Smallest Transversals of Small 3-graphs

Ryan B. Hayward

Department of Computing and Information Science
Queen’s University
Kingston, Ontario
Canada K7L 3N6

Abstract. A smallest transversal of a k-graph (or k-uniform hypergraph) is any small-
est set of vertices that intersects all edges. We investigate smallest transversals of small
(up to ten vertex) 3-graphs. In particular, we show how large the smallest transversal
of small 3-graphs can be as a function of the number of edges and vertices. Also, we
identify all 3-graphs with up to nine vertices that have largest smallest transversals.

This work is related to a problem of Turén, and to the covering problem. In partic-
ular, extremal 3-graphs correspond to covering designs with blocks of size n — 3.

1. Introduction.

1.1 Overview

By a k-graph, also known as a k-uniform hypergraph, we mean an ordered pair
(V, E) such that V is a finite set and E is a set of k-element subsets, or k-sets, of
V. The elements of V are the vertices of the k-graph, and the elements of E are
the edges of the k-graph; we reserve the letters nand m for the number of vertices
and edges, respectively.

A transversal of a k-graph is any set of vertices that intersects all the edges. We
let 7( H) denote the smallest size of a transversal of a k-graph H, and t(n, m, k)
denote the largest value of 7( H) , over all k-graphs H with n vertices and m edges.
Determining ¢(n, m, k) is equivalent to a problem proposed by Turén [T], and to
the covering problem, as we shall explain shortly.

With respect to fixed values of k and m, a value m is said to be critical or
extremal if t(n,m — 1,k) = t(n,m,k) — 1. A k-graph is critical if it has a
critical number of edges.

Values of t(n,m,3) for n < 10 can be determined from Table 1, as follows.
Since t(n, m, k) is non-decreasing in m, it suffices to list only those triples n, m,
t(n, m, 3) for which m is critical. We denote by m(n, k,t) the critical m, such
that t(n, m, k) = t. Thus, m(n, k,t) is the smallest possible number of edges of
a k-graph with n vertices and smallest transversal of size ¢.

The purpose of this paper is threefold. First, we present the values of t(n, m, k)
for k = 3 and n < 10, summarized in Table 1. In the rest of Section 1 we give a
brief survey, and show how the entries of Table 1 can be derived from the literature,
either directly or with simple arguments.

Second, in Section 2 we determine all non-isomorphic critical 3-graphs with
n < 9. (Two 3-graphs are isomorphic if the vertices of one can be relabelled so
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that the edge sets are the same.) With only a few exceptions, these results are all
new.

Third, there are two entries in Table 1 which are known but for which no proofs
have appeared. In Section 3 we supply two such proofs.

1.2 Related problems and previous work

The third problem proposed by Turén in his 1961 list of research problems [T]
asks for the smallest number m of p-sets of an n-set, such that every g-set of the
n-set contains at least one p-set. Considering the n-set complements of the p-sets,
this is equivalent to asking for the smallest number of p-sets of an n-set, such that
every (n — g)-set of the n-set is non-intersecting with at least one p-set; in other
words, a smallest transversal of the p-sets has at least n — q + 1 vertices. Thus
Turédn’s problem asks for m(n,p,n—q + 1).

An equivalent formulation of Tur4n’s problem, usually referred to as the cov-
ering problem, asks for C(n,b,r), the smallest number of b-sets of an n-set,
such that every r-set of the n-set (where b < r, as opposed to p < q) is con-
tained in at least one b-set. (The equivalence is obtained when the b-sets and
r-sets are the n-set complements of the p-sets and g-sets, respectively.) Thus,
C(n,b,7) = m(n,n— b,r + 1). In the context of this problem, each b-set is a
block , and the collection of b-sets is a covering or a covering design or a blocking
set.

An early result in this area is due to Katona, Nemetz and Simonovits [KNS],
who determined C(n,n — 3,n—4) = m(n,3,n—3) forn < 9. Guy [G]
communicated that Vera S6s Tur4n and independently M. Simonovits established
C(n,n—3,n—4) for n < 12, although apparently no proofs have been published
forn > 10.

Todorov [To] established the inequalities t(n, m,3) < (n+m) /4 andt(n, m, 3)
< (2n+ m)/6, recently rediscovered by Chvétal and McDiarmid [CM]. Other
results (in most cases, the particular instance of a more general theorem) are:

C(6,3,2) =m(6,3,3) =6,  dueto Fortand Hedlund [FH];
C(7,4,2) =m(7,3,3) =5, duetoMills [M1];
C(7,4,3) =m(7,3,4) = 12, due to Kalbfleisch and Stanton [KS]
and independently Swift [Sw];
C(8,5,2) =m(8,3,3) =4,  dueto Stanton and Kalbfleisch [SK]; and
C(10,7,5) = m(10,3,6) = 20 appears in Mills [M2] without proof.
Results mentioned so far (except for the six equalities shown immediately above)
give only lower bound arguments for Table 1 entries, as upper bounds for entries in

Table 1 (with one exception) follow from the construction due to Tur4n, described
by Ringel in [R]. We will elaborate on this shortly.

290



There are also results that identify certain critical 3-graphs. A 3-graph with n-
vertices, m edges, and smallest transversal size ¢ is said to be of type [n, m,t].
Stanton, Allston, Wallis and Cowan [SAWC] found the four covering designs
whose complements yield the critical 3-graphs of type [ 7 5 3]; Stanton [S] showed
the uniqueness of the covering design whose complement is the only critical 3-
graph of type [8 4 3]. In Section 2 we will identify all other critical 3-graphs
with fewer than ten vertices.

Finally, Brown [B] showed that there are at least § — 1 non-isomorphic 3-graphs
of type [37,7(; — 1)(2j — 1),3j — 31; later Kostochka [K] showed there are
at least 27=2 such 3-graphs. In particular, there are at least two 3-graphs of type
[9,30,6]. In Section 2 we will see that there are only two.

1.3 Lower bounds

In this subsection we show how results mentioned above establish the lower
bounds of the values of m(n, 3,t) shown in Table 1. The subscripts in the entries
of Table 1 refer to the following arguments. (For example, from (B) it follows that
m(n,3,|(n+ m)/4] + 1) > m+ 1;settingn=9 and m = 6 gives the bound
m(9,3,4) >7))

(A4) t(n,m,k) <m trivial

(B) t(n,m,3) < (n+m)/4 [To] [CM]
(0) t(n,m,3) < (2n+m)/6 [To] [CM]
(V) t(n,m,k) < 1+t(n—1,m— [km/n], k) see below
(2) t(n, (:)—l,k) <n—k see below.

To see that (Z) holds, note that some set of k vertices is not an edge, and that
the complement of this set is a transversal.

To see that (V') holds, remove a vertex of largest degree, and argue by induction.
(The degree of a vertex is the number of edges that contain it.) For example, to
show that ¢(9,29,3) < 5, consider a 3-graph H withn= 9 and m = 29. The
average vertex degree is 87 /9, so some vertex v has degree at least 10. The 3-
graph H — v has n= 8 and m < 19; assuming the validity of entries in Table 1
for n= 8, it follows that t(9,19,3) = 4. Thus H — v has a transversal T of size
4,and so T + v is a transversal of H of size 5.

