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Abstract. Using the explicit determination of all ovals in the 3 non-desarguesian pro-
jective planes of order 9 given in [4] or [8], we prove that there are no other Benz planes
of order 9 than the three miquelian planes and the Minkowski plane over the Dickson
near-field of type {3,2}.

1. Introduction.

A Benz plane, whose algebraic properties have been studied in [2], comprises
three types of circle planes: M{bius planes (or inversive planes); Laguerre planes;
and Minkowski planes.

The miquelian M&bius plane, Laguerre plane, and Minkowski plane of order ¢
(g being a prime power) is obtained as the geometry of nontrivial plane sections
of an elliptic quadric, an elliptic cone, or a ruled quadric, respectively, in the 3-
dimensional projective space over GF(q).

In general, a Benz plane B = (P, K, &) consists of a set P of points, a set
of circles (considered as subsets of P) and a set £ of equivalence relations on P
(parallelism) such that the following axioms hold (two points p, g € P are called
parallel if and only if they are in relation pRgq for some R € &£; otherwise they are
called nonparallel):

(B1) Any three pairwise nonparallel points can be joined uniquely by a circle
passing through these points.

(B2) To every circle K and any two nonparallel points p, ¢ where p € K and
g ¢ K there is precisely one circle L which is tangential to K at p (that is,
K N L = {p}) and passes through g.

(B3) For any parallelism every parallel class intersects any circle in a unique
point.

(B4) Any two parallel classes to different parallelisms intersect in a unique point.

(BS) There are four pairwise nonparallel noncircular points.

In the case of a Laguerre plane £ consists of precisely one equivalence relation;
so axiom (B4) does not apply for Laguerre planes. The parallel class of p € P
will be denoted by |p|.

In the case of a Minkowski plane £ consists of precisely two equivalence re-
lations called (+)— and (—)-parallelism; the corresponding parallel classes of
p € P will be denoted by |p|. and |p|_, respectively.
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In order to fit Mdbius planes into this general setting we take £ the empty set
and we have to read nonparallel points as distinct points. In particular, the axioms
(B3) and (B4) do not apply in this case.

If P is finite, any two circles have the same number n+ 1 of points, and n is
called the order of B. There are n? + 1 points and n(n? + 1) circles in a Mobius
plane of order n; there are n? + npoints, ° circles, and n+ 1 parallel classes in a
Laguerre plane of order n; there are (n+ 1) points, n(n? — 1) circles and n+ 1
parallel classes of either type in a Minkowski plane of order n.

For every point p € P there is an internal incidence structure, whose point
set consists of all points of P not parallel to p and whose set of lines consists of
all circles containing p (without the point p), and all parallel classes not passing
through p; this is an affine plane, the derived affine plane A, at p. We call the
projective closure of A, the derived projective plane P, at p. If B has order n
then the derived affine plane and derived projective plane are also of order n. A
circle K not passing through p induces an oval in P, by

- K C P\{p} (Mobius plane); in particular the infinite line of P, (with re-
spect to Ap) is an exterior line to this oval.

- (K\|p|) U {w}, where w denotes the infinite point of lines that come from
parallel classes (Laguerre plane); in particular the infinite line of P, (with
respect to A,) is a tangent to this oval at w.

- (K\(lpl+ Ulpl-)) U {w+,w_}, where w, and w_ denote the infinite point
of lines that come from ( +) -parallel classes or ( —)-parallel classes, respec-
tively, (Minkowski plane); in particular, the infinite line of P, (with respect
to A,) is a secant to this oval.

According to the celebrated theorem of Segre [10] an oval in a finite desar-
guesian projective plane of odd order is a quadric. Chen and Kaerlein proved in
[3] by simply counting the possibilities of quadrics having a given tangent at a
given point or passing through two given points that a finite Laguerre plane or
Minkowski plane of odd order having at least one desarguesian derived projective
plane is miquelian. Thas [11] achieved a similar result for finite Mbius planes of
odd order ¢ ¢ {11,23, 59} using a completely different method. In particular, a
Benz plane of odd order < 7 is miquelian. However, there are non-desarguesian
projective planes of order 9, and a computer search in [7] confirmed recently that
there are only 4 nonisomorphic projective planes of order 9. Besides the desar-
guesian plane Dy of order 9, these are the translation plane 7" (Hall plane), its dual
T*, and the Hughes plane H of order 9 (a brief description of these planes will be
given in Chapter 2).

