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Abstract. We obtain anew characterisation, by a configuration theorem, of the miquelian
geometries among the finite inversive (= Mébius) planes of even order. The main tool
used is a characterisation due to J. Tits of elliptic ovoids in three-dimensional projective

space.

1. Introduction.
In this paper, we shall prove

Theorem. Let I be a finite inversive plane of even order. Then I is miquelian
if and only if the following theorem (T) holds in I:

(T) Let C;, 0 < i < 3, be four circles of I such that C; and C;., are tangent
for all i (addition in the suffix is modulo 4). Then the four points of tangency are
concyclic.

It may be interesting to compare and contrast the statement (T) above with the
statement of the theorem of Miquel whence miquelian inversive planes derive their
name (see [5]). .

In [4] Dembowski proved that if  is an inversive plane of even order s then [ is
isomorphic to the incidence system of points and non-trivial plane sections of some
ovoid [5, p. 48] of the three-dimensional projective space PG(3, s) of order s; in
consequence, s must be a power of two. To realize the power of this theorem, note
that while the services of a Cray supercomputer had to be requisitioned to settle
the question of existence of an affine plane of order ten, the existence question
of its putative extension, namely,a 3 — (101,11, 1) design, is settled completely
theoretically by this theorem.

There are two known classes of ovoids of PG(3, s), namely, the elliptic ovoids
(that is, non-degenerate quadrics of Witt index 1, see [5, Pp. 43-49]) and the Tits
ovoids [9]. Correspondingly there are only two known classes of finite inversive
planes, namely, the miquelian and the Suzuki-Tits inversive planes [5, pp. 273-
275].The outstanding question is whether there are any others. We hope that the
above theorem may be of help in obtaining new results in this direction. Like the
recent progress in [1] and [2] on this classification question, here also we take
Dembowski’s theorem as our starting point. Our proof also depends crucially on
a beautiful characterisation of elliptic ovoids due to Tits: an ovoid of PG(3,5s),
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s = 2°, is an elliptic ovoid if (and only if) all its non-trivial plane sections are
conics (non-degenerate quadrics in PG(2, s)). It may be noted that in [6] Glynn
has obtained (among many other things) a substantial refinement of Tits’ theorem:
for the same conclusion, it suffices to know that all the non-trivial sections by the
planes through any given tangent line (to the ovoid) are conics. Using Glynn’s
theorem in place of Tits’, a corresponding stronger version of our main theorem
can easily be obtained. We have retained the weaker version for the sake of clarity
and elegance.

For s = 2¢, W(s) is the geometry of a linear complex of lines in PG(3, s).
That s, its points are the points of PG(3, s) while its lines are the totally isotropic
lines of PG(3, s) with respect to a given non-degenerate symplectic form. In [3]
W (s) was characterised as the unique regular generalized quadrangle of order
(s, ). For a point z of W(s) the star at z is the union of the lines of W(s)
through z. The star at z is a plane in the ambient projective space. Conversely,
each plane in PG(3,s) is the star at a uniquely determined point in the plane.
Indeed, z v star at z is the polarity of PG(3, s) induced by the given symplectic
form.

An ovoid [8, p. 19] of W(s) is a point-set meeting each line of W(s) in a
unique point. It is easy to see that each ovoid of W(s) is an ovoid in the ambient
projective space in the sense of [5, p. 48]. We say that an ovoid of W(s) is an
elliptic (respectively, Tits) ovoid of W (s) if it is an elliptic (respectively, Tits)
ovoid in the ambient PG(3, s).

For any ovoid 8 of W(s), s = 2¢, let I(6) denote the incidence system whose
points are the points of W ( s) on 8, whose blocks (circles) are the points of W(s)
off @, and in which incidence is collinearity in W(s). It is easy to see that I(6)
is an inversive plane of order s (see [7, p. 126] and the introductory discussion in
[1]). In [2] it was noted that the following proposition paraphrases Dembowski’s
theorem:

Proposition 0. Let I be an inversive plane of even order s. Then I is isomorphic
to I(8) for some ovoid 6 of W(s). I(0) is miquelian (respectively, Suzuki-Tits)
if and only if 0 is an elliptic (respectively, Tits) ovoid of W(s).

