Constructions of Resolvable Mendelsohn Designs

Zhang Xuebin

Teaching and Research Section of Mathematics
Nanjing Architectural and Civil Engineering Institute
Nanjing, 210009
People’s Republic of China

Abstract. In this paper, we shall establish some construction methods for resolvable
Mendelsohn designs, including constructions of the product type. As an application,
we show that the necessary condition for the existence of a (v, 4, ) -RPMD, namely,
v=0o0r1 (mod 4),is also sufficient for A > 1 with the exception of pairs (v, )
where v = 4 and \ odd. We also obtain a (v, 4, 1) -RPMD for v = 57 and 93.

1. Introduction and preliminaries.

The notion of a perfect cyclic design was introduced by N.S. Mendelsohn [13].
This concept was developed and studied in subsequent papers by various authors
(see, for example, [1 -6, 12 - 13, 15]). These designs were also called Mendel-
sohn designs by Hsu and Keedwell in [6]. The following are some definitions on
Mendelsohn designs.

Definition 1.1: In the ordered k-tuple (a1,a2,4a3,...,a%), a; and a; are said to
be t-apart if j — i =t (mod k). If B = {a1,a3,03,...,a;} then we say that
(a1,a2,a3,...,a) is to be a cyclically ordered k-subset of B.

Definition 1.2: Let v, k and X be positive integers. A (v, k, \)-Mendelsohn de-
sign (briefly (v, k, \)-MD) is a pair (X, B) where X is a v-set (of points) and
B is a collection of cyclically ordered k-subsets of X (called blocks) such that
every ordered pair of points of X are 1-apart in exactly ) of the blocks of B. The
(v, k, ))-MD is called y-perfect (briefly (v, k, \) -r-PMD) if each ordered pair of
points of X appears r-apart in exactly )\ of the blocks of B.

Itis easy to show that the number of blocksina (v, k, \) -r-PMDis Av(v—1) /k,

and, hence, an obvious necessary condition for its existence is Av(v — 1) = 0
(mod k). We next define the notion of resolvability of a (v, k, A) -r-PMD where
v=0or1 (mod k).
Definition 1.3: If the blocks of a (v, k, ) -r-PMD for whichv = 1 (mod k) can
be partitioned into Av sets each containing (v — 1) /k blocks which are pairwise
disjoint (as sets), we say that the (v, k, \)-r-PMD is resolvable (briefly (v, k, )\)-
r-RPMD) and each set of (v — 1,)/k pairwise disjoint blocks will be called a
parallel class.

A resolvable PMD and parallel classes by Definition 1.3 are usually called an
almost resolvable PMD and almost parallel classes. For convenience, we use Def-
inition 1.3 in this paper.
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Definition 1.4: If the blocks of a (v, k, A)-r-PMD for whichv = 0 (mod k) can
be partitioned into A(v — 1) sets each containing v/k blocks which are pairwise
disjoint (as sets), we shall also say that the (v, k, \) -r-PMD is resolvable (briefly
(v, k, ))-r-RPMD) and each set of v/k pairwise disjoint blocks will be called a
parallel class.
Remark 1.5: Let (X,A) be a (v, k,\)-r-RPMD where X = {z1,13,...,z,}.
By Definition 1.3 and 1.4, it is easy to see that forv = 1 (mod k) A can be
partitioned into Av parallel classes A;; such that A;; is a partition of X \ {z;}
wherel <i<vandl < j< A andforv=0 (mod k) A can be partitioned
into A(v — 1) parallel classes A; such that A; is a partition of X where 1 < j <
AMv-=1).

The following are the known results on (v, k, A) -RPMDs and (v, k, \) -PMDs,
of which a survey can be found in [2, 4, 5].

Theorem 1.6. A (v,3,1)-RPMD exists ifand only if v = 0 or 1 (mod 3),
v#6.

Theorem 1.7. A (v,4,1)-RPMD exists for v=1 (mod 4), with the possible
exception of v = 57,93 (see Theorem 2.4 in [5]).

Theorem 1.8. The necessary condition for the existence of (v,4 , \) -PMD, namely,
M(v—1) =0 (mod 4), is also sufficient, except for v= 4 and )\ odd,v = 8
and \ = 1, and possibly excepting v = 12 and X = 1,

Theorem 1.9. Let p be an odd prime and r > 1, then there exists a (p”,p, 1) -
PMD.

Theorem 1.10. Let v = p" be any prime power and k > 2 be such that k |
(v — 1), then there exists a (v, k, 1) -RPMD.

Theorem 1.11. A (v,4, 1) -RPMD exists for all sufficiently large v with k > 3
andv=1 (mod k).

Theorem 1.12. Let v, k and )\ be positive integers. Suppose there exists a PBD
B({k1,ka2,... ,k}, 1, v) and for each k; there exists a (k;, k,\)-PMD. Then
there exists a (v, k, \) -PMD.,

Compared with (v, k, \) -PMD the existence question for (v, k, \)-RPMD seems
much more open (see [12]). In fact, the existence of a (v, k, \) -RPMD for which
v =0 (mod k) and k even has not been studied, for example, k=4 andv =0
(mod 4).

The purpose of this paper is to establish some construction methods for (v, k, \) -
r-RPMDs. As an application, we show that the necessary condition for the exis-
tence of a (v, k, \)-RPMD where A > 1, namely,v = 0 or 1 (mod 4), is also
sufficient with the exception of pairs (v,)\) where v = 4 and A odd. We also
obtain a (v, 4, 1)-RPMD for v = 57 and 93.
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We mention the definition and the result on Whist tournaments for later use (see
[10, 14]).
Definition 1.13: Let X be a set of v objects, called players.

(i) A Whist-table, donoted [z, x2; T3, x4] is a set of four players with the
pairs [z1, z2] and [ 73, 4] known as partners and the remaining four pairs
known as opponents.

(ii) A Whist-round is a set of Whist-tables such that each player occurs at ex-
actly one Whist-table.

(iii) A Whist-tournament denoted WH[ v], is a set of Whist-rounds such that any
two players are partners at exactly one Whist-table and opponents at exactly
two Whist-tables.

Apparently condition (ii) implies that v = 4 n and each Whist-round must con-
tain n Whist-tables.

Theorem 1.14. There exist WH[v] for all v = 0 (mod 4) except possibly
v=264.

We assume that the reader is familiar with the concept of a group divisible de-
sign (GDD), a transversal design (TD) and a resolvable transversal design (RTD)
(see [8, 9]).

Let N(n) denote the maximum number of mutually orthogonal Latin squares
of order n. The following results are well known (see [7, 8, 9]).

Lemma 1.15. The existence of a TD[ k, 1; n] is equivalent to N(n) > k—2.

Lemma 1.16. The existence of a TD[ k + 1,1;n] implies the existence of a
resolvable TD[ k, 1; n] (briefly RTD[k, 1;m])

Lemma 1.17. Let n = p{"'py?* ...p% be the factorization of m into powers of
distinct primes p;, then N(n) > minigick {pf}— 1.

Lemma 1.18. Ifn#2,6then N(n) > 2;ifn#2,3,6,10 then N(n) > 3.

We need to define the following terminology which will be used later.

Definition 1.19: A subset of blocks in a (v, k, \)-r-RPMD is called a partial par-
allel class if the subset consists of pairwise disjoint blocks.

Definition 1.20: Let(X,A) bea(v, k, \) -r-RPMD having parallel classes A;, Az,
..., A;.Let(Y,B) bea(u, k, \) -r-RPMD having parallel classes By, B, ... , B;.
IfX DY and A; D B;, 1 < 1 < t, we say that the first design contains the second
as a subdesign.

Definition 1.21: Let X be a v-set (of points), Y'(C X) be an-set (of points), B be
a collection of cyclically ordered subsets of X (called blocks) with block size k,
andv,m=0o0r1 (mod k). A (v,k, \)-r-incomplete RPMD with a hole of size
n (briefly, (v, k, \; n)-r-IRPMD) is a triple (X, Y, B) where B = B; U B; such
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that (1) every ordered pair (z, y) of points of X with {z,y} ¢ Y appears r-apart
in X blocks of B; (2) every ordered pair (z,y) of points of X with {z,y} C Y
appears in no block of B; (3) B; can be partitioned into some parallel classes of
X and B, can be partitioned into h parallel classes of X \ Y where h = A\(n— 1)

whenn=0 (mod k) andh = Anwhenn=1 (mod k).

It is easy to see that if there is a (v, k,\)-r-RPMD containing a (u, k, \)-r-
RPMD as a subdesign then there is a (v, &, \; u) -r-IRPMD.

