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Abstract. We determine those triples (g, u, k) for which there exists a pair of group
divisible designs with block size 3, each on the same u groups of size g, having exactly
k blocks in common.

1. Introduction

If g, u are positive integers, a group divisible triple system with u groups of size
g, abbreviated here as GD(g, u), is a triple (X, G, B), where X is a set of size
gu, G is a partition of X into u cells of size g each, called groups, and B is a
collection of 3-subsets of X, called blocks, enjoying the following two properties:

(1) ¥GeG,and B€B then|GNB| <1 and
(2) Ifz, y € X, and z,y are not together in the same group, then z,y are
together contained in exactly one block.

Ina GD(g,u), it is easy to see that there are exactly b(g,u) = g%u(u — 1)
blocks, and each element of X is contained in exactly 2g(u— 1) blocks. As these
numbers must be integers, necessary conditions for the existence of a GD( g,u)
are

* 2]g(u—1)
3|gu(u —1).

Also, u # 2.

Hanani [4] has shown that these necessary conditions are in fact sufficient for
the existence of a GD(g, u).

We call a pair (g, u) of positive integers admissible provided that (*) holds, and
of course u # 2.

Our goal here is to determine the set I(g, u): it is defined to be the set of all
k for which there exists a pair of GD(g, u), on the same set of u groups of size
g, with exactly k blocks in common. Note that if (g, u) is not admissible, then
I(g,u) = 0.

Let S(t) denote the set of non-negative integers less than or equal to ¢, with the
exceptionoft —1,t —2,t—3,and¢t —5.Let J(g,u) = S(b(g,u)) if (g, u) is
admissible, otherwise J(g, u) = §.

Here is our result:
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Main Theorem. Let g, u be positive integers. Then I(g,u) = J(g, u), except

(1,9 = J(1,9\{5,8}
12,49 = J(2,9H\{1,4}
I(3,3) = J(3,3)\{1,2,5}
I(4,3) = J(4,3)\{5,7,10}.

The rest of this paper is devoted to proving the above theorem.

2. Preliminaries

Some cases of the main theorem have already been settled.

If (g, u) is not admissible, then the theorem is trivially true.

A GD(1,u) is a Steiner triple system of order u. The intersection problem for
Steiner triple systems was settled by C.C. Lindner and A. Rosa in [7].

A GD(2,u) is a Steiner triple system of order 2u + 1, from which a point =
has been deleted. The blocks containing z (the flower at z) become the © groups.
The flower intersection problem was solved by D.G. Hoffman and C.C. Lindner
in [5].

A GD(g,3) is a latin square of order g in disguise. The intersection problem
for latin squares was solved by H.L. Fu in [3].

We leave to the reader the boring proof that I(g, u) C J(g,u).

We conclude this section with some definitions.

If u is a positive integer, let
1 if u=1 or 3(mod6)
2 if u=0 or 4(mod6)
6(u) = .
3 if u=5 (mod6)
6 if u=2 (mod6).

Note that the necessary conditions (*) are equivalent to
*) 8(u)lg-

We define the multiplier, (g, u) , to be the quotient g/8( ).

Let a, b be non-negative integers, let A, B be sets of non-negative integers.
Then

[a, b] is the set of all integers z in therange a < z < b.

a+ B={a+blb€B}.

A+ B =),ca(a+ B).

aB = {ablb € B}.

The set a * B is defined inductively as follows:
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0xB={0},and(a+ 1) *B=(axB)+B.

Note that a * B consists of all sums b; + by + -- -+ b,, where each b; € B.

Note also that S(m) + S(n) = S(m+n) if m,n > 8,and m*S(n) = S(mn)
ifn> 8.

If X is afinite set, then | X | denotes its cardinality.

Recall that (Q, -) is a quasigroup if - is a binary operation on Q, and for each
a, b € Q, the equations a- z = b and y- a = b have a unique solution z,y € Q.

(X, B) is a PBD (pairwise balanced design of index 1) if B is a collection of
subsets of X called blocks, each with at least two elements, with the property that
any two distinct elements of X are together contained in exactly one block of B.
(Our constructions of PBD’s will sometimes produce “blocks” of size < 1. We
will implicitly ignore them.)