Recall [5, p. 253] that a pencil in an inversive plane I of order s is a set of s
mutually tangent circles through some point z. The point z is called the carrier of
the pencil. A pencil with carrier z corresponds to one of the s + 1 parallel classes
of lines in the affine plane of order s obtained by contracting I at z. Since there
are s2 + 1 choices for the point z, it follows that I has (s + 1) (s* + 1) pencils.
For any pencil P with carrier z, let us put yp = P U {z}. Let W(I) denote the
incidence system whose points are the points and circles of I, whose blocks are the
sets yp as P range over all the pencils of I, and in which incidence is set-theoretic
“belonging”.

Then Proposition 0 may be rephrased as follows:
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Proposition 1. Let I be an inversive plane of even order s. Then W(I) is
isomorphic to W (s) and the point-set 6 of I is an ovoid of W(I). I is miquelian
(respectively, Suzuki-Tits) if and only if 0 is an elliptic (respectively, Tits) ovoid
of W(I).

Proof: By Proposition O, we may take I = I(§) where @ is an ovoid of W(s).
By definition of I(@), the point-set of W ( s) consists of the points and circles of
I, and, in particular, the point-set 6 of I is an ovoid of W(s). Take any line -y of
W (s). Since ~ is tangent to 6, ~y consists of a unique point z of I and s circles of
I. Take any two of these circles. Since W(s) is a generalised quadrangle, the only
points of W (s) collinear with both these circles are the remaining s — 1 points
on . In particular, the only point of I which is collinear with both these circles
is the point z. That is, the only point of I which is incident in I with both these
circles is the point z. Thus, the s circles on - are pairwise tangent at z; hence,
they constitute a pcncll P of I with carrier z. We thus have 4 = P U {z}. Since
the number (s + 1) (s? + 1) of pencils of I equals the number of lines of W(s),
all the pencils of I arise thus. Hence, W(s) = W(I). The rest is immediate from
Proposition 0.

In [2] we defined a conic of W (.s) to be a conic in some plane of the ambient
PG(3, s) such that no two points of the conic are collinear in W ( s). In [2] it was
shown that there are s¢ — s? conics of W(s) and they are isomorphic under the
action of the automorphism group Sp(4, s) of W ( s); further, conics of W (s)
may equivalently be defined as the non-trivial plane sections of the elliptic ovoids
of W(s).

Recall that a ruling of a hyperbolic quadric (that is, non-degenerate quadric of
Witt index two, see [5, pp. 43-49]) of PG(3, s) is a line of PG(3, s) contained
in the quadric. Any hyperbolic quadric A has two parallel classes of rulings, each
of which partitions h. Rulings in each parallel class meet all the rulings in the
other. In other words, these rulings constitute a pair of opposite reguli [5, p. 220].
Conversely, the union of the lines in any regulus is a hyperbolic quadric. This
defines a two-to-one correspondence between reguli and hyperbolic quadrics of
PG(3,3).

We define a hyperboloid of W(s), s = 2¢, to be a hyperbolic quadric in the
ambient PG(3, s) all whose rulings are lines of W (s). Given any two disjoint
lines 1, , of W(s), the lines of W (s) meeting both of ~;, 4, form a regulus
and the union of the lines in this regulus is a hyperboloid of W (s). This property
is dual to the property of “regularity” of W (s) as a generalised quadrangle [8,
p. 4] and it holds since W (s) is regular [8, p. 77] and self-dual [8, p. 43] for
even s. Thus, any two disjoint lines of W (s) are together contained in a unique
hyperboloid of W(s). Clearly the intersection of a hyperboloid h of W (s) with
any plane is a conic or cross (that is, the union of two intersecting lines) of W (s).
Indeed, if z is any point, then the intersection of h with the star at z is a cross or a
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conic according as z is on or off h. Thus, the number of conics of W (s) contained
in a given hyperboloid of W(s) equals (s + 1) (s> + 1) —(s+ )2 = s* — .

In view of Theorem 3.2.1 in [8, p. 43], an alternative description of W(s),
s = 2¢, is as the points and lines contained in a fixed non-degenerate quadric Q
in PG(4, s). In terms of this description, the elliptic ovoids and hyperboloids of
W (s) are the sections of Q by the hyperplanes of PG(4,s). Thus viewed, the
following Lemma (which is an unpublished observation of B. Bagchi and N.S.N.
Sastry) becomes quite transparent. But the counting argument presented below is
technically simpler.