Definition 1.22: LetY beav-set, B = {a1,a2,... ,ax},ak-setand A = (a;, a3,
... ,ak),acyclically of ordered setof B. Let (B xY,G,C) beanRTD [k, \; v]
andC(A) = ([a1,n1].[a82,2],... ,[ak,yi]) foreveryC = {[a1,11],[a2, 921,

..,[ak, yk]1} € C. We say that the (A x Y, G, C(A)) is a cyclically ordered
RTD [k, \; v] where C(A) = {C(A) |C e C}.

Definition 1.23: Let v, k and n; (1 < i < h) be positive integers. Let M =
{n |1 < i< h}and X = Uigicn Xi, where X; (1 < i < h) are disjoint
sets with | X;| = m;and v = 3, ., m. An r-perfect GDD [k, ), M; v] (briefly,
r-PGMD [k, X, M; v]) is a triple (X,G,B) where G = {X;|1 < ¢ < h} and
B is a collection of cyclically ordered k-subsets of X such that (1) every ordered
pair (z, y) with two vertices z and y from different sets X; and X ; appears r-apart
in exactly )\ of the blocks of B; (2) every ordered pair (z,y) with {z,y} C X;
(1 <1< h) appearsinno blocks of B. If ny = my = ... = n; = n, we denote

the »-PGMD [k, \, M; v] by »-PGMD [k, ), n; v]. /

Definition 1.24: Let (X, G,B) be an »-PGMD [k, A\, M; v]. If B can be parti-
tioned into Av partial parallel classes: Py, 1 <1< h, 1 <7< m,1<e< A
such that P;;, is a partition of X \ X, then the 7-PGMD [k, )\, M; v] is said to
be an r-(k, A\, M; v)-frame. If B is the union of A(v — h) partial parallel classes:
Pije, 1 <1< h,1 <7< m—1,1< e< Xand \(h — 1) parallel classes,
where Py, is a partition of X \ Xj, then the r-PGMD [k, \, M; v] is said to be an
r-(k, )\, M; v)-semiframe.

Definition 1.25: A perfect MD (briefly, PMD) is an MD that is r-perfect for 1 <
r < k. Similarly, we can define an RPMD, an IRPMD, a PGMD, a (k, \, M; v)-
frame and a (k, A\, M; v) -semiframe.

2. Construction methods.

In this section we shall etablish some construction methods for (v, k, \) -r-RPMDs.
We always adopt the notation of Remark 1.5, that is, the blocks of a (v, k, \)-r-
RPMD of (X,A) where X = {z1,12,...,%,}, can be partitioned into A\(v — 1)
parallel classes: A;j, 1 < 1< A(v—1) forv = 0 (mod k) and \v parallel
classes: Aj;, 1 <1< v,1 <j<AandUgea; A= X\ {z} forv =1
(mod k).

We first establish constructions of the product type.

228



Theorem 2.1. Suppose there exista (u,k,)\) r-RPMDanda (v, k, s) -r-RPMD,
where u,v=0 or 1 (mod k). Then there exists a (uv, k, \g) -r-RPMD.

Proof: Let X = {z1,32,... ,Z},Y = {v1,92,... , 0}, Z = X xY,(X,A) be
a(u,k,A)-r-RPMDand(Y,B) bea(v,k,u)-r-RPMD.Let A = (z1,%2,... ,Tk),
= (!Il,!lz. . yyk) andB = (yuyﬁ-l) Yk Ylyeeo, i—l) where § = 1,2,
k Denote (A B.) = ([Zl,ﬂ.] [2‘2.%4-1], cee )[zk—ﬁ'hyk] [zk—ﬂ'zsyl]
. ,[zk,y._ll) wherei=1,2,... k. (A,B)= {{4,B)| 1 < i< k}{z:} xB
= ([Ii.yi], [zl" yj])”' ,[Zi,y]]) A X {y)} ([zlnyj] [Zz,!b], .y [zu yl]
[zi,92],... , [z, p]) AXY = {Ax{y]}l 1<j< v}t (A)B)= Usea (A!B)’
(A,B) =Upges (A,B) and (A x Y = Ugea A x Y. Taking each of the blocks
of A x Y u times, we have a collection of blocks denoted by uA x Y. Similarly,
we have A\ X x B. We are to prove that (Z, D) is a (uv, k, Ap)-r-RPMD where
D=(A,B)UpA xYUIX xB.
We first prove that (Z,D) is a (uv, k, \p)-r-PMD. Let (21, 22) be an of or-
dered pair of points of Z and z1 = [=z;,y;], z2 = [ze,yn]. We consider the
following cases.

@ Ifz; # zgand y; # ya, then (21,22) appears r-apart in Ay blocks of

(A,B).

) Ifz; # zgand y; = yu, then (21,22) appears r-apart in Ay blocks of
BA xXY.

) Ifz; = zgand y; # ya, then (21,22) appears r-apart in Ay blocks of
AX x B.

In what follows we shall prove that (Z, D) is resolvable.
Casel: u=v=0 (mod k). Since(A,B) = UIS,S(,,_m (A;,B;) pPA XY =
1<7<(v-D)p
Uigi<(u-1)) BAXY , A X xB = Ui gjigtu-1)p )\XXB andeachof(A,,B ) A;xY

and X x B; is a parallel class, so D can be pamtloned into (uv — 1) Ay parallel
classes.

Case2: u=v=1 (mod k). Since

(A.By=  |J (AyuBa), AxY= |J Ayx{uw}
1<i<u,] /<A 1<i<ul <A
1<ev,1<np 1<y

XxB= |J {m}xBu, D= U Dia
1<l <e<v 1<iCul <

1<ngp 1<€<v,1<n<p

where Djjgn = (Aij, Bea) UA;j X {2} U{x:} X Ben andUpen,,,, D = Z\{[ z;, vl }
(that is, D;je, is a parallel class), we have that (Z, D) is resolvable.
Case3: u=0 (mod k),v=1 (mod k). Itis easytoseethat (A, B) UpA x

Y = U 1<igu-nx ({(Ai, Bgy > UA; x {ye}) , can be partitioned into Au(u — 1)v
1<i<v,1<n<p
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parallel classes. We first show thatforl <1 < (u—1)dand1 < n< p, A;x{y1}
U(A;, B1,) U(Ur<sco X % B,y) can be partitioned into v parallel classes.

Let F(B™) = Upg(a,,p~D for B € By,, F(By,) = Ui<mgk,BeBrn F(B™)
M(B™) = Uy, g1era {Z5} X B and M(B1,) = Uigmek,Bep,, M(B™). It
is easy to see that |[F(B™)| = u, |[F(B™) N{z;} xY|=1,for1 < j < uand
Upe(z;}xBa D = {z;} x Y \{[z;,9,]}. Hence, (A;, B™) UM (B™) is a parallel
class. Since F(B1,) = Upea,p,.) D= X xY \ X x {1}, we have M (B;,) =
Ui<mgk.BeB,, M(Bm)=U[=;.v.]eF(Bx.) {zj } X Bgy= U[z;.v.lex x¥Y\Xx{n} {”i } X
Bm = UlsaSu X x Bﬂl' Therefore, At X {yl} U<A" Blu) U(Ulgagvx X Ban) =
[Ui<mgk,BeBy, {(As, B™) UM (B™)] U(A; x {91} UX x By,) can be partitioned
into v parallel classes.

Taking Ay parallel classes in (A, B) UsA X Y: A; x {y1} U(A;,B1,), 1 <
i < ), 1 < n < ptogether with AX x B, we can obtain \uv parallel classes in
the same way as above. Hence, D can be partitioned into some parallel classes.
The proof is now complete. |

Remark 2.2: It is easy to see that the (uv, k, u))-r-RPMD constructed in the
proof of Theorem 2.1 contains a (u, k, \)-r-RPMD and a (v, k, ) -r-RPMD, re-
spectively, as a subdesign.

Theorem 2.3. Suppose thereexista (u,k,\)r-RPMDanda (v, k, \) r-RPMD,
where N(v) > k—1andu,v=0o0r1 (mod k). Then thereexistsa (uv, k,\) -
r-RPMD.

Proof: LetX = {z1,%2,...,%.},Y = {y1,¥2,... , 00}, Z = X xY,(X,A) be
a(u,k,))-r-RPMD and (Y,B) bea (v, k,)\)-r-RPMD. For every A € A, since
N(v) > k—1wecanlet(AxY,G, C(A)) beacyclically ordered RTD [k, 1; v]
having parallel classes C(A)1, C(A)2,...,C(A)y. Let C(A) = Ugea C(A)
andD = X x BUC(A). We are to prove that (Z, D) is a (uv, k, \)-r-RPMD.