Now to work!

3. Constructions

Construction A Let (T,B) be a PBD. Suppose for each B € B, that (G x
B,Gpg,Bp) is a GD(|G|, |B]) with Gg{G x {r}| x z € B}. Then (G x
T,Usges Bs) is aGD(|G|, |T|) on groups Gr = {G x {z}|z € T}.

Corollary 1:  Suppose for all 1 that the PBD (T, B) has ); blocks of size 1. Then

S XixI(g,9) C I(g,IT].

|

Construction B: Let (X, G, B) beaGD(g, u), and foreach B € B, let (M x
B,Gp,Bp) be a GD(m,3) with Gg = {M x {z}|z € B}. Then (M x X,
G',Upep BB) isaGD(mg,u), where G' = {M x G|G € G}.
Corollary 2: If (g, u) is admissible, then b(g, u) * I(m,3) C I(mg, u). ]

Before we give the next constructions, we need to define certain quasigroups.

A quasigroup frame with u holes of size g, denoted QF(g,u), is a triple
(Q,-,H), where (Q, -) is a quasigroup, and H is a partition of Q into u cells
of size g, called holes, so that each hole is a sub-quasigroup. (i.e., if H € H, and
z,y € H,thenz-y € H.) A necessary condition for the existence of a QF(g, u)
is that u # 2. That the condition is also sufficient can be shown by taking the
direct product of an idempotent quasigroup (one satisfying z-z = z) of order u
with a quasigroup of order g.

ACQF(g,u) (acommutative quasigroup frame) isaQ F'( g, u) satisfying z-y =
y- = whenever z,y are not in the same hole. Necessary conditions here are that
v #2,and2|g(u —1).

These conditions are also sufficient, we sketch a proof. If u is odd, we take
an appropriate direct product of a CQF'(1, v) with a commutative quasigroup of
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order g. If u # 2 is even, then g is even. There is a CQF(2, u), see for example
[2]. We take an appropriate direct product with acommutative quasigroup of order
9/2.

Construction C:  Let (Q,-,H) be a QF(g,u). For1l < 1 < 3,let (Q x
{i},G;, B1) beaGD(g, u) withG;{H x{i}|H € H}. Then(Qx{1,2,3},G,B)
isaGD(3g,u), where G = {H x {1,2,3}|H € H},and

B =Bo| JB: [ JB:| JBs, where

Bo = {{(z,1),(y,2),(z-y,3) }|z,y € Q,z,y not in the same hole.}

Corollary 3: Let (Q,-, H), (Q,#H) be QF(g,u)’s, letk = |{(z,y) € Q*|z
and y are not in the same hole, z-y = z#y}|. Then k+3 x I(g,u) C I(3g,u).
Construction D:  Let (Q,-,H) be a CQF(g,u), let (Q x {0},G,B) be a
GD(g,u) with G = {H x {0}}H € H}. Then (Q x {0,1},G',B') isa
GD(2g,u), where G' = {H x {0,1}H € H},and B’ = B J{{(z,1), (v, 1),
(z-y,0){z,y} C Q, =,y not in the same hole}.
Corollary 4 Let (Q, -, H), (Q,#, H) bea CQF(g,u), let k = |{{z,y} C Q|
x and y are not in the same hole, -y = #y.}|. Thenk + I(g,u) C I(2g,u). I
It behooves us to find several convenient values of k to be used in corollaries 3
and4. Solet(Q, -, H) beaQF(g, u), and let 7 be a permutation on Q satisfying
wH = H forall H € H. (ie., {w(h)|h € H} = H.) Define the binary operation
# onQ by z#y = n(z-y). Then (Q, #, H) is again a QF(g, u). The parameter
k depends only on the number of fixed points of 7, and this can be any number
in the set u x ([0,g — 2] | J{g}). Each fixed point contributes g(u — 1) pairs
(z,y) € Q2 in Corollary 3. We have proved the following:

Sublemma 1. If k € g(u — 1)(u * ([0,9 — 21U{g})), then k satisfies the
hypotheses of Corollary 3, provided v # 2. 1

If (Q,-, H) is aCQF\(g, u), then in the construction above, so is (Q, #, H).