In [§] Denniston proved that none of the three non-desarguesian projective
planes of order 9 gives rise to a Mdébius plane of order 9 although these planes
contain many ovals. In this note we answer the corresponding question for La-
guerre planes and Minkowski planes of order 9. As in [5] we exploit the explicit
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determination of all ovals in the 3 non-desarguesian projective planes of order 9
given in [4] or [8]. We prove:

Theorem A. No derived projective plane of a Laguerre plane of order 9 is iso-
morphic to one of the non-desarguesian projective planes T, T*, or H of order
9.

Besides the miquelian Minkowski plane of order 9 there is a nonisomorphic
Minkowski plane M* which is constructed quite similar to the miquelian model
over the planar Dickson near-field of order 9 (a description of this plane will be
given in 4.6). Similar as for Laguerre planes of order 9 we ask whether M* is the
only Minkowski plane that can be constructed from the three non-desarguesian
projective planes of order 9. We prove:

Theorem B. No derived projective plane of a Minkowski plane M of order 9 is
isomorphic to the dual translation plane T* or the Hughes plane H. If at least one
derived projective plane of M is isomorphic to the translation plane T , then M
is isomorphic to M* (and each derived projective plane is isomorphic to T ).

Together with the result of Denniston [5] on Mdbius planes of order 9, the two
theorems can be summarized into

Theorem C. A Moébius plane or a Laguerre plane of order 9 is miquelian. A
Minkowski plane of order 9 is either miquelian or isomorphic to M* .

2. Three non-desarguesian projective planes of order 9 and their ovals.

2.1. The transiation plane T (Hall plane)
For detailed information about this plane we refer to [9, Section 4], [8, Section 2],
[8, Section 2], or [1]. Since T occurs as derived projective plane of a Minkowski
plane, we include a brief description of this plane.

In the Galois field F' = GF(9) of order 9 let

oF s Fz 1

denote the Frobenius automorphism and let F2 = {z2 | z € F} be the set of
squares in F'. The field F can be described as the quadradic field extension of
Fo = GF(3) obtained by adjoining an element i, 2 = —1; the members of F
then can be written in the form a + bt where a,b € Fp, and F is a 2-dimensional
vector space over Fy with basis {1, 1}. In this notation o becomes a+ bi — a —bi.
We keep the addition of F' and define a new multiplication o by

ab a € F?
aob={ for

aa(b) ag F2.
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Then (F,+,0) is a near-field, the Dickson near-field of type {3,2}. Its auto-
morphism group & = Aut (F,+,0) consists of all Fy-linear mappings of the
2-dimensional vector space F' over Fy that fix all members of Fy- 1; hence, ®
comprises 6 automorphisms. In particular, o € P.

LetA= FxFandletL, = {{(z,moz+1t) |z € F}|m,t € F}U{{(c,y) |
y € F} | c € F}; then (A, L,) is an affine plane (compare [1]) and all mappings

(z,y) »(z+a,y+b)(a,bEF)

are collineations of (A, L,) each of which fixes one parallel bundle linewise.
Thus, the projective closure is a translation plane of order 9 having the infinite
line as translation line.

The whole collineation group I" of T has order 28-35.5 = 311,040. In the
given representation I is the semidirect product of the translation group with the
stabilizer I, of o = (0, 0) where I', is generated by the mappings

(z,y) —» (roz,80y)(r,s€ F{0})

(z,9) — (y,2)

(z,9) »(z+y,z—y)

(z,9) = (p(z),0(¥))(p € P = Aut(F, +,0))

In particular, I" fixes the infinite translation line. The points on the translation
line can be partitioned into five special pairs which are invariant under every
collineation, that is, a collineation maps a special pair of points onto a special pair.
In the given description of T the special pairs are {(0), (oc0)}, {(m),(-m)},
m € F\{0}, where (m) denotes the infinite point on the line y = m o z for
m } oo or the Y -axis for m = oo.