We first show that (Z,D) is a (uv, k, \)-r-PMD.

Let (21, 22) be an ordered pair of points of Z. If 21,2z, € {z;} x Y, then
(21, 22) appears r-apart in X blocks of {z;} x B;if z; € {z;} x Y and 2, €
{z;} xY wherei # 7, then(z;, z;) appears r-apartin ) blocks of A and (21, z2)
appears r-apart in A blocks of C(A).

In what follows, it is shown that (Z, D) is resolvable.

Case 1: u,v = 0 (mod k). Since (C(A;), and X x B; are two parallel
classes, X x B = Urgjcau-1) X % Bj and C(A) = Uigica(u-1),1<2<0 C(Ai)e,
so (Z,D) is resolvable.

Case2: u,v=1 (mod k). (Z,D) isresolvable since (C(Ay,); U{z;i} x Bj,)
isa parallel class and C(A)U X x B = Ul <icu,1 <o), 1<j<v (C(A,‘,)j U{:L‘;} X
Bj,).

Case3: u =0 (mod k), v = 1 (mod k). Without loss of generality we
assume C(A,) = A, x Y for1 < n < ). Since both (X x Bg, UA, x {ye})
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and C(A,); are parallel classes and X x B U (Uigacx C(An)1) = Urgeco,1gnn
(X x By UA, x {yz}), itis easy to see that D can be partitioned into A(uv — 1)
parallel classes.
Case4: u =1 (mod k), v = 0 (mod k). Without loss of generality we
assume C(Ag)1 = AyjxY for2 <i < u,1 <7< XNandC(Ajh = {(A]j,Nt)
| 1 <t < v} where Nt = (yt, y+1,... , Yt+k-1) and ¢ + i is taken modulo v.

LetE,(A) = {{4,N!) |t=m,k+m,2k+m,...,(v/k—1)k+m}forl <
m < kand A € Ay}, Fra(A) = Upeg,(a) D and M, (A) = U[x; y,1eFa(4) Aij X
{ys} then E(Ay;) = Uigmgk.acay; Em(A4) = C(Ajh F(Ay;) = UpeE(4;)
D= UDEC(Au)n D=XxY \ {zl} xY. M(Al;‘) = Uigmgk,AeAy M;.(4)
= Ulz,y,)eF(A1) A1j X ¥s = UlgyleXxv\(z1)x¥ Aij X Yo = Uzgicu Ajj X Y. Tt
is easy to see that E,,( A) is a partial parallel class and |Fp(A) N X x {ye}| = 1
for 1 < £ < v. Hence, E,,(A) UMy (A) is a parallel class. Since Uicicu
C(Aifh = (Uagicu Aij X Y) UC(A1;1 = M(Ay;) UE(Ayj) = Urgmgk aeay;
(Em(A4) UM (A)), 30 Urgicu1<j<x C(Ai) can be partitioned into A(u — 1)
parallel classes.

Since C(Ajj)e U{z;} x B, is a parallel class, and D \ (Ui <icu,1<i<x C (A1)
= Uigogu-1,1<i<r1<icu (C(Ai)se1 U{zi} X Bj1)(v-1)+s), We obtain that D
can be partitioned into A (uv — 1) parallel classes. We have completed the proof.

|

Remark 2.4: It is easy to see that the (uv, k, \)-r-RPMD constructed in the proof
of Theorem 2.3 contains a (u, k, \)-r-RPMD and a (v, k, \)-r-RPMD, respec-
tively as a subdesign.

Corollary 2.5. Let p be an odd prime and r > 1, then there exists a (p",p, 1) -
RPMD.

Proof: Since the existence of a (p, p, 1) -RPMD is equivalent to the existence of
a(p, p, 1)-PMD, the conclusion follows from Theorem 1.9 and 2.1. 1
We now establish some constructions by using IRPMDs and frames.
By Definition 1.21, we have '

Theorem 2.6. Suppose thereisa (v, k, \; n) r-IRPMD and thereis an (n, k, ) -
r-RPMD. Then there exists a (v, k,\) -r-RPMD.

In what follows, we alway adopt the notation of Definition 1.23 and 1.24.
Theorem 2.7. Suppose that (X,G,B) isan rk,\, M; v) -frame where M =

{m,m,... ,m}, and for each w;, there exists an (n;, k,\)-r-RPMD, n; = 1
(mod k). Then there exists a (v, k, \) -r-RPMD.

Proof: Let (X;,H(1)) be an (n;, k, \)-r-RPMD having )\ n; parallel classes on
X;; for 1 < i < h. Since the union of a parallel class on X; and a partition of
X \ X; is a parallel class on X, by Definition 1.24 it is easy to see that (X, B UH)
isa (v, k,))-r-RPMD where H = U; ¢;<p H(1). 1
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Theorem 2.8. Suppose (X,G,B) isan r<k,\, M; v) -semiframe where M =
{m,m,... ,m}, and for each n; there exists an (n;,k,\) r-RPMD, n;, = 0
(mod k). Then there exists a (v, k, \) r-RPMD.

Proof: The proof is similar to that of Theorem 2.7 1

Theorem 2.9. Suppose (X,G,B) isan r<(k,\, M; v) -frame where M = {n,
m, ... ,m}, and for each n; there exists an (n;+ 1,k,)) v-RPMD,n;+ 1 = 1
(mod k). Then there exists a2 (v + 1, k, \) -r-RPMD.

Proof: Let (X U {6}, H(i)) be an (n; + 1,k, )\)-r-RPMD having \(n;, +1)
parallel classes H(i)ﬂ, H(%)p,1 <) < m,1 <2< )\ where Unenmee H = X;
for1 < ¢ < h. Since both H(4);, U Pyj¢ and Uy <;<4 H(14)g are parallel classee
on X U{6},s0(XU{6},BUH) isa(v+1,k,)\)-r-RPMD where H = U, c;<s
H(1). |

Theorem 2.10. Suppose (X,G,B) is an vk, )\, M;v)-frame where M =
{m,m,... ,m}, and foreach n; there exists an (n;+1,k,)\) r-RPMD,n;+ 1 =
0 (mod k). Then there exists a (v + 1,k,\) -r-RPMD.

Proof: Let (X;U {6}, H(s)) be an (% + 1, k, \)-r-RPMD having An; parallel
classes H(i)(j—l)xd, 1 <7< 1 <2< )N Since H(l‘)(j_])x...g UP,'je is a
parallel class on X U {0}, (X U {6}, B UH) isa (v + 1, k,\) -r-RPMD where
H = Ui<ichH(4). |

Theorem 2.11. Suppose (X,G,B) is an r<(k, )\, M; v) -frame where M =
{m|1< i< h}andnw =0 (mod k) for 1 < i < h, satisfying (1) there
exists an (nw; + w,k,\; w)-r-IRPMD for 1 < 1+ < h — 1; (2) there exists an
(4 + w, k,\) r-RPMD, where w = 0 (mod k). Then there exists a (v +
w, k, \) r-RPMD.

Proof: Let (X; U W,W,H (1)) be an (n; + w, k, \; w)-r-IRPMD having \n;
parallel classes on X; UW and \(w — 1) parallel classeson X; for1 < i< h—1
and (X,UW,H(h)) bean (m+w, k, \)-r-RPMD having A(ny+ w—1) parallel
classes on X, U W. We are to prove that (X UW,BUH) isa(v+ w,k,)\)-
r-RPMD where H = U15,<,,l-l (1). Since the union of parallel class on X; U W
and a partition of X \ X; is a parallel class on X U W, so we can get 3, ;.
An; parallel class on X U W by Definition 1.24 and the remaining blocks can be
partitioned into A\(w — 1) parallel classes on X U W. This completes the proof.
|

Corollary 2.12. Suppose (X,G,B) is an r<(k,\, M;v)-frame and for each
n; € M there exists an (n;+ w, k, \) r-RPMD having a (w, k, \) r-RPMD as a
subdesign where n, + w = w =0 (mod k). Then there existsa (v + w, k, )\) -
r-RPMD.
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Lemma 2.13. Suppose that there exist an vk, )\, M’; u) -frame and an RTD[ k,
; v], then there exists an vk, \p, N'; uv) -frame where N = {ug | g € M}.