Sublemma 2. If there is a CQF(g,u), and if k € $g(u — 1)(u* ([0,9 —
21U{9})), then k satisfies the hypotheses of Corollary 4. 1

Sublemma 3. (CK. Fu, [2]) If g = 2 # u, then the set F(u) of those k
satisfying the hypothesis of Corollary 4 is given by F(u) = SQ2u(u — 1)),
except 1,2,3,5,6 ¢ F(3),and 3,7,11,15,16,17,20 ¢ F(4). 1

4. Some Pairwise Balanced Designs
The PBD(X,{X}) is called trivial. All others are non-trivial.
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Lemma 1. If u =7, 0r u > 9, there is a non trivial PBD of order/ v with no
blocks of size 2.

Proof: Let0 < s<t, s #2,t # 2,6. Then there is a pair of orthogonal latin
squares of order t. It is well known that this is equivalent to a PBD of order 4¢,
with 4 pairwise disjoint blocks of size ¢, and all the other blocks of size 4. Deleting
t — s points from one of the blocks of size ¢ gives a PBD of order 3t + s with
blocks of size ¢, s, 4 and 3. This leaves only the values u € {7,11,14,17,23}.
If u = 4£ — 1, the complete graph K, on 2£ vertices can be one-factored, let
F\, F,,..., Fyp be the one-factors. Let {oo;]1 < i < 2£ — 1}, be a block of
2£ — 1 additional points. For each 1 < i < 22 — 1, take the blocks {oo;, 7, y},
T,y € F.

For u = 14, take the following blocks: {9, 10, 11, 12, 13}, {0, 4, 8, 11}, {1, 5,
6,12}, {2,3,7,13}, {5,7, 11}, {1, 3, 11}, {2, 6, 11}, {0, 7, 12}, {3, 8, 12}, {2,
4,12}, {0, 5,13}, {1, 8,13}, {4,6, 13}, {0, 1, 2,9}, {3,4,5,9}. {6, 7, 8,9}, {0,
3,6,10}, {1,4,7,10}, {2, 5, 8, 10}.

For u = 17, begin with a GD(4,4). Add a new point, extending each of the 4
groups to a block of size 5. |

Lemma 2. If v = 0,1(mod3),u > 7, there is a non-trivial PBD ofordér u
with each block size = 0, 1(mod 3), and at least one block of size > 4 .

Proof: Most values of u follow from Lemma 9 of [5]. All that remains is u €
{10,12,13}. For u = 10, add a point to the groups of aGD(3,3). AGD(4,3)
does u = 12. A projective plane of order 3 does u = 13. 1

Lemma 2. If u=0,1(mod3), v > 7, there is a non-trivial PBD of order u
with each block size = 0,1(mod 3).

Proof: By lemma 2, we need only do v € {7,9}, but there are Steiner triple
systems of those orders. 1

Lemma 3. If v > 7 is odd, there is a non trivial PBD of order v with all block
sizes odd.

Proof: AsinLemmal,if0 < s<t,t # 2,6, thereis PBD(X, B) of order
3t+ s. B contains three blocks By, B, , Bs of size t, and a block By of size s; the
remaining blocks have size 3 or 4. We construct a designon (X x {0,1}) (J{oo}
as follows: For 1 < i < 4, (B; x {0,1}) [J{oo} is a block. For every other
block B of B, take the blocks of a GD(2, | B|) with groups {z} x {0,1},z € B.

This takes care of all u except u € {11,13,15,17}.

The constructions in Lemma 1 for « = 11 and 17 have all block sizes odd.
There are Steiner triple systems of order 13 and 15. |
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5. Proof of the Main Theorem

Throughout this section, (g, u) is an admissible pair, withg > 3, u > 4, as
g < 3 or u < 4 has been settled.

In particular, I(m, 3) = J(m, 3) forallm > 5,0 Corollary 2 shows I(g,u) =
J(g,u) whenever u(g,u) > 5, since (8(u), u) is admissible for u > 2.

Hence we need only consider g € {3,4,6,8,9,12,18,24}, and u(g,u) <
4.