It is easy to see, that

{(z,z7") |z € F,310}U{(0),(00)}

isan oval O in T (here z~! denotes the inverse of z in the original multiplication
-of F). According to [4, Section 8] or [8, 2.4] the orbit I" (O) of the oval O under
the full collineation group I" comprises all ovals in 7. Moreover, the stabilizer of
O consists of 32 collineations and there are 23-3%.5 = 9720 ovalsin T. As O
contains the infinite points (0) and (oo), every oval intersects the infinite line in
a special pair of points.

2.2, The dual translation plane T*

This plane is obtained by dualisation of the translation plane 7. All results men-
tioned in 2.1 carry over accordingly to T*. In particular, the collineation group
I"* of T* fixes the translation point 7. Corresponding to special pairs of points on
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the translation line in 7", the lines through 7 can be partitioned into five special
pairs of lines.

All ovals in T* are obtained by dualisation of ovals in T, and they are all in the
same orbit. No oval contains the point 7 and to every oval there are precisely two
tangents through T and these tangents form a special pair of lines.

2.3. The Hughes plane H

For detailed information about this plane we refer to [9, Section 5], [8, Section
3], or [6]. We list some properties of  as far as they are needed in the proof of
our theorems. ‘3 ,

This plane of order 9 contains a distinguished Baer subplane 7 = (R, R) of
order 3. In particular, J is desarguesian. Points of this subplane will be called real
points and the remaining points will be called complex points. Similarly, lines that
pass through two real points are called real lines and those lines that pass through
precisely one real point will be called complex lines. By definition of a Baer
subplane, every complex line contains precisely one real point and dually through
every complex point passes precisely one real line,

Every collineation of H fixes J and the full collineation group PGL(3,3) of
the desarguesian plane D; of order 3 is induced on J. Furthermore, the collineation
group I' of  has a subgroup of order six whose members fix every real point and
I" hasorder 6 - 5616 = 33,696 . There are two orbits of ovals in H (see [4, Section
8] or [8, 3.3]). One type of ovals, which we accordingly call real ovals, have 4 real
points and 6 complex points. The other orbit consists of ovals that have 10 com-
plex points (and no real points); we call these ovals complex ovals. Since a real
oval is stabilized by 48 collineations, there are 702 of them in H; similarly, there
are 2106 complex ovals in  as each such oval is stabilized by 16 collineations.

Obviously, the 4 real points of a real oval form an oval in J. As J is de-
sarguesian, these real points describe a quadric by the Theorem of Segre. In the
desarguesian projective plane D3 of order 3 there are 234 quadrics (there are 18
quadrics through a given point with a given tangent at that point and there are
13 - 4 flags; since a quadric has 4 points, each quadric appears four times in the
above count of flags and so there are 18 - 13 = 234 quadrics in D3), so each such
quadric extends to 3 different real ovals in .

3. Proof of Theorem A.

Throughout this chapter £ denotes a Laguerre plane of order 9. Then L has
10-9 = 90 points and 9-9-9 = 729 circles. As mentioned in the introduction
circles not passing through the point x of derivation induce ovals in the derived
projective plane P at z and all these ovals contain the point w and have the infinite
line W as atangent at w. So there mustbe 8-9 - 9 = 648 ovals in P that come from
circles of L. In the sequel we examine up to isomorphism all possibilities of flags
(w, W) in each of the 3 non-desarguesian projective planes of order 9. Using the
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determination of ovals in these planes we decide whether there are enough ovals
through w and having tangent W at w to constitute a Laguerre plane.

3.1. Suppose that a derived projective plane of £ is isomorphic to the translation
plane T: Since the translation line T" of T is a secant to any oval in T, this line
cannot be the line W (by definition W is a tangent to ovals that come from circles
of £). If w € T, then each oval in T which contains w passes also through the
second point w' of the special pair containing w; since T' stems from a parallel
class in £, there must be, however, ovals through w and points € T'{w,w'} (see
axiom (B1)). If finally w ¢ T, then T comes from a circle of £; hence, there must
be an oval for which T is a tangent (see axiom (B2)) contrary to the fact that T is
a secant to all ovals in T'.

3.2. Suppose that a derived projective plane of L is isomorphic to the dual
translation plane T*: Since there passes no oval through the translation point 7 of
T*, this point cannot be the point w. Similarly, if W does not pass through 7, the
point 7 is a finite point and comes from a point of £; however, by the Laguerre
axiom (B1) there must be an oval through 7 — a contradiction. If finally = € W,
then each oval through w having W as tangent at w must also have the second
line W' through 7 of the special pair containing W as tangent; however, by the
Laguerre axiom (B1) the line W' must be a secant to some oval.