Proof: LetY beav-set,(X,G,B) beanr-(k, A\, M; u)-frameand (BxY, Gz,
C(B)) be a cyclically ordered RTD[ k, u; v] for every B € B. It is not difficult
to see that C(P;j) is the union of pv partitions of X x Y \ X; x Y, and then
we obtain that (X x Y, G x Y, C(B)) is an r-(k, u), N; uv)-frame where
GxY={X;xY|1<i<h}). ‘ 1

Theorem 2.14. Suppose that there exista (u,k,)\,)-RPMDanda (v+1,k,)\) -
7-RPMD, where u =1 (mod k) and v+ 1 =0 or 1 (mod k). If there is an
RTD[ k, us; v], then there exists a (uv + 1, k,\p) r-RPMD.

Proof: Sincea(u, k,))-r-RPMDisalsoan r-(k, ), 1; u) -frame and from Lemma
2.13 we have a (k, Ay, v; uv)-frame. Therefore, by Theorem 2.9 and 2.10, we
obtain a (uv + 1, k, \u)-r-RPMD., 1

Remark 2.15: Itis easy to see that the (uv+ 1, k, A\p) -r-RPMD constructed in the
proof of Theorem 2.14 contains a (u, k, A)-r-RPMD anda (v+ 1, k, \) -r-RPMD,
respectively, as a subdesign.

Theorem 2.16. Suppose
(1) There exists a (u,k,)\)r-RPMD where v =1 (mod k);
(2) thereexistsa (v+w, k,\; w)r-IRMDanda (v+w, k, \) -r-RPMD where
v+tw=w=0 (mod k),
(3) thereisanRTD [k,pu;v].

Then there exists a (uv + w, k, Ap)-r-RPMD,

Proof: The proof that there exists an r-( k, My, v; uv)-frame is similar to that of
Theorem 2.14. From Theorem 2.11 the conclusion follows. | ]

Theorem 2.17. Suppose that (1) (X,G,B) is an r(k, ), u; hu) -semiframe
where w = 0 (mod k); (2) there exists a (uv, k, \u) r-RPMD; (3) there is
an RTD [k, ps; v]. Then there exists a (huv, k, u)\) r-RPMD.

Proof: We adapt the notation of Theorem 2.3 and Definition 1.24. LetY be av-set,
(X; x Y,H(4)) bea (uv, k, \p)-r-RPMD having \u(uv — 1) parallel classes:
H(9);,1 <7< (uv—1) forl <1< h. Itis easy to see that (Ui ¢jcur(u—1)v
H (1);) UC (P;) can be partitioned into p\(u — 1)v parallel classes where P; =
Uigjcu-1,1ce<r Pije for 1 < 4 < h, and Ui H(4); is a parallel class for
pAM(v — Dv+1 < j < pA(uv — 1) and C(B \ P) can be partitioned into
pA(h — 1)v parallel classes where P = U; <i<i P;. Hence, it is clear that (X x Y,
H U C(B)) is an (huv, k, p)) -r-RPMD where H = U; ;< H(4). |
The idea of the following theorem can be found [2, 3, 10].
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Theorem 2.18. If there exists a GDD[K,1, M; v] satisfying for each h € K
there exists an (h,k,\)-r-RPMD, h = 1 (mod k). Then there exists an r-
(k, )\, M; v) -frame. '
Proof: Let (X,G,B) be aGDD[K,1,M;v],B(z) = {B | z € B € B}
for every z € X, and for every B € B, provided |B| = h, (B,A(B)) be an
(h, k, ))-r-RPMD having \h parallel classes: A (B),;,z € B,1 < j < ) where
A (B),; is a partition of B \ {z}. Provided z € X, then Upep(x) A (B),; is a
partition of X \ X;, for 1 < j < ), and it is easy to see that (X,G,A) is an
r-(k, )\, M; v)-frame where A = Ugep A (B). 1
A special case of a GDD [K,1,M;v] is M = {1}, and we can regard it as
PBD B(K, 1; v). Hence, it follows from Theorem 2.18 that

Corollary 2.19. Let v, k and ) be positive integers. Suppose there exists a PBD

B({k1,k2,... ,k;},1;v) where k; =1 (mod k) for 1 < i < r and foreach k;
there exists a(k;, k, \)r-RPMD. Then there exists a (v, k, \) -r-RPMD and there
exists a (v, ki, \) r-RPMD, as a subdesign, for 1 < i< r.

We shall adapt the following notation:
devB={B+g: BeBandgeG}

where B is the collection of base blocks of the design and G is a given group.

Theorem 2.20. Suppose that
(1) thereexistsa u+ 1,k,)\)r-RPMD, a (u,k,\)-r-RPMD anda (w, k,\) -
r-RPMD where s+ 1 =w =1 (mod k),
(2) there exists a (p, k,\)r-RPMD of (Y,devB) where Y = Z,, p=1
(mod k), anodd prime and u + 1, w < p;
(3) B can be partitioned into ) partitions of Z,\{0} B:, B3, ... , B, satisfying
that there is a partial parallel class B] C B; containing (w — 1) /k blocks
for1 <1< SuchthatUBen‘lB=UBEn}B for1 <i,7 <

Then there exists a (pu + w, k, \) r-RPMD.
Proof: Let

Y ={0,1,2,...,u} x Z,,W = {0} U(Upen; B),

Q=2,\W,X={1,2,...,u} x Z,U{0} x W,

G; = {[i,0,[3,11,...,[i,p— 11},G = {Gi|0 < i< u}
An(d) = {0,i1,[1,i+ m],[2,i+ 2m],...,[4,i+ um]}
AL ={[1,i+m],[2,i+2m],...,[u,i+um]}

An(W) = {An()]|i € W}, AL(Q) = {A()]i € Q}
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Since p is an odd prime and p > u + 1, it is readily checked that {An(%)] 4,
m € Z,} is a collection of blocks of RTD [u + 1,1;p]. Delete (p — w) points
from G, to get a GDD[ {u + 1,u}, 1, {p, w}; pu + w] of which Upez,(An(W)
UA/ (Q)) is a collection of blocks.

Let (Am(£),D(An(£))) bea(u+ 1,k,))-r-RPMD having \(u + 1) parallel
classes: D(Am(£))j, 0 < i < u,1 < j < X\ where Ap(£) € An(W) and
D (Am(£));; is a partition of A, (£) \ [1,£+im]. Let (A',D(A")) bea(u,k,))-
r-RPMD having A(u — 1) parallel classes: D(4');,1 < j < A(u — 1) where
A € Al(Q). Let ({0} x W, F) be a(w,k,)\)-r-RPMD having Aw parallel
classes: Fij, i € W,1 < j < X ({1} x Zp, {i}x dev B) be a (p,k,))-r-
RPMD for i = 1,2,...,u,and D = [Upez, (D(An(W)) UD (AL (Q)))]
UFU (Ulgigu{i}x devB).

By Theorem 1.12 (X, D) is a (pu + w, k, \) -r-PMD. We are to prove that it is
resolvable. We briefly denote A,,,(W) and A/ (Q) by A,, and A/, respectively.

Let

Dijm =D (An)j U{{i} x (B+mi) | B€ Bj'}
UD(A,’,.)(;_:)MijIZ <i<u, 1< A\ meZ,;
Dijm =D(Aph;U{{1} x (B+m) | B€B}}
U{{i} x (B+ mi) | BEB; \ B}, 1<i<u}for 1<j<\, m € Zp;
Dy = | D(An())ojUF for1 <j < X\ i€W.

meZ,
It is readily checked that both each D;;y, and each D;; are parallel classes on X
and D is the union of them. This completes the proof. |

Theorem 2.21. Suppose that
(1) there exists a (v + 1,k,\)r-RPMD, a (u,k,\)r-RPMD and a (w +
1,k,\)r-RPMD where u =w+ 1 =0 (mod k),
(2) thereexistsa (p+1,k,\)-r-RPMDof (Y, devB) where Y = Z,U{o0},
p+1=0 (mod k), anoddprime and v+ 1, w < p;
(3) B can be partitioned X partitions of Y B1,B,,... , B, satisfying that there
is a partial parallel class B! C B; containing (w + 1)/k blocks for 1 <
i < X such that Ugep; B = Usen;B for 1 < 4,7 < ) and oo € Ugep; B.

Then there exists a2 (pu+ w+ 1,k,)\) -r-RPMD,

Proof: We adopt the notation of Theorem 2.20. Let W = (Upep; B) \ {00}, X =
{1,2,...,u} xZ,U{0} xWU{oo}, ({0} x WU{oo},F) bea(w+1,k,X)-r-
RPMD having Aw parallel classes: F;, 1 < j < Aw, for convenience, we denote
the \w parallel classes by F;;, 1 < j < X, i € W. Let ({1} x Z, U {00}, {i}x
devB) bea(p+ 1,k,))-r-RPMD for 1 < 1 < u where we set [1,00] = oo
Let D;j,, and D;; be as in Theorem 2.20. Similarly, we have that (X, D) is a
(pu+ w+ 1,k,))-r-RPMD.
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In what follows, we give weight (w+ 1) toone pointof anr-(k, )\, v; uv) -frame,
we wish to construct an r-(k, ), {v, v+ w}; uv + w)-frameora (vv+ w, k, \)-r-
RPMD. For this we need a special RTD [ k, 1; v] satisfying that there are v pairwise
disjoint blocks which come from v parallel classes.