For g = 3 (so u is odd) we will use a special method. It is well known that a
commutative idempotent quasigroup of order u (i.e., a CQF(1,u)) exists if and
only if u is odd. For such u, let C(u) = {k| there is a pair (Q,-), (Q,#) of
commutative, idempotent quasigroups of order u, with k = |{{z,y} C Q|z # v,
z-y = z#y}|. T. Webb showed in [10] that C(u) = S(Fu(u — 1)), except that
C(5) = {2,10}.

Lemmad. 3 xC(u) C I(3,u)

Proof: For i € Z; let (Q,$) be acommutative idempotent quasigroup of order
u. We constructa GD(3, u) on the set Q x z3. The groups are {¢} x 23,9 € Q.
For each i € 23, and for each {z,y} C Q, = # y, {(z1),(y,9),(z}y,i+ 1)} isa
block. |

The construction in Lemma 4 is essentially due to R.C. Bose, [1].

Foru > 7,Lemmad4 gives I(3,u) = J(3,u),butgivesonly {6,14,22,30} C
I(3,5). See the appendix for the rest of I(3,5). Nowletg = 4,s0u =
0, 1(mod 3).

If u = 4, then corollary 4, with g = 2, u = 4, together with sublemma 3, at
u = 4, show I(4,4) D J(4,4)\{19,23,25,28}. Corollary 2, withm = 2,
shows I(4,4) D 4[0,8]. We need only show 19,23,25 € I(4,4), these cases
are in the appendix.

The above case (g,u) = (4,4) more or less illustrates our attack on a given
admissible pair (g, u).

We first use corollary 2 withm = p(g,u). If u(g,u) = 4, this gives I(g,u) D
J(g,u)\{b(g,u) —9,b(g,u) —6}. If u(g, u) = 3, this at least shows all multi-
ples of three in J (g, u) are in I(g,u). If (g, u) = 2, we get only the multiples
of 4. If u(g, u) = 1, corollary 2 is of no use.

If u(g,u) € {2,4}, we then use corollary 4, with sublemma 2, or sublemma 3
ifg=4.1If u(g,u) = 3, we use corollary 3, with sublemma 1.

Finally, any remaining cases are relegated to the appendix.

Returning to ¢ = 4, the next case is v = 6. Here 4 = 2, and corollary 4,
together with sublemma 3 shows I(4,6) = J(4,6).

If u € {7,9}, then s = 4, so corollary 2 with m = 4 does all but two intersec-
tion numbers. These are picked up by corollary 4, with k = 2u(u — 1).

For u > 10, we proceed by induction on u, using corollary 1 and lemma 2.
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The above case g = 4 illustrates our attack for any fixed g. We solve the prob-
lem for enough small values of u, so that we can use corollary 1, in conjunction
with lemma 1 if g = 0 (mod 6), lemma 2’ if g = 2 or 4 (mod 6), and lemma 3 if
g = 3 (mod 6). (We only needed lemma 2 when g = 4,as I(4,3) # J(4,3).)
We proceedtog = 6,s0u > 4.

At u = 4, corollary 2 with m = 3 shows all the multiples of 3 in J(6,4) are
in I(6,4). Corollary 3 together with sublemma 1 gives all the even numbers of
J(6,4) except 62 and 68. The appendix shows that 1, 5,7, 11, 13, 17, 19, 23, 25,
29,31, 35, 37,41,43,47, 49, 53, 55, 59, 61, 62, 65,68 € 1(6,4).

At u = 5, corollary 4 with sublemma 2 shows 1(6,5) = J(6,5). Atu =6,
corollary 3 with sublemma 1 shows I(6,6) = J(6,6).

We open a can of worms at 4 = 8. None of our corollaries, sublemmas, or
lemmas are of any use. So it’s time for some ad-hoc tom-foolery!