We now suppose that a derived projective plane of L is isomorphic to the Hughes
plane H: We maintain the notation of 2.3 and denote the Baer subplane of real
points and real lines of H by Y = (R, R); the plane )Y is isomorphic to the desar-
guesian projective plane D3 of order 3. We distinguish 3 cases:

- w is areal point;
- w is acomplex point and W is a real line;
- w is acomplex point and W is a complex line.

3.3. Suppose that w is a real point. In this case all ovals that come from circles
of L are real. The intersection of such an oval with R defines a quadric in the
projective plane Y) & D;. In D; there are precisely 234 quadrics (compare 2.3).
As a circle is uniquely determined by 3 of its points, each oval that comes from
a circle is uniquely determined by its real points and, hence, there are at most
234 circles. However, in L there are 648 circles that appear as ovals in a derived
projective plane — a contradiction.

3.4. Suppose that w is a complex point and W is areal line. In this case W is the
unique real line through w; any other line through w (= parallel classes) intersects
R in precisely one point. Thus, the points in E\W are pairwise nonparallel and
any three points in R\W can be uniquely joined by a circle. Furthermore, to each
circle K having 3 real points and any two real points z, y with z € K there is
precisely one circle tangential to K at z through y; this circle induces a real line
or a real oval. Hence, the circles that induce real ovals determine a Mbius plane
of order 3 on R\W (plus an additional point, such that R\W is the derived affine
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plane at this point). We choose two different points z,y € R\W. In L there are 9
circles through z, y; thus, there are 8 real ovals through z, y in . These ovals are
uniquely determined by their real part. However, in an inversive plane of order 3
there are only 4 circles through two points — a contradiction.

3.5. Suppose that w is a complex point and W is a complex line. Then there is
precisely one real line L through w. Because W is complex, L and W are distinct;
as L passes through w, the line L comes from a parallel class of L. We choose two
real points z € LN Rand y € R\ L. Then z and y are nonparallel and in L there
are 9 circles through z and y; thus, there must be 8 ovals in 2 through the two
points and these ovals must be real. In ) the intersection L N R is a tangent to the
real part of these ovals. We count the number of quadrics in D5 that pass through
two given points and have at one of them a given line as tangent. To do so we
coordinatize D3 in such a way that z becomes the infinite point of the Y -axis, the
tangent becomes the infinite line, and y becomes the point (0,0). The quadrics
we are interested in then are parabolae and have the special form {(t,a-t2 +b-t) |
t € GF(3)}U{z}, where a,b € GF(3), a}0. Hence, there are only 6 quadrics,
and since its real points determine the whole circle, there can be only 6 ovals in H
through z and y coming from circles, contradicting the fact that there are 8 such
ovals.

3.6. We have shown that no derived projective plane of L can be isomorphic to
T,T*, or H. If at least one derived projective plane of L is desarguesian, then £
is miquelian according to [3].

4. Proof of Theorem B

Throughout this chapter M denotes a Minkowski plane of order 9. Then M has
10-10 = 100 points and 10-9 - 8 = 720 circles. As mentioned in the introduction
circles not passing through the point x of derivation induce ovals in the derived
projective plane P at z and all these ovals contain the two points w, and w_ on the
infinite line W (thus, W must be a secant to any oval that comes from a circle of
M). Sotheremustbe 9.9 .8 = 648 ovals in P that come from circles of M. Inthe
sequel we examine up to isomorphism all possibilities of pairs (w.,w_) in each
of the 3 non-desarguesian projective planes of order 9. Using the determination
of ovals in these planes we decide whether there are enough ovals through w, and
w_ to constitute a Minkowski plane.

4.1 Suppose that a derived projective plane of M is isomorphic to the dual
translation plane T*: Since there passes no oval through the translation point T of
T* this point can be neither the point w, nor w_. Similarly, if W does not pass
through 7, the point 7 is a finite point and comes from a point of M, and by the
Minkowski axiom (B1) there must be an oval through T — a contradiction. If
finally r € W, 7} w.,w_, then we consider the second line W’ through 7 of the
special pair containing W; by the Minkowski axiom (B2) the line W’ must be a
tangent to some oval 0. But then W is also a tangent to O and O cannot stem
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from a circle of M — a contradiction.