Since v blocks containing a certain point of an RTD [k, 1; v] come from v
parallel classes, we can get v pairwise disjoint blocks with size k — 1 by deleting
the point; that is,

Lemma 2,22, If there is an RTD [k + 1, 1; v] then there is an RTD [k, 1;v]
with v pairwise disjoint blocks which come from v parallel classes.

Theorem 2.23. Suppose that

(1) there exists @ (u,k,\)r-RPMD where u =1 (mod k),

(2) thereisanRTD [k + 1,1;v];

(3) thereexistsa (u+ w,k,\; w+ 1)-r-IRPMD where w=0 (mod k).
Then there exists an r(k, )\, {v,v + w}; uv + w) -frame.
Proof: LetY beav-set,(X,B) bea(u, k, \)-r-RPMD having \u parallel classes:
B;;, 1 <1< u,1 < j < \such that each B;; is a parition of X \ {z;}.

Let B = (a1,82,...,a;) € B, from Lemma 2.22 we can let (B x Y, Gp,
C(B)) be a cyclically ordered RTD [k, 1; v] having v parallel classes C(B);,
1 < ] <v such thatE(B)f = ([Gl.yj] [azxyj]w” n[ak)yj]) € C(B)] if
71 ¢ B and E(B); = ([z1,un], [a2,y;],...,[ax,y;]1) € C(B); if z; € B,
provided B = (z;,a2,0a3,...,a6).

LetWhbeaw-setand WNX =¢,L=({z1} UW) x{m1}, M = LU(X \
{z1}) x{y:} and (M, L,A*) bea (u+w,k,\;w+ 1)-r-IRPMDforl <t < v,
which has A(u — 1) parallel classes Af, 2 < i < 4,1 < j < ) such that each
A}; is a partition of M; \ [z;,y:] and A\(w + 1) partitions of (X \ {z1}) x{w:}:
D!, 1 < s < A(w+ 1). Define

Pyt = (C(B1j) \ E(B1;)) UDJ
Pyje = U Dfy_uyrej
1<ty
Py = (C(Byj): \ E(B;j)) UAJ
wherel1 <j <M1 <t <v,v+1<L€<v+w,2<i<uand E(Byj) =
{E(B) | B € B;;}.
Let

Z=XxYUW x {5}
Gi={m}xYUW x {5}
Gi={z} xYfor2 <i<u
G={Gi|1<iLu}
P = (Urcicuigioni<t<oPijt) U (Urgicavri cecorwPije)
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Since each P;j is a partition of Z \ G;, s0 (Z,G,P) is anr-(k, ), {v,v+ w};
uv + w) -frame. |
Theorem 2.24. Suppose that

(1) there exists a (u, k,\) r-RPMD where v =1 (mod k);
(2) thereisRTD [k+ 1,1;v];
(3) there exists a (u+ w, k,\; w+ 1) -r-IRPMD where w+ u =0 (mod k);
(4) thereexistsa (v, k,)\) r-RPMDanda (w+v, k,\) -r-RPMD where v = 1
(mod k) and w+ v=0 (mod k).
Then there exists a (uv + w, k,\) r-RPMD.

Proof: We adopt the notation of Theorem 2.23. Let M, L, A®) bea (u+w, k, \; w+
1)-r-IRPMD for 1 < t < v having (u— 1)) parallel classes Af;_jyy,; 1 <7< X,
2 < i < u and \w parallel classes of (X \ {z:}) x{%}: D{,1 < s < \w.

Let

Hyje = (C(By) \ E(Bi;)) UD}
Hyje = U D{p_yyrej
1<t
Hije = (C(Bij) \ E(Bj)) UA 1)
where1 <j< A 1<t<v,v+1<e<v+w—1,2<1<u.
Let (G1,D’) is a (v+ w, k, \)-r-RPMD having (w + v — 1) \ parallel classes
D/, _iypejr 1 Se<vw—1,1<j < Nand(Gy,D?) isa(v,k,))-r-RPMD

having v) parallel classes D, 1 <t < v, 1 <j< A for2 <i<u.
Let

Fije = Hije UD(,_y5s;
Fijt = H;;; UD)

F=| U Fue|U| U Fir

1<5<A 2g/<u
1geSvio-1 152
1518

Since each F;j, is a parallel class of Z, so (Z,F) is a (uv + w, k, \)-r-RPMD.
|

3. The construction of (v,4,))-RPMD, ) > 1.

In this section we shall show that the necessary condition for the existence of
a (v,4,))-RPMD for A > 1, namely, v = 0 or 1 (mod 4), is also sufficient
except for v = 4 and X odd. We, also obtain a (v,4,1)-RPMD for v = 57 and
93.
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In fact, we need only establish the reult for the cases A = 2 and A\ = 3, since
if there exists a (v, k, A1) -r-RPMD and a (v, k, \2) -r-RPMD then there exists a
(v, k, M1 + X2)-r-RPMD.

From Theorem 1.7, we have
Theorem 3.1. A (v,4,))-RPMD exists forevery positiveinteger v =1 (mod 4)
with the possible exception of v = 57 and 93.
Theorem 3.2. A (v,4,2)-RPMD exists forany positive integer v=0 (mod 4).
Proof: Suppose that (X,A) is a Whist-tournament, denoted Wh[v] where A
is a collection of Whist tables. Let B(A) = (x1,73,72,74) and B'(A) =
(z4,72,73,71) forevery A = [z1,22;23,24] € A and B = {B(A4),B'(4) |
A € A}. By Definition 1.13, it is easy to see that every ordered pair of points of
X appear t-apart in two blocks of B fort = 1,2, and then (X,B) isa (v,4,2)-
RPMD. Therefore, there exists a (v,4,2)-RPMD for all v = 0 (mod 4) and
v # 264 by Theorem 1.14.

For v = 264, since there is a (33, 4, 1) -RPMD from Theorem 3.1, and there is
an (8,4,2)-RPMD, so we have a (264 ,4, 2)-RPMD by Theorem 2.1. [ |

Theorem 3.3. There exists a (v,4,1)-RPMD for v = 57 and 93,

Proof: In each of the following two cases for v = 57 and 93, we let G = Z,_,,
X =2, pandY = {001,002,...,00,} for n= 13,21. From Theorem 3.1 we
can let (Y, A) be an (n,4,1)-RPMD with parallel classes A;, 1 <1 < n. We
then present a collection of base blocks B and n parallel classes of blockks based
on X, namely D;, 1 < 1 < m, as defined. Since B is aparallelclassof X UY,
it is easily checked that (X UY ,dev BUD U A) is a (v,4, 1)-RPMD where
D = Ui <i<nDy, and A; U D; is a parallel class of the design.
Thecasev=57 andn= 13
Let
B ={(-6,2,6,-2),(001,—13,4,—11),(00z,12,-21,18)
(003)_8:1910))(004)14,—7)5))(005)9)_14)—1)
(o06,—16,15,-5), (007,-20,—4,11),(00s,20,8,—10)
(009,7:17:_9)s(°°10s_l7s_12:10)1(0011»_15;13,3)
(0012,22,21,-3), (o013,—19,-18,1)}.
For 0 < i < 3, define:
Dii = {(0,2,5,3) +4j+i: 0<j<10}
D;.s = {(0,6,15,9)+4j+4: 0<j<10}
Divo = {(0,14,7,-7)+4j+4i: 0<j< 10}
D3 = {(33,22,11,0) +j: 0 <j<10}
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Thecase v=93 andn= 21
Let

B={(2,6,-2,-6),(10,22,-10,-22),(001,13,-15,14)
(002,32,3,—-24),(003,12,27,—18),(004,19,4,-31)
(o05,34,17,-20), (006,9,25,—30),(007,0,—-16,23)
(o03,18,—13,20),(009,—1,30,5),(0010,7,-29 — 4)
(oo11,—9,11,-33), (0012,—5,-25,21),(0013,—3,35,-11)
(0014,29,-19, 15), (0015, —8,-32,33),(0016,8,—34,-27)
(0017,-35,16,—14), (o018, 31, —28,-7), (0019,26,—23, 36)
(0020,—12,-21,28),(0021,—26,-17,1) }

For 0 < 1 < 3, define:

Di = {(0,2,7,5) +4j+i: 0<j< 17}
Dis = {(0,6,17,11) +4j+i: 0 <j <17}
Dio ={(0,10,29,19) +4j +i: 0 < j < 17}
Diis = {(0,14,13, 1) +4j+i: 0<j<17}
Div7 = {(0,22,19,-3) +4j+i: 0<j< 17}
Dy ={(54,36,18,0) +j: 0<;j<17}

Lemma 3.4. There exists a (4,),4;4p)-frame and a (4, ),4; 4 p) -semiframe
for\=2,3and p=17,11,19,23.

