent to
v, . this implies that d(v, _ )<n—(F|-1)< nt+l—(n—t) = t+1, that is

d(v Y )< t. This is contrary to d(v, )>t and the proof of Theorem 2 is
completed. []

Corollary 5 Let G be a simple graph of order n> 3,connectivity k and inde-
pendence number a. If o< k—1, then G is hamilton—connected.

Corollary 6 Let G be a 3—connected simple graph of order n( > 3). If for
every pair of nonadjacent vertices u and v,| N (u)U N (v)l >(2n—2)/ 3, then G
is hamilton—connected.

Proof: Take t=['%] ] , where [x]denotes the largest integer to be less
than or equal to x. Since | N(x)| N(v)|is integer, | N(u) JN(v)| >(2n—2) / 3
implies |N(u)N()| = n—[n:;i] . Let S be any independent set of
cardinality k. If there exist vertices u,veS such that |N(u)ﬂ N (V)| > 2, then
AS)z ) 1 (2n 2= 2n;— 5

holds. Otherwnse, for any u, veS, |N w(\N (v)| < 1. Let u, v, w be any three
vertices in S, r=|N@)N®)+ |[N@)Nw)+ |Nw)\N()|. Then
r<3and

>t. Theorem 2 implies the corollary

L) <de) +d) +dw) <n—k+r,

1 2n
2073
that is, r> 2k—1. k> 3 implies r > 5, and this leads to a contradiction. (]
Corollary 6 improves Theorem 3 in [2].

Corollary 7 Let G be a 3—connected simple graph of order n( > 3). If for
every pair of distinct vertices u and v, d(u,v) =2 implies |N(u)UN(v)|>
n—0, then G is hamilton—connected.

Corollary 8 Let G be a 3—connected graph of order n( > 3). If for any dis-
tinct vertices u,v, d(u,v) =2 implies |N(u)UN(v)| and for any inde-

n+1

pendent set S of cardinality k, A(S) = ——, then G is hamilton—connected.

Corollary 9 Let G be a connected graph. If for any nonadjacent vertices u,v,
d(u)+d(v) = n+l, then G is hamilton—connected.
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