4.2. Suppose that a derived projective plane of M is isomorphic to the Hughes
plane H: We maintain the notation of 2.3 and denote the Baer subplane of real
points and real lines of X by Y = ( R, R). We distinguish 3 cases:

- w, Orw_ is areal point;
- w, and w_ are complex points and W = w,w_ is a complex line;
- w, and w_ are complex points and W = w,w_ is areal line.

4.3. Suppose that w, or w_ is a real point. Then all ovals that are induced
from circles are real. In the desarguesian projective plane ) of order 3 there are
precisely 4 - 18 = 72 quadrics passing through a fixed point. Since each such
quadric extends to 3 real ovals of H, there are 3-72 = 216 ovals in  that pass
through a fixed real point contrary to 648 ovals that must be induced from circles
of M.

4.4. Suppose that w, and w_ are complex points and W = w,w_ is a complex
line. By definition, there is precisely one real line L, and L _ through w, and w_
respectively. Let p be the real point L. N L_. This point is finite and comes from
a point of M. Thus, there is an oval O passing through p. The real points O N R
of O describe a quadric in ) which has two tangents at p (namely, L, N R and
L_ N R) — a contradiction.

4.5. Suppose that and w, and w_ are complex points and W = w,w_ is a real
line. Then the finite real points R\W are pairwise nonparallel, and M induces a
Mobius plane of order 3 on R\W. We choose two points p, ¢ € R\W. The circles
through p and ¢ in M induce one real line and 7 real ovals in . However, in the
miquelian Mobius plane of order 3 there are precisely 4 circles through 2 given
points, that is, there are 3 real ovals and onereal line through p, q. Since each circle
through p, ¢ is uniquely determined by its real points, this gives a contradiction.

4.6. Before we consider the last case where one derived projective plane is
isomorphic to the translation plane T, we give a description of the Minkowski
plane M* mentioned in the introduction. We maintain the notation of 2.1. The
point space of M* is (F U {o0}) x(F U {o0}), where oo ¢ F = GF(9). Two
points (z,y), (u,v) are (+)-parallel if and only if z = u, and they are (—)-
parallel if and only if y = v. Circles are of the form

{(z,moz+1t)|z€ F}U{(00,00)} (m,t € F,m$0),
or of the form
{(z,a0(z—b)"' +¢c) | z € F,z} b} U{(b,0),(00,c)} (a,b,c€ F,a}0),

where ~! refers to the inverse in the usual multiplication of the field GF(9). Ob-
viously, the derived projective plane at (oo, 0o) is isomorphic to T, the infinite
line being the translation line of 7" and the points w, and w_ form a pair of special
points on the translation line of T .
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4.7. Suppose that a derived projective plane of M is isomorphic to the trans-
lation plane T": we distinguish two main cases whether {w., ,w_} is a special pair
of points on the translation line (this situation occurs in M*) or whether it is not.
We first show that the latter case cannot occur. If neither w, nor w_ lies on the
translation line T', then T stems from a circle of M. However, by the axiom (B2)
of a Minkowski plane, this line must be a tangent to some oval — a contradiction
to the fact that all ovals in T have T as secant. If one of the two points w, is on
T and the other is not, say w, € T and w_ ¢ T then T comes from a (+) -parallel
class of M. Hence, by the Minkowski axiom (B1), there passes an oval of T
through w, and any point of T\{w, } contradicting the fact that each oval in T
intersects T in a special pair of points. For the same reason w, and w_ must form
a special pair of points if they both lie on T'.