Proof: In each of the following four cases for p, we let G = Z,, we then present
three collections of base blocks A , B, and C, and it is readily checked that:

(@ Let

D;= ( U &+, devB))U<4U (By+i, dev A))

1<t<3 <t<6
u( U (Be+i, dch)) for0<i<2,
7<t<8
D = || D;andD}={(d,c,b,a)|(a,b,c,d) €D,}
0<i<2

then (X,G,D,UD/) isaPGMD [4,2,4;4p] and (X, G, D) isaPGMD [4,3,
4; 4p].
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(b) Eachof
(B1+1i,B+g)U(E3+4, B+g),
(B2 +4,B+g)U(Es +1i, A +g),
(Bs+1i, A+g)U(Es +1, A +g),and
(B7+i,C+g)U(Es +1i, C+g),
is a partition X \ X,.
(¢) (Ei+i,dev A)isaparallelclassof X for0 <i<2,5<t<6andAcA.
Therefore, (X, G,D,UD,) isbotha (4,2,4;4 P)-frame anda (4,2, 4; 4p)-

semiframe, and (X, G, D) is both a (4, 3, 4; 4p)-frame and a (4, 3, 4; 4p)-
semiframe. Forp =7

A = {v¥ (v, %, vw?,v%) |i=0,1,2}
B = {v?(v°, v, w’,w?) |i=0,1,2}
C = {w¥(w°,v?, v, v’) |i=0,1,2}
where w = 3.
Forp=11
A = {w¥(w’, v’ v®,u?) |i=0,1,2,3,4}
B = {v¥(v’,v°,w?,v%) |i=0,1,2,3,4}
C = {w*(v’,v?,w°,w?) |i=0,1,2,3,4}
where w = 2.
Forp=19
A = {w¥(v°,v’,w'?, uw*) |1=0,1,2,...,8}
B = {v¥(v®,v°,w*,w") |i=0,1,2,...,8}
C = {w* (v, v, vw°,w*) |i=0,1,2,...,8}
where w = 2.
Forp= 23
A = {v¥(v°, 0", w’,v'%) |i=0,1,2,...,10}
B={w2i(wll,w°,wl6,w5) |$=0,1,2,...,10}
C = {w?(w",w’,v°,w'®) |i=0,1,2,... ,10}

where w = 5.

From Theorem 3.1 and 3.3, we have
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Theorem 3.5. A (v,4,1)-RPMD exists forevery positive integer v =1 (mod 4).
Summarizing the results given above and Theorem 3.1, we have

Theorem 3.6. The necessary condition for the existence of a (v,4,)) -RPMD
for \ even, namely,v = 0 or1 (mod 4) is also sufficient.

Theorem 3.7. A (v,4,3)-RPMD exists for v=12,16,24.

Proof: In each of the following three cases for v, we let G = Z,_; and X =
Zy—1 U {oo0}. We then present a collection of base blocks B, and it is readily
checked that (X, dev B) is a (v,4,3)-RPMD,

Forv=12

B= {(O0,0,1,3),(—1,5,—3,4),(2,—2,—4,—5);
(°°:0o21—'5)»(—3s5)—1v-2))(4)_4’1:3);
(00,0)_3:2)3(3s_21_45_1)s(5’_5:4al) }

Forv=16

- B={(0,1,7,10),(c0,6,8,12),(3,11,14,13),(9,5,2,4)
—(0,7,10,1),(%,8,12,6),(3,14,13,11),—(9,2,4,5)
(0,10,1,7),(00,12,6,8),(3,13,11,14),(9,4,5,2)}

where —(a, b, ¢, d) denotes (d,c,b,a).
Forv=24

B = {(00,0,7,10),—(1,8,12,22),—(2,5,6,11)
(00,10,0,7),—(1,22,8,12),(2,11,5,6)
(00,7,10,0),(1,12,22,8),(2,6,11,5)
(3,9,14,18,),(4,16,17,19), —(13,15,20, 21)
(3,18,9,14),(4,19,16,17), —(13, 21, 15, 20)
(3,14,18,9),—(4,17,19,16), —(13,20,21,15) }

where —(a, b, ¢, d) denotes (d, ¢, b, a).
Theorem 3.8. A (v,4,3)-RPMD exists for v= 8,20,32,44 and 68.

Proof: In each of the following five cases for v, we let w be a primitive root of
GF(v—1) and X = GF(v—1)U{oo}. We take the additive groupof GF(v—1),
and denote (bai, baz, bas, bas) by b(a1,a2, a3, as) where a;, b, ba; € GF(v—1)
for1 < 1 < 4. We then present a collection of base blocks B and it is readily
checked that (X, dev (B UbB U¥B))isa (v,4,3)-RPMD where b = w(v-2/3
and bB = {bB | B € B}.
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Forv=8,w=3
B = {(oo,1,%,w*),(0,w,v*,v°) }.
Forv=20,w=2

B = { (o0, 1,w%,w'%),(0,w,w’,w?)(w", v, vw?,vw’)

17 3 15 1,4 10 _ 16
(w lw ’w9’w ))(w ’w ’w lw }‘
Forv=32,w=3

B = {(00,0,2,10),(—-12,-10,12,-2),(5,14,1,8)
(9,—8,—14,—9),(-—6,—l,—5,6),(13,—11,15,7)
(3,-13,-15,-3), (4,-7,—-4,11)}.

Forv=4,w=3

B ={(1,7,-6,-1),(-3,-18,21,3),(20,-20,11,9)
(-16,17,10, 16),(-5,13,-8,5),(—19,19, 4, —15)
(2,14,-12,-2),(=9,6,—11,-7),(~17,4,-10, 15)
(—21,-14,18,12),(00,8,0,-13) }.

Forv=68,w=2

B={(~2,7,2,-9),(1,—-29,—1,30),(—18,4,14, —4)
(00,0,15,-30),(=7,32,9,-22),(—14,-3,18,23)
(—8,—6,—28,-21),(~16,—-12,11,25),(29,—17,33, —26)
(-31,8,28,31),(-5,—11,16,5),(—10,-32,22, 10)
(—20,3,-23,20),(~27,21,6,27),(13, 25,12, —13)
(—24,24,17,26),(19,-33,-15,-19) }

Lemma 3.9. There exists a (v,4,3; n) -IRPMD for (v,n) = (16,4),(20,4),
(24,4),(36,4),(52,8).

Proof: In each of the following five cases, welet G = Z,_,,,Y = {001,003, ...,
00.}, X =Y U{0,1,2,..., v —n— 1}. We then present three collections of
base blocks: By, By, B3, and h parallel classes of X \ Y: D;, 1 < i < h where
h=3(n-1)ifv=n=0 (mod 4) orh=3nifv=n=1 (mod 4). Itis
readily checked that B; is a parallel class of X fori= 1,2,3 and (X,Y, (devB)
UD ) isa(v,4,3;n)-IRPMD where D = Ui<ich D;and B = Uici<a B;.
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Forv=16,n=4

B = {(001,2,7,0),(002,8,3,1),(00;,4,11,6),(004,5,10,9) }
B; = {(001,10,6,2),(002,3,4,5),(003,1,11,7),(004,8,0,9) }
B3 = {(c01,4,10,0),(002,8,7,5),(003,9,1,2),(c0s,11,3,6) }
D;={(1,3,2,4)+i+4j]|0<;j<2}
D4 ={(0,6,3,9) +i+4;]0<j<2}for 1<i<4

Dy = {(0,3,6,9+/|0</j<2}

Forv=20,n=4

B; = {(0,1,6,9),(001,7,3,14),(c02,2,8,4)
(003,5,13,10),(004,12,11,15) }
B; = {(0,9,1,6),(001,3,14,7),(002,4,2,8)
(o003, 11,5,12),(004,13,15,10) }
B3 = {(4,10,13,5),(001,7,14,3),(002,11,12,9)
(003,8,1,2),(004,6,0,15) }
D;={(2,0,4,6)+2i+5|;=0,1,8,9}
D4 ={(0,2,5,3)+45+1i|5j=0,1,2,3} for 1 <i<4
Dy ={(0,4,8,12)+;]|;=0,1,2,3}