The lower bound for entry (7,4), namely m(7,3,4) > 12, is established in
[KS]. Their proof uses the fact that there is a unique 3-graph of type [6 6 3] and
involves some case analysis.

The lower bound for entry (10, 6), namely m(10,3,6) > 20, follows from
C(10,7,5 > 20, given without proof in [M2]. The lower bound for entry
(10,7), namely m(10,3,7) > 45, follows from C(10,7,6) > 45, credited
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in [G] to Vera S6s Turén and independently M. Simonovits. Proofs of these two
results will be presented in Section 3.

1.4 Upper bounds

The upper bounds for all entries m(n,3,t) of Table 1 can be established by
exhibiting 3-graphs with the appropriate values of n, m and t.

The following construction of a 3-graph for arbitrary values of » and ¢, which
we will refer to as T'(n, t), is due to Turén (see [R]). Partition the n vertices into
r=mn—tsets So,S5,...,8S,-1 such that S; = [(j + 1)n/r] —[jn/r] forj =
0,1,...,r— 1. The edges are all sets of vertices {a, b, c} such that either

a€S; beES; ceS; forsome j=0,1,...,r—1 or
a€S; b€ES; c€S(j+ymodarforsome;=0,1,...,r—1.

To show that 7 (T'(n,t)) = t, see [R]. Examples of T'(n,t) are given explicitly
in Section 3. For all entries m(n,3,t) of Table 1 except (n,t) = (9,5), the 3-
graph T'(n,t) establishes an upper bound for m(n, 3, t). For example, (10, 6)
is constructed from sets So, S1, S2, S3, of sizes 3, 2, 3, 2, respectively, and has
m =20 and 7= 6. Thus ¢(10,20,3) > 6, and so m(10,3,6) < 20.

We call vertices z and y of a 3-graph H twins if zab is an edge exactly when
yabis an edge, for all distinct vertices a, b in H —{z, y}. A twin-class of a3-graph
is a maximal (with respect to inclusion) non-empty set of twins. For example, the
twin-classes of T'(n, t) are the sets S;. Observe that if both zy and y2 are twins
then zz are twins; thus, twin-classes are equivalence classes.

A 3-graph that establishes m(9,3,5) < 12 is the affine plane consisting of 9
points and four groups of three mutually parallel lines. (In an affine plane, every
two points are in exactly one line, and every pair of non-parallel lines intersect in
exactly one point.) An explicit representation of this hypergraph, which we denote
AP,y,is V = abcde fghi,and E = abc def ghi adg beh cfi aei bfg cdh afh
bdi ceg. '

Since acegi is a transversal, (APy) < 5. To see that 7(APy) > 4, let F
be a set of five vertices. There are 54 sets F' consisting of two intersecting lines,
and 72 sets F consisting of a line and two points of a parallel line. Since the total
number of sets F is (3) = 126, it follows that every set F' contains at least one
line. Thus, every set V — F of four vertices misses at least one line.

In fact, Brouwer and Schrijver [BS] showed amuch more general result, namely,
that the size of a smallest transversal of the d-dimensional affine space with ¢¢
points is d(g — 1) + 1. The preceding proof that 7(APy) = 5 has been included
because it is so short.

Since T(APy) = 5,t(9,12,3) > 5 andso m(9,3,5) < 12.
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Table 1: Values of m(n, 3,t)

t=1 2 3 4 5 6 7 8

n=3 142

4 14 4pcz

5 14 3 10z

6 14 248 63c 20z

7 14 24 5B 12 35

8 14 24 4 8pc 20y 56z

9 14 24 348 7B 12cv 30y 84z

10 14 24 31 65 105 20 45 1205
2, Critical 3-graphs.

In this section we find all non-isomorphic critical 3-graphs with n < 9. Recall
that two k-graphs are isomorphic if the vertices of one can be relabelled so that
the edge sets are the same; we use the symbol £ to denote isomorphism. Recall
also that a k-graph H is critical if 7(H) = t(n,m,k) and t(n,m — 1,k) =
t(n,m, k) — 1. Finally, recall that by a 3-graph of type [n m 7] we mean a
3-graph with n vertices, m edges, and smallest transversal 7.

Since the only k-graphs discussed in the rest of the paper are 3-graphs, we ab-
breviate notation from this point on by writing ¢(n, m) and m(n,t) fort(n, m, 3)
and m(n,3,t), respectively. Also, we will write sets without using braces. For
example, abcde f and abc abd cde cdf aef bef represent the respective vertex
and edge sets of some 3-graph.

Consider a critical 3-graph H. If m = 7, then no two edges intersect, and H is
uniquely determined up to isomorphism. If m = ;‘) then all sets of three vertices
are edges, and H is uniquely determined. Thus, in the rest of this section we
consider only those 3-graphs for which 7 < m < (3).

Observe that for n < 6 the only critical 3-graphs with 7 < m < (3) have type
[5 3 2] or [6 6 3]. Itis not difficult to verify that there is only one 3-graph of
each of these types, namely Turén ’s T°(5,2) and T'(6, 3), respectively.

2.1 Critical 3-graphs withn="7
2.1.1 Type [75 3]
Stanton, Allston, Wallis and Cowan [SAWC] found that there are exactly four

(7,4,2) covering designs with five blocks. Taking the complements of these
blocks gives the critical 3-graphs of type [7 S 3], shown in the table below.
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Observe that C(7,3) ¥T(7,3): putSo=bc, S1=ag,S2=de,S3=f.

All 3-graphs of type [7 5 3]

Name Edges Degree sequence Twin-classes

A(7,3) abc def abg acg bcg 341° abcg def

B(7,3) abc def adg beg efg 326 bc ef

C(7,3) abc def adg aeg becg 32241 ag bc de

D(7,3) abc def adg beg cfg 326 -
2.12 Type [7 12 4]

Consider a critical 3-graph H of type [7 12 4]. Let V = abede fg. No vertex has
degree greater than six, since (6, 5) = 2. Since the average degree is 36 /7, some
vertex (say g) has degree six. Thus H — g has type [6 6 3], and so is isomorphic to
T(6,3). We may assume that the edges of H — g are abc abd cde cdf aef bdf.

Let P be the set of pairs of vertices that are in edges with g. Let N be the triples
of H — g that are not edges, thatis, N = abe abf acd ace acf ade adf bcd bee
bef bde bdf cef def. Observe that

every triple of N must contain a pair of P (¢))

(otherwise, the complement of the triple in V — g is a transversal of H of size
three, contradiction).