4.8. Suppose that {w.,w_} is a special pair of points on the translation line T'
of T. Without loss of generality we may assume that w, is the infinite point of the
Y -axis and w_ is the infinite point of the X -axis. These two points are on 1944
ovals in T which are of the form

O(a,b,c,p) = {(x,8 0 p((p~ (z - )1 +¢) |z € F\{$}} U {w+,w_}

where a,b,c € F,a}10,and ¢ € ® = Aut(F,+,0). Since O(a,b,c,p o a)
= O(a,b,c,p) we may assume that Im(e(4)) = i. In coordinates ¢ then
has the form ¢(u + vi) = u + dv + vi for some d € Fy and we, thus, write
O(a,b,c,d) = O(a,b,c,p). The oval O(a, b, c,d) has the horizontal line y = ¢
and the vertical line z = b as tangent at w, and w_ respectively, and we denote
the set of all such ovals by O, .. In particular, a circle of the Minkowski plane
through the infinite points (b, co) and (oo, c) must be found among Oy .. More-
over, the bundle of circles through (b, 00) and (¢, 00) in M induces a bundle
Kb € Oy of ovals in T such that any two different ovals in this bundle have
no finite points of 7 in common, and any two ovals of different bundles K; . and
Ky, (b,c) t (¥, ) have at most two finite points in common (besides the infi-
nite points w. and w_; compare the axiom (B1) of a Minkowski plane). These two
properties are carried over to the images 4(Kyc) of KCy ¢ under a collineation «y of
T even if ovals in 4(Ks) are not induced by circles of M (as 4 may not extend
to an automorphism of the Minkowski plane). Furthermore, O(a, b, ¢, d) contains
the point (b+ 1, a+ ¢) independently of d. As there is precisely one circle through
the points (b, 00) , (00, ¢), (b+ 1, a+c), there is precisely one d = d(a, b,c) € Fp
such that O(a, b, ¢, d) comes from a circle of M (forall a,b,c € F,a }0). Up
to isomorphism we may further assume that O(1,0,0,0) stems from a circle of
M, thatis, d(1,0,0) = 0.

We consider the bundle Ko o and claim that d = 0 for all circles in this bun-
dle. Candidates for the ovals in Koo are of the form O(a,0,0,d). As seen
before, for each a € F\{0} there is precisely one d, = d(a,0,0) € Fp such
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that O(a,0,0,d,;) € Ko,0. By assumptiond; = 0. Fora = —1+ &1, e = £1,
we find d, = 0; otherwise (1 + &d, + &i, —1 — &d, + d,1) € 0(1,0,0,0) N
0(a,0,0,d,). It then follows that d, = 0 for a = €i, ¢ = +1, for otherwise
(1 —éedy —ei,1 —(d,+€)i) € O(—1+¢€1,0,0,0) NO(a,0,0,d,). Similarly
di=0as(l+d_1+4,1—-d_; —1) € 0(-1+4,0,0,0)n0O(-1,0,0,d_,) if
d_1 1 0. We finally consider the case a = 1+ &i,e = 1. If d, = ¢ then (4,1) €
0(e,0,0,d,)NO(-1,0,0,0),and (1,—¢) € O(e,0,0,d,)NO(—&1,0,0,0)
if d, = —e. This shows that d, = 0 in these cases too. Using the translation group
of T we infer that all ovals in a bundle K, . have the same parameter d € Fp, that
is,d = d(a, b, c) does not depend on a but possibly on b and c. We, therefore, write
d = d(b, c) in the sequel. With this notation we already know that d(0,0) = 0.

Since 0(1,0,0,0)N0O(1, 1,0, d) contains the three points (—1, —1), (di, —di),
(—1+di,1+di)ifd}O0,theoval O(-1,1,0,d),d}0, cannot stem from a cir-
cle. Hence, d(1,0) = 0 = d(0,0) and with the help of translations of T we find
d(b+ 1,c) = d(b,c) forall b, c € F. Similarly, 0(1,0,0,0) nO(-1,0,1,d)
contains the three points (—1,—1), (—di,ds), (1 + di,—1 + di) if d { 0, so
d(0,1) = 0 and, therefore, d(b,c + 1) = d(b,c) forall b,c € F. In particular,
d(1,1) =d(1,0) =d(0,0) =0.

Since a collineation of the form (z,y) — (roz,80y),r,s € F{0}, maps
O (a,b,c,d) onto O(a',r0b,30c,d) wherea' = soaop ((p~(r))!) and
r'or = 1, we infer from d(1,0) = 0 thatd(b,0) = O forallb € F{0}. Similarly,
we obtain d(0,c) = d(0,1) =0 forallc € F\{0} and d(b,c) = d(1,1) =0
for all b,c € F\{0}. This proves thatd = 0, that is, ¢ = id, and, thus, M is
isomorphic to the Minkowski plane M¥.
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