Forv=24,n=4

B, = {(0,11,4,3),(5,8,7,14),(001,13,17,1)
(002,12,10,2), (003,19,16,6)(004,18,15,9) }
B; = {(0,12,3,7),(9,15,10,8),(001,4,13,1)
(002,18,17,2),(003,6,16,14),(004,11,19,5) }
B; = {(0,9,1,4),(3,5,10,16),(c01,8,11,7)
(002,19,6,14), (003, 18,12,2),(004,17,13,15) }
D;={(0,5,6,7)+i+4j|0<;j<4}
D4 ={(0,9,11,6) +i+45|0<j<4 }for 1<i<4
Dy = {(15,10,5,00+ ;|0 < j < 4}
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Forv=36,n=4

B; = {(0,1,7,3),(9,-15,4,-8),(5,15,—-4,-9)
(-1,-7,10,13),(-13,-10,-11,-14)(001,—3,-5,11)
(002,2,12,16),(003,-2,—-12,6),(004,8,14,-6) }

B, = {(0,9,3,-11),(-5,8,12,-13),(15,13,5,-12)
(-3,1,-2,7,(-6,-1,10,-10), (c01,—9,16,4)
(002,—14,2,-15),(003,—4,1,-8),(004,14,-7,6) }

B3 = {(0,-1,-5,9),(-15,-8,4,-7),(13,15,7,-4)
(-9,1,-6,-11),(5,11,2,-10), (001,12, —-13,—14)
(3,6,8,002),(—3,-2,14,003),(—12,16,10,004) }

D;={(0,-7,-9,10)+i+4;|0<;<7}

D4t = {(0,-3,2,-9)+i+4j|0< <7 }for 1<i<4

Dy = {(0,8,16,24) +j |0 < j < 7}

Forv=52,n=8

B, = {(14,2,1,19),(-6,18,-5,9),(—-14,—-10,-1,-7)
(-19,6,-9,-2),(5,7,10,—18),(001,—8,20,—13)
(002,11, —4,8),(003,0,-21,22),(004,—17,—11,3)
(00s,21,15,17), (006, —3,—15,13), (007,12, -12,4)
(o0g,16,-20,-16), }

B; = {(-3,4,-7,6),(-19,17,-8,10),(21,16,5,2)
(1,13,12,18),(-15,-14,9,20),(001,0,22, 15)
(002,—20,-4,7),(003,~-1,8,-12), (004, —5,-21,—11)
(00s,—9,11,3),(00s,19,-13,-17), (0c07,—18,-16,-2)
(o0s,14,—-6,-10) }

B; = {(2,7,-16,1),(9,19,-12,18),(-7,-20,-5,—14)
(6,-4,-1,-19),(-9,8,5,10),(00;,22,0,3)
(002,—-6,11,-2),(003,12,20,—11),(004,4,—18,14)
(005,16, -8, —10), (00s, —21, 15, —3), (007,17,21,—15)
(o0s,13,-13,-17) }
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D; = {(0,-5,-19,2) +i+4;]0< <10}

Dayi = {(0,-2,3,13) +i+4;|0< <10}

Ds.; = {(0,-10,17,-1) +i+4;|0<j< 10}

D2 = {(0,-10,9,3) +i+4;|0< ;<10 }

Dig+i = {(0,15,1,—6) +i+4;|0< ;<10 } for1 <i< 4
Dy = {(0,33,22,11) +;|0< <10 }

Theorem 3.10. There exists a (52,4 ,3)-RPMD.

Proof: Since there existsa (52,4, 3; 8)-IRPMD from Lemma 3.9 and there exists
an (8,4, 3)-RPMD from Theorem 3.8. So we have that there exists a (52,4, 3)-
RPMD by Theorem 2.6 |

Theorem 3.11. There exists a (4t,4,3)-RPMD for t = 21,41,46,53,57.

Proof: Apply Theorem 2.16 with (u, v, w) = (5,16,4),(5,32,4,),(9,20,4),
(13,16,4), (5,44, 8) to obtain a (4¢,4,3)-RPMD for t = 21,41, 46, 53,57.
Here the required (v + w, 4, 3; w)-IRPMD and (v + w, 4, 3)-RPMD come from
Lemma 3.9 and Theorem 3.7;73.8, 3.10 and 3.20. 1

Theorem 3.12. There exists a (4t,4,3)-RPMD for t = 59,61,67,71 and 73.

Proof: Apply Theorem 2.21 with (p,u,w) = (23,12,7) and (23,12,15) to
obtain a (4t,4,3)-RPMD for ¢t = 71,73. Here the required (24,4 ,3)-RPMD
comes from Theorem 3.7. Apply Theorem 2.21 with (p, u,w) = (19,12,7),
(19,12,15) and (31,8,19) to obtain a (4t,4,3)-RPMD fort = 59,61,67.
Here the required (p + 1,4, 3)-RPMD for p = 19, 31 comes from Theorem 3.8.
That is, let B; = b'~! B, B} = b/"'B/for 1 < j < 3, where B and b are
as in Theorem 3.8. Take B’ = {(00,1,w®, w'?), (0,w,w’,w")},B’' = B\
{0, w,w”,w'®)}andB’ = {(00,0,2,10),(-12,-10,12,-2),(5,14,1,8),
(9,-8,-14,-9),(—6,—1,-5,6)}, respectively. 1

Theorem 3.13. Thereexistsa (4t,4,3)-RPMD fort = 28,35,56,76,and 77.

Proof: Since there exists a (4v,4,3)-RPMD forv = 4,5, 8 and 11, apply Theo-
rem 2.17 withu=4,h =7, =3 and s = 1 to obtain a (28v, 4, 3) -RPMD for
v=4,5, 8 and 11. Here the required (4, 3, 4; 28)-semiframe come from Lemma
3.4. Similarly, we can obtaina (4 - 19-4 4, 3) -RPMD by applying Theorem 2.17
withu=4,h=19,v=4. | |

Theorem 3.14, There exists a (v,4,3)-RPMD for v = 88, 124, 152,

Proof: Apply Theorem 2.24 with 4 = 17, v = 5 and w = 3 to obtain an
(88,4, 3)-RPMD. Here the required (20,4, 3; 4)-IRPMD comes from Lemma
34.

245



Apply Theorem 2.23 with (u,v,w) = (17,7,4) and (21,7,4) to obtain a
(4,3,{7,11}; 123) and a (4,3,{7,11}; 151). Here the required (21,4,3;
5)-IRPMD and (25,4, 3; 5)-IRPMD come from Corollary 2.19 and the fact that
thereexista (21,5, 1)-BIBDand a (25, 5, 1)-BIBD. Hence, it follows from The-
orem 2.10 that there exists a (v, 4,3)-RPMD for v = 124 and 152. 1

Lemma 3.15. There is an RTD [4,3; 3].
Proof: Let X; = {[1,1],[4,2],[4,3]1}for1 <1< 4,X = Uigica Xi

E=(1,2,3,4)
A ={(1,1,1,1),(2,2,2,2),(3,3,3,3),(1,2,3,1),(2,3,1,2)
3,1,2,3),(1,3,2,1),(2,1,3,2),(3,2,1,3)
A, = {(a,b,c,d+ 1) | (a,b,c,d) €A, }
A3 = {(a,b,c,d+2) | (a,b,c,d) € A1 }

where d + 1,d + 2 is taken modulo 3.

Let B; = (E,A;), B = Uj<i3B;. It is readily checked that (X,G,B) is a TD
[4,3; 3] and B; can be partitioned into 3 parallel classes of X for1 < 1< 3. So
we have that (X,G,B) is anRTD [4, 3; 3]. 1

Lemma 3.16. There exists a PGMD [4,1,4; 16] where the blocks can be par-
titioned into 12 parallel classes.

Proof: Let X; = {[1,4],[2,4],[3,i],[4,i]} for1 < i < 4 and X = Ujgcs
X;. Let

E=(2,2,4,4),E2=(1,1,3,3),F3=(1,3,2,4),E4=(3,1,4,2)
Es=(1,1,4,4),E6=(2,2,3,3),E7=(1,2,1,2),F3=(3,4,3,4
A1={(3,1,4,2),(2,4,1,3),(2,1,3,4),(4,3,1,2),(4,1,2,3),(3,2,1,4) }
A; = {(b,a,d,0) | (a,b,c,d) € Ay}

Az = {(b,¢c,a,d) | (a,b,c,d) € A}

A4 = {(d,a,c,b) | (a,b,c,d) € Ay}

As = {(a,b,d,c) | (a,b,c,d) € A1}

A¢ = {(b,a,c,d) | (a,b,c,d) € A}

Ar=A3= A

LetB; = (E;, A;) for1 < i < 8. Itis readily checked that (X, G, B) isa PGMD

[4,1,4;16] where B = U; (i3 B; and B;UB;,, can be partitioned into 3 parallel
classesof X fori=1,3,5,7. 1
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Theorem 3.17. There exists a (48,4 ,3) -RPMD.

