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ABSTRACT. Sufficient conditions depending on the minimum degree
and the independence number of a simple graph for the existence of
a k-factor are established.

1. INTRODUCTION

We consider only finite undirected graphs without loops or multiple
edges. Our terminology is standard unless indicated otherwise. A good
reference for any undefined terms is [1].

The set of vertices of a graph G is denoted by V. If v is a vertex of G,
then the neighbourhood Ng(v) of v is the set of all vertices in V adjacent
to v, and the degree dg(v) of v is |[Ng(v)|. We use § for the minimum
degree, and o to denote the independence number. A spanning subgraph
H of G is called k-factor, if dg(v) = k forall v € V. If G and H are disjoint
graphs, then the union is denoted by GU H and the join by G + H.

Nash-Williams [4] proved the following sufficient condition for a Hamil-
tonian circuit, which is also sufficient for a 2-factor.

Theorem 1. Let G be a 2-connected graph with n vertices. If G satisfies
6> L(n+2) and § > a, then G is Hamiltonian.

The aim of this paper is to prove sharp sufficient conditions for the exis-
tence of k-factors depending on the minimum degree and the independence
number. Our main theorem is

Theorem 2. Let k > 2 be an integer and G be a graph with n vertices. If
k is odd, then suppose that n is even and G is connected. Let G satisfy

1) n>4k+1-4v/k+2,
k-1
(2) 5> 2k—1(n+2) and
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1
2k — 2

3) 5> ((k-2n+2a-2).

Then G has a k-factor.

Inequality (3) of the theorem contains the minimum degree, the inde-
pendence number and, if £ > 3, the number of vertices. This condition
can be replaced by a condition only depending on minimum degree and
independence number.

Theorem 3. Theorem 2 remains true, if (3) is replaced by
(4) ké > 2(k — 1)a — 2(k — 1)

Recently, Tokushige [6] and Woodall [8] proved independently the follow-
ing closely related theorem, where Woodall used instead of (1) the slightly
weaker n > 4k — 6.

Theorem 4. The conclusion of Theorem 2 is true, if (3) is replaced by:
For every non-empty independent set X C V the inequality

(5) INa(X)| 2 5 ((k = Dn+1X] - 1)
holds.
We can not use this result to prove our theorems, because Theorem 2 or

Theorem 3 and Theorem 4 do not imply each other (see Section 3). But
we will use a major part of their proofs (cf. Theorem 5 below).

2. PR.OOFS

Theorem 2 implies Theorem 3. Let G be a graph satisfying the
hypotheses of Theorem 3. Using (2) and (4) we get (3) as follows:

_ (k—=2)(2k-1) ké
6 = 2(k—1)2 6+ 2(k —1)2
k—2 2(k — 1)a — 2(k — 1)?
> popntA+ 2(k= 1)
1
= 353 ((k 2)n + 20 — 2)
So G has a k-factor by Theorem 2. »

To prove Theorem 2 we need the following version of Theorem 4.
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Theorem 5. Let k > 2 be an integer and G be a graph with n vertices.
If k is odd, then suppose that n is even and G is connected. Let G satisfy
(1) and (2). Then G has a k-factor or there exist disjoint non-empty sets
A,B CV such that

(6) w> kA= k|Bl+ Y dava(v) +2,
vEB

where w denotes the number of components of G\ (AU B) with at least
three vertices, and

(7 X :={z € B|dg\alz) =0} #0.

In fact, this version was not stated in Tokushige’s or Woodall’s paper,
but their proofs, which are based on Tutte’s factor theorem [7], use (5) only
to show that the situation described by (6) and (7) cannot occur.

Proof of Theorem 2. The proof is by contradiction. Let G be a graph
satisfying the hypotheses of Theorem 2, which has no k-factor. By Theorem
5 there exist disjoint non-empty sets A,B C V such that (6) and (7) hold.
By (7) we get '

(8) 4] > 6.

Let Y := {v € B | dg\a(v) =1}. Next we show

1
(©) o> w+|X]+ 3IY].

To see this, let H,,...,H,, be the components of G \ (A U B) with at
least three vertices, which have a vertex without neighbour in Y. Let S;
be a set containing one such vertex from every H;, for i = 1,...,w;. The
further components of G \ (AU B) with at least three vertices are denoted
by F]_,...,Fw,.