Case 1. No vertex of H — g is in more than two pairs of P. Thus each vertex of
H — g is in exactly two pairs of P. Recall that H — g is T'(6,3) with So = ab,
S1 =cd, Sz = ef.
Case 1.1 There are vertices y € Sj, z € Sji1, 2 € Sj42 such that zy € P,
Tz € P. By symmetry, we may assume that z = a, y = e, z = c¢. Thus the two
pairs of P that contain a are ac and ae. Now abf € N,ab & P,af ¢ P,soby 1
bf € P. Also, adf € N,soby 1df € P. The triples of N that do not yet contain
pairs of P are bcd bece bde cef. The only two possible pairs that can “hit’ these
four triples are bd and ce. Thus P = ac ae bd bf ce df. Call the resulting 3-graph
A(7,4).
Case 1.2 There are vertices zy € Sj, z € Sj+1 such that zy € P, zz € P. By
symmetry, we may assume that z = a, y = b, z = c. Thus the two pairs of P that
contain a are ab and ac. Now ade € N, soby 1 de € P. Also, adf € N, so by 1
df € P. The triples of N that do not yet contain pairs of P are bcd bee bef cef.
There are three choices for the two remaining pairs of P that satisfy 1: bc ce, bc
cf,and bc ef. However, in the first two cases some vertex of H — g is in more
than two pairs of P. Thus P = ab ac bc de df ef. Call the resulting 3-graph
B(7,4).

It is not difficult to show that if the hypothesis of Case 1.1 does not hold, then
the hypothesis of Case 1.2 does. This concludes Case 1.
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Case 2. Some vertex of H — g (say a) is in at least three pairs of P. Since a
has degree three in H — g, and since no vertex has degree greater than six, a is
in exactly three pairs of P. Thus H — a is type [6 6 3] and is thus isomorphic to
T(6,3). The fact that H — ag has edges cde cdf bef implies that the edges of
H — a are beg bdg cde cdf bef efg (a and g are twins in H'). The pairs of P that
do not contain q are bc bd e f. Now by 1

since abe € N and be ¢ P, atleastoneofab € P, ae € P
since abf € Nand bf ¢ P, atleastoneofab€ P, af € P
since acd € N and cd ¢ P, atleast one of ac € P, ad € P
since ace € N and ce ¢ P, atleastone of ac € P, ae € P
since acf € N andcf ¢ P, atleastoneofac€ P, af € P
since ade € N and de ¢ P, atleastoneofad € P, ae € P
since adf € N and df ¢ P, atleastoncofad € P, af € P.

It follows that the remaining pairs of P are ab ac ad, ac ae af, or ad ae af.
The latter two cases yield isomorphic 3-graphs (swapping c and d gives an isomor-
phism). Call the 3-graphs resulting from the first two cases C(7,4) and D(7,4),
respectively. The results of this section are summarized in the following table.

Observe that C(7,4) = T'(7,4): putSo = abg, S = cd, Sz = ef.

All 3-graphs of type [7 12 4]
Edges Degroos | Twin-classes
A(7,4) abc abd cde cdf aef bef 6 5% ——
acg aeg bdg bfg ceg dfg
B(7,4) abc abd cde cdf aef bef 6 5° abef
abg acg beg deg dfg efg
c(,4 abc abd cde cdf aef bef | 6°5%4% abg cd ef
abg acg adg bcg bdg efg
D(7,4) abc abd cde cdf aef bef 625%4 ag ef
acg aeg afg beg bdg efg '

2.4 Critical 3-graphs withn = 8

24.1 Type [84 3]

Stanton [S] showed that there is a unique (8,5,2) covering design with block
size five. Taking the complement gives the unique 3-graph of type [8 4 3], namely
T(8,3).

295



2.4.2 Type [8 84]

Consider a 3-graph of this type. No vertex has degree greater than three, since
t(7,4) = 2. This together with the fact that the average degree is exactly three
implies that every vertex has degree three. Let V = abcdefgh. H — h has type
[753).

Casel. H—-h A(7,3).

We may assume that H — h has edges abc abd acd bed e fg. Since H — g has type
[7 5 3), it follows that H — g is isomorphic to one of A(7,3), B(7,3), C(7,3)
or D(7,3). But H — g has at least four vertices of degree three, namely abcd, so
H — g mustbe A(7, 3), and so the edges of H — g are the edges of H — gh plus
the edge e fh. Repeating this argument for H — f and H — e, it follows that egh
and fgh are edges of H. Thus H has edges abc abd acd bed efg efh egh fgh.
Call this 3-graph A(8,4).

Case2. H—-h % B(7,3).

We may assume that H —h has edges abc adg beg de f e fg. Thus H—ah has edges
bcg de f e fg. It is a routine but tedious task to verify that no 3-graph isomorphic
to H — ah is obtained by deleting a vertex from A(7,3), C(7,3), or D(7,3);
thus H — ¢ & B(7,3). This is possible in only one way: H — a has edges
beh dgh beg def e fg (observe that a and h are twins in H). But now g has degree
four, contradiction. Thus there is no 3-graph H with H — h & B(7,3).

Case3. H—-h = (C(7,3).

We may assume that H — h has edges abc abd cde cdf efg. H — g is isomorphic
to one of A(7,3), B(7,3),C(7,3) or D(7,3). Since H — gh has two vertices
of degree three and at least one of degree two, H — g must be C(7,3). This is
possible only if H — g has edges abc abd cde cdf efh (observe that g and h are
twins in H). Since H — g and H — h are determined, all remaining edges contain
g and h. Since every vertex has degree three, this happens only if the remaining
edges are agh bgh. Thus H has edges abc abd cde cdf efg efh agh bgh. Call
this 3-graph B(8, 4).

Cased. H— h = D(7,3).

We may assume that H — h has edges abc de f adg beg cfg. H — a is isomorphic
to one of A(7,3), B(7,3),C(7,3) or D(7,3). Itis a routine but tedious task
to verify that a 3-graph isomorphic to H — ah can extend only to D(7, 3), and
in only three ways: the edges of H — a that contain h are bdh ceh, bch dgh, or
bfh cdh. Now recall that every vertex of H has degree three. This observation
eliminates the second of the above three cases, since g would have degree four.
Also, it implies that the last edge of H must be afh in the first case, and aeh in
the third case. Thus H has edges abc adg def beg cfg bdh ceh afh or edges
abcadg bef beg cfg bfh cdh aeh. These two 3-graphs are isomorphic (swapping
a with d, b with e, and c with f gives an isomorphism). Call this 3-graph C(8, 4).
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The results of this section are summarized in the following table.
Observe-that B(8,4) & T(8,4): putSo = ab, S1 =cd, S2 =ef, Sy = gh.

All 3-graphs of type [8 8 4]
Edges Degrees Twin-classes
A(8,4) | abc abd acd bed efg efh egh fgh 3% abcd efgh
B(8,4) | abc abd cde cdf efg efh agh bgh 38 abcd ef gh
C(8,4) abc adg def beg cfg bdh ceh afh 38 -

24.3 Type [8205]

No vertex has degree greater than eight, since (7, 11) = 3. Since the average
degree is 60 /8, some vertex has degree eight. In fact, since (60 —24) /5 > 7, at
least four vertices have degree eight. Let V = abcde fgh and let b be a vertex of
degree eight. H —h isone of A(7,4),B(7,4),C(7,4) or D(7,4). Relabel ver-
tices of V — h so that H —gh is T'(6, 3) and has edges abc abd cde cdf aef bef.