Proof: By Lemma 3.15 and 3.16 we see that we can let (X, G,B) be a PGMD

[4,3,12;48] where B can be partitioned into some parallel classes of X. Since

there exists a (12, 4,3)-RPMD, we can let (G, A;) be a (12,4 ,3)-RPMD for

1 < i< 4. Therefore (X,BUA) isa(48,4,3)-RPMD where A = Uj¢ics A;.
|

Theorem 3.18. There exists a (v,4,3)-RPMD of v = 28 and 132.

Proof: In each of the following two cases forv = 28 and 132 weletG = Z,_,,
X =2Z,pandY = {001,002,...,00,} for n = 5 and 33. From Theorem 3.1
we can let (Y, A) be an (n,4, 1)-RPMD with parallel classes A;, 1 < i < n
We then present a collection of base blocks B and n partial parallel classes of
blocks based on X, namely, D;, 1 < 1 < n, as defined. From Theorem 3.2 we
canlet (X UY,E) be a (v,4,2)-RPMD having 2(v — 1) parallel classes E;,
1 <€ j € 2(v—1), and without loss of generality we can let E; be partitioned into
= partial parllel classes E;j, 1 < j < n, such that E;; U (A; U Dy) is a parallel
class for 1 < j < n Sinceitis easy tosee that (X UY,D UAUdevB) isa
(v,4,1)-PMD where D = Uj i<, D; and B is a parallel class of X UY, so it is
not difficult to see that (X UY,E UD UAUdev B) is a (v,4,3)-RPMD.

Thecasev=28 andn= 5
B = { (—4,4,9,-10),(~11,7,-7,0), (o0, —2,11, 1)
(002,—5,5,-3),(003,-9,10,8),(c04,2,1,—6), (005, ~8,6,3) }.
For 1 < j < 4 define:
D, = {(0,1,3,6) +4(i+ 55— 5):i=0,1,2,3,4}
Ds = {(0,1,3,6) + 4i:i=—1,-2,-3}
The case v= 132 and n= 33
. B ={(001,33,-19,32), (003, 18,49, —5), (003,24, —47, —15)
(004, —39,19,—36); (c0s, —44, —10, 30), (00s, 16, —12, —43)
(007,10,—28,5), (00s,—21,31,6), (009, —34,—16, 8)
(0010, —11,27,—18), (o011, 37,3, —33), (0012, —49, —29 , —6)
(0013, 17,40, 26), (0014, 44,40, —24),, (o015, —37,22,7)
(0016, —25,25,~14), (o017, =32, —3, 34), (o013, 14,29, —31)
(0019, —48,9,—35), (0020, —30, —46,35), (0021, 2, 21,48)
(c0z,—2,41,—17), (003,47, 1,12), (0024, 39,15, —8)
(0025, 26, —45, —9), (0026,43,0, —20), (0027, —13, 13, 38)
(0028, —42,28, —23), (0029, —41,23, —4), (030,42, 46, —7)
(0031,20,36,—1), (0032, —27,—38, 11), (0033, 4, —22 ,45)

241



For 1 < j < 33 define:
Dj={F+j+iFeF, i=0,33,66}
where

F= {(1,13,—1,—13),(2,8,—2,—8),(3,6,—3,—6)
(4s9)—4s—9)’(5112)_5)_12))(7)153—7s_15)
(10,11,-10,-11), (14,16, —14, —16)}

Summarizing the results given above we have

Theorem 3.19. (1) There exists a (v,4,3)-RPMD for v = 1 (mod 4);
(2) There exists a (4t,4,3)-RPMD for t € {2,3,4,5,6,7,8,11,12,13, 17,
21,22,28,31,33,35,38,41,46,53,56,57,59,61,67,71,73,76,77}.

Theorem 3.20. There existsa (4t,4,3)-RPMDfor 1 <t <80 andt # 1.

Proof: From Theorem 3.19, it is clear that there exists a (v,4, 3)-RPMD for v
shown in Table A by applying Theorem 2.3 and 2.14. This completes the proof.

|

Table A
4.9=5-7+1 4.10=8-5 4.14=5-11+1 4.15=12.5
4.16=8-8 4.18=8.9 4.19=5-15+1 4.20=16 -5
4.23=13-7+1 4.24=12.8 4.25=20-5 4.26=8-13
4.27=12 -9 4.29=5-23+1 4.30=17-7+1 4.32=8-.16
4.34=8-17 4-36=16 -9 4.37=21-7+1 4.39=12.13
4.40=8-20 4.42=8-.21 4.43=9-.19+1 4.44=5.35+1
4.45=36 -5 4.47=17 -114+1 4.48=8.24 4.49=5-39+1
4.50=8-25 4.51=12 -17 4-.52=16 -13 4-54=24 .9
4.55=44 .5 4.58=8-29 4.60=12.20 4-.62=13-.19+1
4.63=12.21 4.64=17 -15+1 4-65=20.13 4.66=8-33
4.68=16-17 4.69=25.11+1 4.70=56-5 4.72=8-36
4.74=8 .37 4.75=13-23+1 4.78=24 .13 4.79=5.63+1
4.80=64-.5

The following result is contained in [10, Lemma 4.1].

Lemma 3.21. If N(n) > 15, then there exists a GDD[K,1, M;v] of type
aS(n+ 4my)! (n+ 4my)! where K = {5,17},0 < my, my < mand
v=17n+4mi +4m,.

Theorem 3.22. There exists a (4t,4,3)-RPMD for t > 81.
Proof: We define RPMD [4,3] = {v | there exists a (v,4,3)-RPMD }.
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Taking n = 19, from Lemma 3.21 we have a GDD [ K, 1, M; v] of type 1915
(19 + 4my)! (19 + 4m;,)! where K = {5,17},0 < my;,my < 19 andv =
17 - 19 + 4(m1 + m;), then it is clear that if 19 + 4my + 1, 19+4my + 1
€ RPMD [4,3] there exists a (v + 1,4, 3)-RPMD by Theorem 2.18 and 2.10.
Since 19+ 4my + 1,19+ 4m; + 1 € RPMD [4,3] for0 < my,m; < 19 and
m1,mz # 2,28 from Theorem 3.20,and {s | s = m; + m2,0 < m;, my < 19
and my,mz # 2,28} = {s]| 0 < s < 38}. Therefore, there exists a (4,4 ,3)-
RPMD for 81 < t < 119.

Taking n = 23, similarly, we have 23 + 4m; + 1, 23 + 4my + 1 € RPMD
[4,3] for0 < my, my < 23 and my, my #1,27,and {s | s = m; + my
0 < mi,mz <23 andmy,mz # 1,27} D {s|2 < s < 46}. Therefore, there
exists a (4t,4,3)-RPMD for 98 + 2 < t < 144.

Similarly, taking n = 31,43,59,79,103,127,179, 199,271,311, 383, 503,
719, 1019, 1427, 1831, we can obtain 4¢ € RPMD [4,3] for132 <t < 11444,

Similarly taking n = 3°, 3°-3.31, 3°-4.113, 32-3.47, 3°-3.59 34-3.79,
3°-3.87,3-3.127,3%-1.19,3°-1.23,3%2 fors = 7,9, 11, ... we canobtain
4t € RPMD [4,3] fort > 11444, |

Lemma 3.23. There does notexista (4,4 ,)) -MD forany odd ) (see [4, Lemma
4.3)).

Summarizing the results givien above we readily obtain the following results.

Theorem 3.24. The necessary condition for the existence of a (v,4,))-RPMD
for \ = 3, namely,v = 0 or 1 (mod 4) is also sufficient, except for v = 4,
There exists a (v,4, 1) -RPMD for every positive integer v =1 (mod 4).

Combining Theorem 3.6, 3.24, and 3.18, the main result of this paper can be
summarized in the following theorem. ‘

Theorem 3.25. The necessary condition for the existence of a (v,4, );) -RPMD
for X > 1, namely,v =0 of 1 (mod 4), is also sufficient with the exception of
pairs (v,)\) where v=4 and ) odd.
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