Furthermore let Y; := {v € Y | Ng\a(v) C B} and Y; := Y \ V3. Then
the graph induced by Y; in G has maximum degree at most 1. Let S, be
a maximum independent set of this graph. Clearly, S; has cardinality at
least %IYll' .

Since every vertex of every F; has a neighbour in Y; and since these
neighbours are necessarily distinct, we have

(]
(10) Y2 > ) IV(Fi)| > 8wz > 2w, .

i=1
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By our definitions the set X U S; U S; UY; is an independent set of G.
Using (10) this yields (9) as follows:

a > |X|+ |51+ (S| + Y2
1 1
> |X|+w1+§|Y1|+§|Y2|+wz

1
|X| +w+ -2-|Y| .
Now, applying (9), (6) and (8), we get

1
a > w+|X|+§|Y|

v

1
A= kIBl+ D deva(v) +2+ X+ 51V
veEB
3
BS—kBl+ D deva(v)+2+IX|+ 5]
ve B\ (XUY)

[\

v

3
k6 — k|B| +2[B\ (X UY)|+2+|X|+ S|

1
k6 — k|B| +2|B+ 2 - (IX| + 51¥1)
k6 — (k — 2)|B|+2 — a

v

and so
(11) (k—2)|B|> kb6 —2a+2.

If k = 2, then (11) is equivalent to o > 6§ + 1, contradicting (3). If £ > 3,
then we get by (8), (11) and (3)

0 < [V\(AUB)|=n—|A|-|B]|

1

1
This contradiction completes the proof of Theorem 2. u

3. REMARKS

We first verify that Theorem 2 (or Theorem 3, respectively) and Theorem
4 do not imply each other.

For k > 2 fixed, we choose integers » and p, such that » > 4k and p is
even with

2(k — 1) 2%k—1 2k—3
T(T+2)_<_p< Tt
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Such an integer p exists, since
2k_1r+ 2k-3 2(k-
k k k
The reader may verify that the graph K, + (rK; U K,42) has a k-factor by
Theorem 2 or Theorem 3, but for X = V(rK,) condition (5) is not fulfilled.

Now we consider examples of the form K, + rK; ;. We choose r > 4k
and p such that p+ r is even and

1)(r+2)=7t-(r—2k+1)2 %(2k+1)>2-

%(3/”—37-- 1)<p< %(3kr-—2r—2k).

This is possible, since the right-hand-side minus the left-hand-side is
equal to (r — 2k + 1)/k > 2. Here the reader can verify that such a graph
has a k-factor by Theorem 4, but neither condition (3) nor condition (4) is
satisfied.

To see that the conditions of Theorem 2 are best possible, we consider
graphs of the form

K., 2(pk —p—1) + (7'1{1 U (pk — l)Kg) ,

where r > 0 and p > k. Woodall [8] has shown that these graphs have no
k-factor. If r = 0 or r = 2k, respectivily, these graphs show that (2) or (3),
respectivily, is best possible. Examples showing that (1) is needed can be
found in [6].

The occurence of a condition like (1) is somewhat surprising, and so it
is a natural question, what happens, if (1) is not satisfied. In this case the
situation changes dramatically. Clearly, it is possible to require stronger
conditions depending on minimum degree and independence number, but,
remarking the fact that

(12) §>n+2k—2Vkn+2

always guarantees a k-factor (see [2],[8]), a minimum degree condition has
to be weaker than (12). However, the independence number of the graphs
given by Katerinis and Woodall [3], which show that (12) is best possible,

depends only on 2 So, compared with Theorem 2, where o < ; always

suffices, a condition for the independence number has to be very restrictive.

Finally, we have not considered 1-factors, because it seems that this case
does not fit into the pattern of Theorem 2. Using a different method the
author obtained in [5] the following lower bound for the size of a maximum
matching as a corollary.

Theorem 6. Let G be a connected graph of even order n and let m be an
odd integer. If m6 > n holds, then the number of unsaturated vertices of a
mazimum matching is at most max{m — 3,m — 4 + o — §}.
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