In all cases that follow, N is those triples of V — h that are not edges of H — h,
and P is those pairs of V — h that are in edges with h. Observe that every triple
of N must contain a pair of P (otherwise, the complement of the triplein V — h
is a transversal of H of size four).

Casel. H-—h2 A(7,4).

'We may assume that the edges of H—h are abc abd cde cdf aef bef acg aeg bdg
bfg ceg dfg. Thus the triples of N are abe abf abg acd ace acf ade adf adg
afg bed bee bef beg bde bdf beg cdg cef cfg def deg efg.

By the symmetry of H — h, and the fact that at least two of V — gh have degree
eight, we may assume that a has degree eight. Thus H — a is one of A(7,4),
B(7,4),C(7,4) or D(7,4). Since H — ah has n = 6 m = 7 and no twin-
classes, it follows thatH — a & A(7,4). Observe that g is the only vertex of
H — ah, such that there are three other vertices (namely bdf), each two of which
is in an edge with g. It follows that g is the vertex of degree six in H — a. The
edges of H — a that contain h must be bch bdh cgh efh egh; the remaining
three edges of H must contain a and h. But then cfg is a triple of N that does not
contain a pair of P, contradiction. So H — h cannot be isomorphic to A(7,4).
Case2. H—h¥C(7,4),and H—v ¥ A(7,4) foranyv e V.

We may assume that the edges of H — h are abc abd cde cdf aef bef aeg afg
beg bfg cdg efg and so the triples of N are abe abf abg acd ace acf acg
ade adf adg bcd bece bef beg bde bdf bdg cef ceg cfg def deg dfg.
Case 2.1 At least one of ab has degree eight.

By symmetry, we may assume that a has degree eight, so H —a is one of B(7,4),
C(7,4) or D(7,4). Since efg isatwin-classin H —ah, H —a mustbe C(7,4).
This can happen only if the edges of H —a that contain k are bch bdh e fh egh fgh.
Let Q be the vertices of V — ah that are in edges of H with ah. Since abe € N
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and be ¢ P, at least one of ab ae is in P, so at least one of be is in Q. Similarly,
Q contains at least one of each of bf bg cd ce cf cg de df dg. It follows that Q
must be bed. Thus P = abacad bc bd ef eg fg. Call the resulting 3-graph H; .

Case 2.2 At least one of cd has degree eight.

By symmetry, we may assume that ¢ has degree eight, so H — cis one of B(7,4),
C(7,4) or D(7,4). Sinceefg is a twin-class in H —ch, H —cmustbe C(7,4).
This can happen only if the edges of H — ¢ that contain h are abh deh dfh dgh.
Let Q be the vertices of V' — ch that are in edges of H with ch. Since acd € N
and ad ¢ P, at least one of ac cd is in P, so at least one of ad is in Q. Similarly,
Q contains at least one of ae af ag bd be bf bg ef eg fg. Itis a routine exercise
to verify that Q must be one of abfg abeg abef defg. By the symmetry of
efg, the 3-graphs corresponding to the first three cases are isomorphic. Thus P =
ab de df dg ac bc cf cg, or P = ab de df dg cd ce cf cg. Call the resulting
3-graphs and H; and Hj respectively. Observe that H; & H,.

Case 2.3 None of abcd has degree eight.
Thus each of efg has degree eight. Throughout Case 2.3 we let Q be the set of
vertices of V' — gh that are in edges of H with gh.

Case2.3.1 H—-g = C(7,4).

Observe that this can happen in three ways, and that the number of edges that con-
tain h and vertices abcde f, respectively, is 113322, 221133, 332211. But in the
second case e has degree nine and in the third case a has degree eight, so the first
case must hold. Thus the edges of H — g that contain h are abh cdh ceh cfh deh
dfh. Since acg € N and ac ¢ P, at least one of ah ch is in P, so at least
one of ac is in Q. Similarly, Q contains at least one of ad bc bd. Q must be
either ab or cd. Since c does not have degree eight, Q must be ab, and so P =
ab ag bg cd ce cf de df. Call the resulting 3-graph Hy.

Case 232 H—g ¥ D(7,4).

Let uv = ab, wz = cd, yz = ef. Then the number of edges that contain A and
vertices uvwzyz, respectively, is 212232, 223221, 322122. But in the first case
y (that s, e or f) has degree nine and in the third case u (that is, a or b) has degree
eight, so the second case must hold. We may relabel vertices so that w = ¢ and
y = e. Thus the edges of H — g that contain h are abh ach bch ceh deh dfh.
Since adg € N and ad ¢ P, at least one of ad is in Q. Similarly, Q contains at
least one of each of bd cf, so Q must be cd or df. Since ¢ does not have degree
eight, Q is df and P = ab ac bc ce de df dg fg. Call the resulting 3-graph Hs.

Case 233 H —g ¥ B(7,4).
By symmetry (namely, since ab cd ef are each twins in H — h) there are only
three subcases to consider.

Subcase 2.3.3.1 Theedges of H—g thatcontain h are abh ach bch deh dfh efh.
Since adg € N and ad ¢ P, at least one of ad is in Q. Likewise, at least one of
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each of bd ce cf is in Q, s0 Q must be cd and P = ab ac bc cg de df dg ef. Call
the resulting 3-graph Hg. Observe that Hg & Hs.

Subcase 2.3.3.2 The edges of H — g that contain h are abh a fh bfh cdh ceh deh.
Arguing as in the previous subcase, Q must contain at least one of each of ac ad bc
bdcf df. Thus Q = cdand P = ab af bf cd ce cg de dg. Call the resulting 3-
graph H;. Observe that H is isomorphic to Hj.

Subcase 2.3.3.3 The edges of H — g that contain h are aeh a fh bch bdh cdh efh.
Arguing as in the previous subcase, Q must contain at least one of each of ab ac
ad ce cf de df. But this is not possible, since Q contains only two vertices.

Case3. H—h = B(7,4,and H —v ¥ A(7,4), H—v ¥ B(7,4),forall
veV.

We may assume that the edges of H — h are abc abd cde cdf aef be f abg acg beg
deg dfg efg and so the triples of N are abe abf acd ace acf ade adf adg aeg
afg bed bee bef bde bdf bdg beg bfg cdg cef ceg cfg def.

Case 3.1 At least one of ab has degree eight.

By symmetry, we may assume that a has degree eight. Throughout Case 3.1, let
Q be the set of vertices of V — ah that are in edges of H with ah.

Case 3.1.1 H—a ¥ B(7,4).

H — ah canextend to H — a & B(7,4) in only one way (see Appendix 1),
namely the edges of H — a that contain h are bch bdh bgh cgh efh. But then Q
must contain at least one of each of be bf cd ce cf de df dg eg fg, which is not
possible.

Case 3.1.2 H —a ¥ D(7,4).