Letk € J(6,8). We will produce two GD(6, 8)’s with k blocks in common,
on the set V' J Z3o, where V = {oo;|1 < i < 18}. The groups are G; | G,
where G1 = {{oo6i+j|1 <7< 6}i € {0,1,2}},and Gz = {{i+ 55|10 < j <
5}0 < i <4} Itis possible to write k = a+ 158+ 30+, where a € J(6,3) =
1(6,3),8€10,16] | J{18},and v € {0,1}. Let C;, C, be the blocks of a pair
of GD(6,3)’s with groups G; having « blocks in common. Let D; = {{i,1 +
L,i+3}i € Z3o}. Ify=1,letD; = Dy;if y =0 letDy = {{i,i+2,i+3}|i €
Z30}. Let G be the graph on vertices Z3o obtained by removing from the complete
graph on Z3 the edges {1,i+j},1 € Z30,; € {1,2,3,5,10,15}. Byatheorem
of Stern and Lenz [8], G can be 1-factored, let F},1 < i < 18, be the 1-factors.
Let By = {{oc;,z,y}li € [1,18],{z,y} € F;}. Let 7 be a permutation of
[1, 18] with § fixed points, let B, {{oox(i), z, y}|i € [1,18],{z,y} € F;}. Then
(VU Z3,G1UG2,C;UD; U Ey),i = 1,2 are two GD(6,8) s with exactly k
blocks in common. Hence 1(6,8) = J(6,8).

Corollary 1, together with lemma 1, shows that I(6,u) = J(6,u) for all the
remaining values of u.

We have now passed the point where the appendix is needed. Since we have
described the general approach, we will only sketch the rest of the proof.

Atg = 8,u = 0,1 (mod 3), only the cases u = 4, 6 are needed before corollary
1, with lemma 2', takes over.

Atg =9, only u = 5 is needed before corollary 1, with lemma 3 takes over.

The only other thing that needs checking is (g, u) € {12,18,24}x{4,5,6,8}.

This completes the proof of the main theorem. [ |

6. Hill Climbing

The traditional approach to constructing combinatorial designs using comput-
ers often employs backtracking algorithms to search exhaustively through all the
possibilities. For designs of even moderate size this approach can be slow, but for
larger designs it quickly becomes unfeasible.
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An alternative but perhaps less frequently applicable technique is to use a so-
called hill-climbing algorithm. Although such algorithms are not guaranteed to
construct a required design, (even when such a design is known to exist), they do
have the advantage of being very fast, and they can therefore be applied to larger
designs. Computational experience has shown that hill-climbing algorithms can
very often be used to find combinatorial designs. For more details about hill-
climbing algorithms and when they can usefully be applied, we refer the reader to
an excellent treatment by D. Stinson in [8].

In the present paper we have applied a hill-climbing technique to obtain ex-
amples of particular intersection numbers for some of the smaller (and more awk-
ward) designs. Our basic approach was to use a hill-climbing algorithm to obtain a
design of the required size we then deleted a random collection of triples from the
completed design, and finally used hill-climbing to construct yet another design
of the same size. By deleting an appropriate number of triples in the second step,
one can guarantee that the two designs have many triples in common. Repeated
application of the above technique quickly provided all the required intersection
numbers.

Suppose we wish to construct a group divisible triple system GD(g, v). Then,
using the same notation as in section 1, such a triple system contains g2 u(u—1) /6
blocks (each consisting of 3 points) satisfying conditions 1) and 2) of section 1.
The following hill-climbing algorithm can be used to construct (or complete) the
required design:

Algorithm A:

BEGIN
store any “given” triples (that form a partial design);
WHILE (more triples are needed to complete the design) DO
BEGIN
(* “live” means has not yet occurred with all possible points with
which it can occur *)
find a random “live point” j;
pick two random “mates”, m and #, to form a triple (j, m, n)
IF the pair (m, n) has already occurred in the partial design
THEN delete the (unique) triple that already contains m and =;
add the new triple (j, m, n) to the partial design;
END;
END;

If B is used to denote the set of blocks (or triples) in the design (or partial de-
sign); then a more mathematical decription of the same algorithm is the following:
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Algorithm B:
BEGIN
B:=set of “given” triples;
Number Of Triples:= cardinality of B;
WHILE (Number of Triples < g?u(u — 1) /6)
BEGIN
IF (there is a triple BO such that B U {BO} is a partial system)
THEN BEGIN :
(* add the triple BO to the partial design *)
Number Of Triples: Number Of Triples 1;
B:=B U BO;
END
ELSE BEGIN
find triples B1 in B, and BO not in B such that
B U {BO} \ {B1} is a partial system;
(* swap the triples BO and B1 *)
B:-BU {BO}\ {B1};
END;
END;