Lemma. Let s = 2¢. Then the intersection between any hyperboloid of W (s)
and any elliptic quadric of W ( s) is a conic of W(s).

Proof: Let h be any hyperboloid of W(s). Any ovoid 8 of W(s) meets any
line of W(8) in a unique point, and h is the disjoint union of s + 1 such lines,
whence |h N 6| = s + 1. Hence, if @ contains one of the s(s?> — 1) conics in h
then h N @ equals this conic. Since by [2] each conic of W(s) is contained in
s/2 elliptic ovoids of W(s), this yields a total of 8% (s? — 1) /2 elliptic ovoids
of W (s) meeting h in some conic of W(s). But the number s?(s?> — 1) /2(=
the index of PGL(2, s%).2 in Sp(4, s)) is the total number of elliptic ovoids of
W (s). Hence, the result. 1

Proof of the Theorem: Let I be a miquelian inversive plane of even order s. By
Proposition 1, the point-set & of I is an elliptic ovoid of W(I) = W(s). Let C;,
0 < i < 3, be four circles of I such that C; N Css1 = {z;} for all 5. If the
four points z; are not distinct then there is nothing to prove. So assume they are
distinct. Hence, so are the circles C;. Let P; be the unique pencil of I, with carrier
;, containing C;. Consider the line 4; = P; U {z;} of W(I). Thus, ~; is the line
of W(I) joining C; and C;,1. The generalised quadrangle W ( I) has no triangles.
Since the points C; of W (I) are distinct, and since both the lines v, 43 meet 4o
and 7, . it follows that o and , (as also ~; and ~3) are disjoint lines of W(I).
Let h be the unique hyperboloid of W (I) containing ~o and +y,, Then all four
lines +; are rulings of h. Hence, the four points x; are in h and therefore in h N 6.
But by the Lemma h N @ is a conic of W (I). A fortiori, h N @ is contained in the
star at some point C of W (I) outside the ovoid 8. Thus, C is a circle of I and it
is collinear in W(I) with the four points z;. That is, these four points are incident
in I with the circle C; hence, they are concyclic. Thus, (T) holds in I.

To prove the converse, assume (T) holds in the inversive plane I of even order
s. By Proposition 1, the point-set 8 of I is an ovoid of W(I) = W(s), and it
suffices to show that @ is an elliptic ovoid of W (I). Let C be any circle of I. Fix
three distinct points x9, z1, 2, in C .Then {.’to, T, :L‘z} is a triad of W( I) (that
is, a set of three points no two of which are collinear). Since Sp(4, s) is transitive
on triads, there is a hyperboloid of W(s) containing any given triad. (Indeed, a
counting argument shows that each triad is in s/2 hyperboloids of W(s).) Fix
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a hyperboloid h of W(I) containing zo, 71, z;. Let v and 72 be the rulings
through z, and z,, respectively) in one of the two reguli of k, and let 7 be the
ruling through z, in the other regulus. Letyo Ny = {C1} andy; Ny = {C:}.
Since C1,C;, are collinear in W(I) with z; € 6, they are circles of I tangent
at z;. Now take an arbitrary point z3 # o, 71, z2,in h N 4. Let 3 be the
ruling through z3 in the regulus of h containing ;. Let g, N3 = {C3} and
PN ={Co}. Then C;, 0 < i < 3, are circles of I satisfying the hypothesis of
(T)and z;,0 < i < 3, are the points of tangency. Hence, by the assumed validity
of (T), z3 is concyclic with o, 1, z2. That is, z3 € C. Hence, h N 0 ccC.
Since both C and h N @ have size s + 1 (see the second sentence in the proof of
the Lemma), it follows that h N @ = C. Hence, C C h. Also, by definition of
W(I), C is contained in the star 1 at the point C of W(I). Hence, C Chnm.
But the intersection h N  of the hyperboloid A and the plane = is a cross or a
conic. Since a cross of W(I) contains at most two points of the ovoid 6, it can
not contain the subset C of @ of size s+ 1. Hence, h N 7 is a conic containing the
circle C. Since a conic and a circle have the same size, C must be a conic. Thus,
all the non-trivial plane sections of the ovoid  are conics. Hence, by [10], § must
be an elliptic ovoid. Hence, I is miquelian. This completes the proof. [ |
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