H —ah canextend to H —a & D(7,4) inonly one way (see Appendix 1), namely
the edges of H — a that contain h are bdh beh bfh cgh efh. Q must contain at
least one of each of cd ce cf de df dg eg fg. Thus Q = cdg or Q = def and thus
P=aqacadagbdbebf cgefor P=adaeaf bdbebf cg ef. Call the resulting
3-graphs Hg and Hy respectively.

Case 3.2 At least one of e f has degree eight.

By symmetry, we may assume that e has degree eight. Throughout Case 3.2, let
Q be the set of vertices of V — eh that are in edges of H with eh.

Case3.2.1 H—e ¥ B(7,4).

H —ehcanextend to H—e & B(7,4) in only one way (see Appendix 1), namely
the edges of H — e that contain h are afh bfh cdh dgh fgh. But then Q must
contain at least one of each of ab ac ad ag bc bd bg cf cg df, which is not possible.
Case3.22 H—e ¥ D(7,4).

H —ehcanextendto H —e = D(7,4) in two ways (sece Appendix 1), namely the
edges of H — e that contain h are either adh a fh bdh bfh cgh orelseafh bfh cdh
cgh dgh.
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In the first case, Q must contain at least one of each of ab ac ag bc bg cfdf.
Thus Q must be abf and so P = ad ae af bd be bf cg ef. Call the resulting
3-graph Hy.

In the second case, Q must contain at least one of each of ab ac ad ag bc bd bg
cf df. Thus Q = abf and so P = ae af be bf cd cg dg ef. Call the resulting
3-graph Hyo.

Case 3.3 None of abe f have degree eight.

Then each of cdgh has degree eight. In particular, H — ¢ must be B(7,4) or
D(7,4). But from Appendix 1 it follows that H — ch does not extend to D(7,4),
and H — ch extends to B(7,4) only if the edges of H — c that contain h are
abh agh bgh deh dfh. But then Q must contain at least one of each of ad ae a f bd
be bf dg ef eg fg, which is not possible.

Cased. H—v = D(7,4), foreach v € V with degree eight.

In particular, H — h & D(7,4). We may assume that the edges of H — h are
abe abd cde cdf aef bef abg acg bcg ceg deg dfg and so the triples of N are
abe abf acd ace acf ade adf adg aeg afg bcd bee bef bde bdf bdg beg
bfg cdg cef cfg def efg.

Case 4.1 At least one of ab has degree eight.

By symmetry, we may assume that a has degree eight, so H — a & D(7,4).
H —ah extends toD(7,4) in only one way (see Appendix 1), namely if the edges
of H — a that contain h are bch bdh bgh cgh efh. But then Q, the vertices that
are in edges with ah, has only three vertices yet must contain at least one of each
ofbe bf cd cf de df dg eg fg, which is not possible.

Case 4.2 Vertex d has degree eight.

H—dhextendsto H—d ¥ D(7,4) intwo ways (corresponding to D—d and D—e
in Appendix 1), namely if the edges of H — d that contain h are abh ceh cfh egh
fgh,orelse abh afh bfh ceh egh. Let Q be the vertices that are in edges with
dh.

In the first case, Q mustcontain at least one of each of ac ae af ag bc be bf bg
cg ef, which is not possible. In the second case, cfg is a triple of N that contains
no pair of P, contradiction.

Case 4.3 Vertex e has degree eight.

H — eh extends to H — e & D(7,4) in two ways (corresponding to D — d and
D — e in Appendix 1), namely if the edges of H — e that contain h are either
afh bfh cdh cgh dgh, or else adh afh bdh bgh cgh. In the first case Q
must contain at least one of each of ab ac ad ag bc bd bg cf df fg, which is
not possible. In the second case bef is a triple of N that contains no pair of P,
contradiction.

Case 4.4 None of abde has degree eight.
Then each of cfgh has degree eight. In particular, f has degree eight, and so
H — f = D(7,4). This can happen only if the edges of H — f that contain h
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Observe that fg € P and that the remaining two pairs in P contain h. Since
abefh € N it follows that at least one of abef is in Q. Similarly, at least
one of each of abeg acdf acdg acef aceg adef adeg bedf bedg beef beceg
bdef bdeg is in Q. It is a routine task to verify that Q must be ab, de, or fg. Call
the resulting 3-graphs H,, H,, and H3, respectively. Thus

H; has edges abc abd ahi bhi cde fgh fgi,
H, has edges abc abd cde dhi ehi fgh fgi,
H; has edges abc abd cde fgh fgi fhi ghi.

Case 2. Vertex e has degree three in H.

Since H — e & A(8,3) and contains edges abc abd fgh, the remaining edge of
H — e must be cdi. The remaining two edges of H contain ei. Let Q be the two
vertices in edges with es.

Observe that cd € P, that the remaining two pairs in P contain e, and that
abefg € N. Thus Q contains at least one of each of abfg. Similarly, Q contains
at least one of each of abfh abgh acfg acfh acgh adfg adfh adgh bcfg
befh begh bdfg bdfh bdgh. Itfollows that Q = ab. Thus H has edges abc abd aei
bei cde cdi fgh. Call this 3-graph Hy.

Case 3. Atleast one of cd and none of e fgh, has degree three in H.

By symmetry, we may assume that c has degree three. H — ¢ & A(8,3) and
contains edges abd fgh. Since e does not have degree three, the remaining edges
of H — c must be eiz and iyz, where zyz is abd or fgh. By the symmetry of ab
and fgh, there are only three cases to consider, depending on whether z is d, one
of ab, or one of fgh. Let Q contain the vertex in an edge with ci.

Case3.1 z=d,y=a, z=b.

Thus P contains de and ab. But then () must contain at least one of each of
adfg adfh adgh aefg aefh aegh bdfg bdfh bdgh befg befh begh, which
is not possible.

Case32 z=a,y=b, z2=d.

Thus P contains ae and bd. But then ) must contain at least one of each of
adfg adfh adgh befg befh begh, which is not possible.

Case33 z=f,y=g, z=h.

Thus P contains ef and gh. But then Q must contain at least one of each of
adfg adfh bdfg bdfh. Thus Q contains f, but then f has degree three, contra-
diction,

Case 4. None of cde fgh have degree three in H.

Both ab have degree three in H. Thus H — ¢ & A(8,3) and contains edges
cde fgh. Since neither c nor d has degree three, and since b is in at most one edge
with h, the remaining edges of H — a must be bxzi yzi, where zyz = fgh. By
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symmetry of fgh, we may assume that z = f,y = g, z = h. Thus P contains bf
and gh. Let Q contain the vertex in an edge with ai. Observe that  must contain
at least one of each of cdfg cdfh cefg cefh defg defh. But then Q contains f,
and f has degree three, contradiction.

The results of this section are summarized in the following table. Observe that
Hy & A(9,4),H, & B(9,4, Hs ¥ C(9,4), Hy & D(9,4). Also observe
that H, & T'(9,4): putSo = fg, S1 = hi, S = ab, S3 =cd, 53 = e.