One of the most useful features of the hill-climbing algorithm, (as described
above), is that at no stage during its execution does the number of blocks in the
partial design decrease. The continual (and time consuming) backtracking that is
inherent in the backtracking algorithm is therefore completely avoided by the hill-
climbing algorithm. If we define an iteration to be the process of either adding an
extra block to the partial design or swapping two blocks, then by a careful imple-
mentation of the above algorithm we can also make the time taken per iteration
independent of both g and u This of course is highly desirable when dealing with
designs of larger size.

The implementation of the hill-climbing algorithm used in the present paper
fully exploits the ideas of D. Stinson in [8]. For the sake of both clarity and com-
pleteness, our implementation of those ideas is outlined below.

During one of the steps of Algorithm A (above) a random “live point” is picked.
The term “live” is used here to mean any point that has not yet occurred in the
(partial) design with all the points with which it could occur. One way to efficiently
choose “live” points is to maintain a list of currently “live” points. Since we are
attempting to choose arandom “live” point this list does not need to be ordered. An
auxiliary table is however maintained that indicates where in this list each “live”
point occurs. The list and auxiliary table are used during updating operations as
follows: If a “live” point “dies”, it is removed from the list of “live” points, and
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the last point in the list is moved to occupy its place. The auxiliary table is then
updated accordingly. If as a consequence of a block-swapping move (see above
algorithms) a ““dead” point becomes a “live” point, then it is added to the end of the
list, and the auxiliary table is once again updated. Using the above tables one can
choose a random “live” point by first picking a random integer between 1 and the
number of “live” points, and then selecting the point that occurs at that position in
the unordered list of “live” points.

Once we have obtained a random “live” point, 5, we then need to pick (once
again at random) two other points, m and n, (refered to as “mates™) that have not
yet occurred with ; in the partial design. To facilitate the choice of the "mates",
we maintain for each “live” point a table of other points that have not yet occurred
with that point. These tables, (one for each “live” point), are stored in a two di-
mension array, and an auxiliary array is used to maintain an index that can be used
to reference each table. The tables together with the index array are updated in
much the same way that the “live” point list and auxiliary table were maintained.

Having picked two “mates”, m and n, for the “live” point j, we now need to
determine if the pair (m, n) has already occurred in a triple of the partial design.
To simplify and speedup this test we maintain a two dimensional array that at
position [ m, n] contains the location of any triple in which both the points m and
n have already occurred. With this information we now decide whether the triple
(7, m, n) can be used to extend the (partial) design, or whether we must first delete
the previous triple containing m and n, before adding the new triple (7, m,n).

Finally, in order to enable the hill-climbing algorithm to be used when construct-
ing complete designs from a given (and fixed) partial design we also maintain a
list of the original triples of the partial design that must not be removed.

7. Appendix

This appendix contains precise descriptions of pairs of small designs for which not

all possible cases of intersection numbers are covered by the more general theory
developed elsewhere in this paper. In particular (using the notation of section 1)
we exhibit details of the “missing cases” as shown in the table.

For the sake of brevity the following coding scheme has been employed when
displaying a pair of designs (of the same size) that have the required number of
blocks in common (i.e. they exhibit a “missing” intersecting number). We first
label the points in the designs as follows:
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GD(g, u) Intersection numbers

(3, 5) | o, 1, 2, 3, 4 5, 7, 8, 9,10, 11,
12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24,
GD(4, 4) | 19, 23, 25.

66, 4) [ 1, s, 7,11, 13, 17, 19, 23, 25, 29, 31,
35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 62

Thus the letters AEI fully describe one (possible) triple in GD(3, 5), whereas
the letters AEC do not represent an allowed triple, because the triple they describe
contains two points from the same level, and this violates condition (1) of section
1. Using this coding scheme we are now able to give examples of pairs of designs
with “awkward” intersection numbers; we first list the triples that the two designs
have in common, and we then give two lists of triples that when added to the
common triple each provide a complete design. These two lists are referred to as
the first and second variations respectively.
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