All 3-graphs of type [9 7 4]

Edges Degrees Twin-classes
A(9,4) abc abd ahs bhi cde fgh fgi 3%2%1 ab cd fg hi
B(9,4) abc abd cde dhi ehi fgh fgi 3326 ab fg hi
c(9,4) abc abd cde fgh fgi fhs ghi 34241 ab cd fghi
D(9,4) abc abd aei bei cde cdi fgh 3613 ab cd ei fgh

252 Type [9125]

No vertex of H has degree greater than four, since t(8,7) = 3. Since the average
degree is exactly four, every vertex has degree four. Thus foreachv eV, H —v
is type [8 8 4] and so is one of A(8,4), B(8,4) or C(8,4).

Every pair of vertices is in at least one edge (otherwise, some pair of vertices
Ty intersects eight edges; since t(7,4) = 2, a transversal of H — zy together with
Ty is a transversal of H of size four, contradiction). Since the number of pairs of
vertices is equal to the sum of the degrees of the vertices (namely thirty-six), it
follows that no pair of vertices is in more than one edge. Thus H — v can not be
A(8,4) or B(8,4).

Let V = abcdefghi. Since H — v must be C(8,4) for all v € V, we may
assume that the edges of H — i are abc adg afh beh bfg cdh ceg def. Now
H—his C(8,4) only if the edges of H — h that contain 1 are either a f1 bei cdi or
else aei bdi cfi. But in the former case af be cd are each in more than one edge
of H, contradiction. Thus the latter case holds.

Now the edges of H — a, except for those containing hi, are known to be
bdi beh bfg cdh ceg cfi def. It follows that H — a is C(8,4) only if the edge of
H — a containing hs is ghi. Thus H is unique up to isomorphism. Observe that
this 3-graph is the affine plane A Py, with four sets of parallel lines of three points
(every two points are in exactly one line).

All 3-graphs of type [9 12 5]

Edges Degrees Twin— classes
A(9,5) abc adg aei afh bdi beh 47 -
bfg cdh ceg cfi def ghi

2.5.3 Type [9 30 6]
No vertex of H has degree greater than ten, since t(8, 19) = 4. Since the average
degree is exactly ten, every' vertex has degree ten. Thus for each vertex v € V,
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H — v is type [8 20 5] and so is one of T'(8,5), U(8,5), V(8,5), W(8,5),
X(8,5) orY(8,5). Observe that

every pair of vertices is in at least two edges. (03]

(otherwise, some pair of vertices zy intersects at least nineteen edges; sincet(7,11)
= 3, a transversal of H — zy together with zy is a transversal of H of size five,
contradiction). Also,

every pair of vertices is in at most four edges. 3)

(Assuming the contrary, let rs be such a pair. Then H —rhasn=8 m = 20
and a vertex s with degree at most five. But no such 3-graph has v = 5, so
7(H — r) = 4, and a transversal of H — r together with r is a transversal of H
of size five, contradiction.) Let V = abcde fghi.

Casel. H— v T(8,5) forsomev € V.

We may assume that v = ¢ and that So = fgh, S1 = abc and S; = de. Thus the
edges of H—1i areabc abd abe acd ace afg afh agh bed bee bfg bfh bgh cfg
cfh cgh def deg deh fgh.

Observe that each of df dg dh ef eg eh is in only one edge of H — i.
Thus (2) implies that dfi dgi dhi efi egi ehi are edges of H. Also, since
fg fh gh are each in four edges of H — i, none of fgi fhi ghi is anedge of H.
H — ai1is T(7,4), and now H — a can be one of T'(8,5), U(8,5), V(8,5),
W(8,5), X(8,5) or Y(8,5) only if the edges of. H — a that contain { are
bei dei dfi dgi efi egi ehi (see Appendix 2). H — biis T(7,4). The edges of
H — b that contain 1 must be aci des dfi dgi dhi efi egi ehi. Also, H — ci is
T'(7,4) and the edges of H — c that contain 1 must be abi dei dfi dgi dhi efi
egi ehi. Thus the ten edges of H that contain i are abi aci bei dei dfi dgi dhi
efi egi ehi. Observe that H = T'(9,6): set Sop = fgh, S; = abc, S; = dei.

Case2. H—-v = U(8,5) forsomev e V.

We may assume that v = 1 and that the edges of H — 1 are as in the conclusion of
Section 2.4.3 (Type [8 20 5]), namely abc abd abe acd ace adh aeh afg bcd
bce bfg bfh bgh cfg cfh cgh def deg deh fgh.

Observe that af ag df dg ef eg are each in only one edge of H — 1 and that
fg is in four edges. By (2), af1 agi dfi dgi efi egi must be edges of H. By
(3), fgi is not an edge of H.

Now H — hiis T'(7,4) and H — h mustbe one of T'(8, 5), U (8, 5), V(8,5),
W (8,5),X(8,5),0rY(8,5). By the previous constraints, this can happen only
if H—h = U(8,5),and the edges of H — h that contain i are a fi agi bci dei dfi
dgi efi egi (see Appendix 2).

Similarly, H — bi is B(7,4), H — b must be X (8, 5), and the edges of H — b
that contain 1 are a fi agi chi dei dfi dgi efi egi. Finally, since 1 has degree
ten, the remaining triple of H must be bhi.
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Thus the ten edges of H that contain 1 are af1 agt bci bhi chi dei dfi dgi
efi egi. Call the resulting 3-graph U(9, 6).

Case3. H—-v ¥ V(8,5) forsomev € V.
We may asume that v = 1 and that the edges of H —1 are as in the conclusion of Sec-
tion 2.4.3 (Type [8 20 5]), namely abc abd abe acd ace afg afh agh bed bee
bch bfg bgh cfg cgh def deg deh dfh efh. Observe thateachofbf cf df ef
is in only one edge of H — ¢ and that bc is in four edges. By (2), bfi cfi dfi efi
must be edges of H. By (3), bei is not an edge of H.

Now H —aiis B(7,4) and H—aisoneof T'(8,5) ...Y (8, 5). But the above
constraints imply that this is not possible (see Appendix 2). Thus no 3-graph H
satisfies the hypothesis of Case 3.

Cased. H—v = W(8,5) forsomev € V.
We may assume that v = 1 and that the edges of H — 1 are as in the conclusion of
Section 2.4.3 (Type [8 20 5]), namely abc abd abe acd ace afg afh agh bcd
bece bfg bfh bgh cfg cgh def deg deh dfh efh. Observe thateach of cf ch
dg eg is in only one edge of H — 1 and that fh is in four edges. By (2), cf1 chi
dgi egi must be edges of H. By (3), fhi is not an edge of H.

Now H —biis D(7,4) and H —bisoneof T'(8,5) ...Y (8, 5). But the above
constraints imply that this is not possible (see Appendix 2). Thus no 3-graph H
satisfies the hypothesis of Case 4.

CaseS5. H—v ¥ X(8,5) forsomev € V.

We may assume that v = 1 and that the edges of H — 1 are as in the conclusion
of Section 2.4.3 (Type [8 20 51), namely abf abg abh acd ace ade afg bcd
bce bfg cfg cfh cgh def deg deh dfh dgh efh egh. Observe that each of
ah bd be bh is in only one edge of H — 1 and that de is in four edges. By (2),
ahi bdi bei bhi must be edges of H. By (3), dei is not an edge of H.

Now H — hiis B(7,4) and H — h is one of T'(8,5)...Y(8,5). But the
above constraints imply that this is only possible if H —h is U(8, 5) and the edges
of H — h that contain 1 are afi agi bci bdi bei cdi cei fgi (see Appendix 2:
note that vertices abede fg of B(7 ,4) correspond respectively to vertices fgbcdea
here). Thus the hypothesis of Case 2 holds.

Case6. H—-v > Y(8,5) forsomev € V.
We may assume that v = 1 and that the edges of H — 1 are as in the conclusion of
Section 2.4.3 (Type [8 20 5]), namely abf abg abh acd ace ade afg agh bcd
bce bfg bgh cfg cfh cgh def deg deh dfh efh. Observe that each of
bd be dg eg is in only one edge of H — 1 and that de is in four edges. By (2),
bds bei dgi egi must be edges of H. By (3), det is not an edge of H.

Now H —aiis D(7,4) and H—a isone of T'(8,5) ...Y (8, 5). But the above
constraints imply that this is not possible (see Appendix 2). Thus no 3-graph H
satisfies the hypothesis of Case 6.
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The results of this section are summarized in the following table. Observe that
U(9,6) —a & U(8,5), U(9,6) — b & X(8,5), U(9,6) —d = X(8,5),
U(9,6) — f = X(8,5),U(9,6) —h=U(8,5),U(9,6)—i= U(8,5),and
that T'(9,6) — v & T'(8,5) forallv € T(9,6).

All 3-graphs of type [9 30 6]
Edges Degrees Twin-classes
T(9,6) abc abd abe abf acd ace acf agh ags ahs 10° abc def ghs
bed bee bef bgh bgs bhi cgh cgs chs def
deg deh des dfg dfh dfi efg efh efs ghs
U(9,6) | abc abd abe acd ace adh aeh afg afi ags 10° bc de fg
bed bee bes bfg bfh bgh bhi cfg cfh cgh
chi def deg deh dei dfi dgi efi egi fgh

This concludes the catalogue of all (non-trivial) critical 3-graphs with nine ver-
tices.

4. Two proofs.

In this last section we supply proofs thatt(10,19) < 5 and t(10,44) < 6, from
which it follows that m(10,6) > 20 and m(10,7) > 45. As noted in Section
1, proofs of these results have not appeared before.

We first present two lemmas.

Lemma 1. Let H be a 3-graph of type [9 13 5]. Then H is isomorphic to APy
plus one edge. (We call this 3-graph APy .)

Proof: No vertex of H has degree greater than five, since t(8,7) = 3. Since the
sum of the degrees is 39 = 4 x 9+ 3, there are at least three vertices of degree five.
For any such vertex v, H — v is type [8 8 4] and so is one of A(8,4), B(8,4),0r
C(8,4).

Let V = abcde fghi, and let vwz be three vertices of degree five.

Casel. H—v = A(8,4).

We may assume that v = 1 and that the edges of H — 1 are abc abd acd bcd
efg efh egh fgh. By the symmetry of H — 1 we may assume that w = h.
Thus H — h is one of A(8,4) B(8,4) C(8,4). Since H — h already con-
tains edges abc abd acd bed efg, H — h must be A(8,4) and have edges
abc abd acd bed efg efi egi fgi. Now e and f each have degree five. The
edges of H — e and H — f must be abc abd acd bcd fgh fgi fhi ghi and
abc abd acd bcd egh egi ehi ghi respectively. But now H has fourteen edges,
contradiction.

Case2. H—v ¥ B(8,4).
We may assume that v = 1 and that the edges of H — i are abc abd ade cdf efg
efh agh bgh. By the symmetry of H — i, we may assume that w = h. Thus
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H — hisoneof A(8,4) B(8,4) C(8,4). Since H — h already contains edges
abc abd cde cdf efg, H — h mustbe B(8,4) and have edges abc abd cde cdf
efg efi agi bgi. Now g has degree five. H — g must be B(8,4) and have edges
abc abd cde cdf efh efi ahi bhi. Butnow H has thirteen edges, and yet abe f
is a transversal of size four, contradiction.

Case 3. H —y = C(8,4), for every vertex y of degree 5.

We may assume that v = 1 and that the edges of H — 1 are abc adg afh beh bfg
cdh ceg def. Thus the set N of quadruples of V —1 that contain no edges of H —1
is abde abdf abdh abef abeg abgh acde acdf acef aceh acgh adeh aefg
aegh bcde bedf bedg beef befh begh bdeg bdfh bdfg cdfg cefh cfgh degh
dfgh efgh.

Let P be the pairs of vertices of V — 1 that are in an edge of H with 1. Observe
that every quadruple of N must contain a pair of P, for otherwise the complement
of the quadruple in V — 1 is a transversal of H of size four, contradiction.

Observe that there is an automorphism of H — 1 that maps each vertex of gh
to the other. Also, for any two vertices of abcdef, there is an automorphism that
maps one to the other. There are two cases to consider.

Case 3.1 At least one of abcde f has degree five in H.

By the aforementioned symmetry, we may assume that o has degree five. There
are two ways that H — ai can extend to H — a ¥ C(8,4). Let Q be the vertices
of V — a1 that are in edges of H with ai.

Case 3.1.1 The edges of H — a that contain 1 are bci dgi fhi.

Since abde is in N and none of bd be de are in P, at least one of ab ad ae
is in P, that is, at least one of bde is in Q. Similarly, at least one of each of
bdf bdh bef beg bgh cde cdf cef ceh cgh deh efg egh isin Q. Itis aroutine
exercise to check that (since Q contains only two vertices) this is not possible.
Case 3.1.2 The edges of H — a that contain 1 are bdi cfi ghi.

At least one of each of bef beg cde ceh deh efg are in Q. Thus Q must be
one of be ce de ef eg eh. The resulting six 3-graphs are all isomorphic to APy
plus one edge (the edges of H — i together with the edges aet bdi cfi ghi yields
AP).

Case 3.2 At least one of gh has degree five in H.

By the aforementioned symmetry, we may assume that A has degree five. There
are two ways that H — hi can extend such that H — h & C(8,4). Let Q be the
vertices of V — hi that are in edges of H with hi.

Case 3.2.1 The edges of H — h that contain 1 are adi bfi cei.
This is not possible, since the quadruple abeg of N contains no pair of P.

Case 3.2.2 The edges of H — h that contain i are aes bdi cfi.
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At least one of each of abg acg bcg deg dfg efg is in Q. Thus Q must be one

of ab bg cd dg eg fg. The resulting six 3-graphs are all isomorphic to APy plus

one edge (the edges of H — h together with edges aei bdi cfi ghi gives AR).
This concludes the proof of Lemma 1. 1

Lemma 2. Let zy be vertices of a 3-graph H such that H — =z is isomorphic to
either APy or APy and H — y is isomorphic to either APy or APy . Let P, be
the pairs of vertices in edges of Y that contain x. Let P, be the pairs of vertices
in edges of X that containy. Then P, = P,.

Proof of Lemma 2: The edge of APy that can be deleted to leave APy is the
only edge that intersects three of the other edges in two vertices. Call this edge
U. Deleting a vertex not in U from APy leaves a 3-graph isomorphic to C(8,4)
plus one edge (namely U), and U intersects at least two of the edges of C(8,4)
in two vertices.

If H — xy is isomorphic to APy — v = C(8,4) then the lemma follows from
checking that C(8,4) extends to APy in only one way.

If H — zy is isomorphic to C(8,4) plus an edge, then the “extra edge” is the
only edge to intersect at least two of the other edges in two vertices. Call this
edge U. Since U intersects at least two of the edges of C(8,4) in two vertices,
U cannot be an edge of APy with the edges of this copy of C(8,4) (at most one
of these two edges could be the “extra edge”, so U would still intersect at least
one other edge of APy in two vertices, contradicting the fact that edges of AP,
interect in at most one vertex). Thus H — zy extends to APy in only one way,
namely U must be the “extra edge” of APy, and so Lemma 2 holds. [ |

Theorem 1. ¢(10,19) < 5.

Proof: By contradiction. Let H be a 3-graph of type [10 19 6]. No vertex of H
has degree greater than seven, since t(9,11) = 4. Since2 x 7+ 8 x § < 57,
which is the sum of the degrees, there are at least three vertices of degree six or
seven. Removing a vertex of degree six leaves a 3-graph of type [9 13 5], which
must be APy .

Let abc be vertices of degree six or seven in H. Thus eachof H —a, H — b,
and H — c is isomorphic to one of APy or APy . Let ABC be the edges of H —a,
H —b,and H — crespectively that induce APy. By Lemma 2, ¢ is in an edge with
the same pairs of vertices of C — a = A — c that a is in an edge with. Note that
there are four such pairs. Again by Lemma 2, c is in an edge with the same pairs
of vertices of C — b= B — c that b is in an edge with. Now observe that the four
pairs of vertices of C that are in an edge with a are distinct from the four pairs of
vertices of C that are in an edge with b (because no two edges of APy have two
vertices in common). Thus there are at least eight pairs of vertices of C that are
in an edge with c. But ¢ has degree at most seven, contradiction. This concludes
the proof of the theorem, namely that¢(10,19) < 5. [ |
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Theorem 2. ¢(10,44) < 6.

Proof: By contradiction. Let H be a 3-graph of type [10 44 7]. No vertex of H
has degree greater than fourteen, since $(9,29) = 5. Since the average degree
is 132 /10 > 13, some vertex has degree fourteen. Since 118/9 > 13, another
vertex has degree fourteen. Deleting either of these two vertices leaves a 3-graph
of type [9 30 6], namely T°(9,6) or U(9,6). Let V = abcdefghi; and let vw be
two vertices in V' with degree fourteen.

Casel. H—v ¥ T(9,6)

We may assume that v = j and that the edges of H —j are as listed in the conclusion
of Section 2.5.3 (Type [9 30 6]). By the symmetry of T°(9,6), we may assume
that w = a.

Thus H —aj & T(8,5), and so H — a must be T°(9, 6). Furthermore, since
T(8,5) extends to T'(9,6) in only one way, the edges of H — a that contain j
mustbe bcj bdj bej bfj cdj cej cfj ghj gij hij. Now b and c have degree at
least (and thus exactly) fourteen.

Since H — bj = T'(8,5), H — bmustbe T'(9, 6) and the edges of H — b that
contain j must be acj adj aej afj cdj cej cfj ghj gij hij.

Since H — ¢j ¥ T'(8,5), H — cmustbe T'(9, 6) and the edges of H — c that
contain j must be abj adj aej afj bdj bej bfj ghj gij hij. But now j has
degree at least fifteen, contradiction.

Case2, H—-v = U(9,6).

We may assume that v = j and that the edges of H — j are as listed in the
conclusion of Section 2.5.3 (Type [9 30 6]). Itis a routine exercise to verify that
for any two vertices of ahi, there is an automorphism of U(9,6) that maps one
vertex to the other, and that this also holds for any two vertices of bcde fg. Thus
by relabelling vertices if necessary, we may assume that w = i or w = c.
Case2.l1 w=1
Thus H—1 = U(9,6) and H —ij & U(8,5). Since U(8, 5) extends in only one
way to U(9,6), the edges of H — i that contain j mustbe afj agj bcj bhj chj
dej dfj dgj efj egj. The remaining edges contain ij.

Case 2.1.1 Atleast one of dij esj is an edge of H.

By symmetry, we may assume that di; is an edge. But now d has degree fourteen,
so H—d = U(9,6). The edges of H — d that contain j mustbe abj acj ahj bcj
efj egj ehj eij fij gij. Butnow j has degree at least seventeen, contradiction.
Case 2.1.2 Atleast one of fij gij is an edge of H.

By symmetry, we may assume that fij is an edge. But now f has degree fourteen,
so H—f = U(9,6). The edges of H — f that contain j mustbe agj aij bcj bhj
cgj chj dej dij eij ghj. But now j has degree at least fifteen, contradiction.
Case 2.1.3 None of dij eij fij gij are edges of H.
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Thus aij bij cij hij are edges of H. Butnow H has m = 44, and yet abcdeh is
a transversal of size six, contradiction.

Case22 w=c

Thus H —c & U(9,6). Since H —ci ¥ X(8, 5), which extends in only one way

to U(9,6), the edges of H — c that contain j must be abj adj aej bdj bej bij

faj fhj ghj hij. Now b has degree fourteen, so H—b = U(9, 6), and the edges

of H — b that contain j mustbe acj adj aej cdj cej cij fgj fhj ghj hij. But

now H has m = 44, and yet adeghi is a transversal of size six, contradiction.
This concludes the proof of the theorem, namely that t(10,44) < 6. |

4. Appendices.

4.1 Appendix 1

The following shows all isomorphisms of B(7,4) — v and D(7,4) — v. Recall
that B(7,4) has edges abc abd abg acg aef bcg bef cde cdf deg dfg efg,
and D(7,4) has edges abc abd abg acg aef bcg bef cde cdf ceg deg dfg.

Observethat B—a ¥ B—b ¥ D—a ¥ D—b,that B—e ¥ B—f¥ D—-d &
D-e that B—g¥ D—c¥ D—g,andthat B—a B—c, B—d, B—e, B—g,
and D — f are all pairwise non-isomorphic.

3-graph m Degree sequence Twin-classes
B-a 7 4432 ef
B-b 7 44 32 ef
B-c 7 4333 ab ef
B-d 7 4333 abg ef
B-e 7 4432 ab cg
B-f 7 44132 ab cg
B—g 6 36 ab cd ef
D—-a 7 4432 cg
D-b 7 4432 cg
D—-c 6 36 abdg ef
D-d 7 4432 ab cg
D-—e 7 44132 ab cg
D-f 8 524232 ab cg
D-g 6 36 ab cd ef
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