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Abstract. The F-free chromatic number x( M: —F) of a graph M is defined as the
least number of classes in a partition of the vertices of M such that F' does not occur as
an induced subgraph in the subgraph induced by any of the colour classes. Two graphs
G and H are called chromatically related if, for each positive integer k, there exists a
graph M, such that x( Mj: —G) = x(Mj: —H) = k, and distantly related whenever
a chain of such relatednesses exists between them. Using a basic theorem of Folkman
[3], we show that every two graphs on at least two vertices are distantly related.

1. Introduction.

All graphs considered in this paper are finite and simple, and have at least two
vertices whenever they are used to define colourings as described below. We use
the notation G[ V] for the subgraph of G induced by V C V(G) and we write
H < G if H is an induced subgraph of G. For other notation and undefined
concepts we refer the reader to [2]. For a given graph F', — F is the class of F-free
graphs, that is, graphs that do not contain F* as an induced subgraph. A partition
N, Wa,..., B} of V(G) is an F-free colouring of G, also called a —F n-
colouring, if G[V;] is F-free for each i; G is called —F n-colourable if such a
partition exists. The smallest number of colour classes in an F-free colouring of
G is the Ffree chromatic number of G, denoted by x(G: ~F).

1.1 Definition: Let a positive integer n be given. Then two graphs G and H are
called n-chromatically related , denoted by G =<, H, if there exists a graph M,
such that x(My: —G) = x(My: —H) = n. If G <, H foreachn > 1, we call
G and H chromatically related and write G =< H.

These relations are not equivalence relations, since they are not transitive. For
instance, we will see that K3 =< K4 and K4 =< Ks,but K3 # Ks. The following
concept, however, does yield an equivalence relation: It is simply the transitive
closure of <.

1.2 Definition: Let k be any integer and G and H be graphs. Then G and H are
called k-distantly related , denoted by G ~; H ,if there exist graphs Ry, R, ... , Rk
such that

G¥Ro <R =<...<R;<H.

The graphs G and H are called distantly related ,denoted by G ~ H,if G ~; H
for some integer k.
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Note that, since the above definitions use the concept of chromatic number de-
fined relative to a graph, all the graphs concemed must have at least two vertices
since it does not make sense to prohibit the occurrence of K1 as subgraph. The
following result is an immediate consequence of the definition.

1.3 Proposition. For every two graphs F and G, x(F: -G) = x(F: -G).

Hence, every statement involving the chromatic number of a graph can be used
to obtain a corresponding statement about the complement of the graph. Another
consequence is that chromatic relatedness and distant relatedness between two
graphs will be carried over to the same relatedness between the complements of
these graphs.

In the proof of the main theorem, a central role will be played by the complete
graphs. To show that these graphs are distantly related, we need the following two
easy results about chromatic numbers with respect to complete graphs.

1.4 Proposition. For all positive integers p,m,m,... ,npand m > 2,
P
X(Kwm,.n:—Km) = [m[
1.5 Corollary. For any two positive integers nand m with m > 2,

n
X(Kp: —Kmp) = [m— l['

The following proposition produces an abundance of graphs that are not chro-
matically related — we will call such graphs chromatically alien. In view of this,
our main result, stating that every two graphs are distantly related, is somewhat
surprising.

1.6 Proposition. Let Fy and F, be graphs and let k be any positive integer. If
x(Fy: —F) > k+ 1, then, for every graph G,
G:-F
X(G:—Fy) < [———"( - 2) ] .

Proof: Consider an F,-free colouring of G in x(G: —F3) colours. A colouring
of G in | X€=R) colours is obtained by grouping these colour classes together

k at a time. This colouring is F}-free, since x(F;: —F,) > k + 1, thus the result
follows. i
1.7 Corollary. For any graph G and any integer r > 2, we have

X(G:—Kzr1) < ["(G—Z‘Kl[ .

Proof: By Corollary 1.5 we have x( K2,-1: —K,) = 3; thus, Proposition 1.6 can
be applied (with k£ = 2) to get the result. |
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1.8 Propgsition. Let Gy, G2 and H be graphs. Then we have
x(Gi1UGy:—H) > ;ggx(G.-: —-H)

with equality if H is connected.
1.9 Theorem. For all positive integers pand m < mp < ... < mp,
K, :—P;) = min {p,p—; + n;}.
x( ", T 3) lgsp{p P—J nj}

Proof: The colour classes of any P;-free colouring of Ky, ..., induce either
null or complete subgraphs and, hence, any such colouring is also a cocolouring
of this graph. Thus, Theorem 2 of [4], stating that the cochromatic number of
Ky m,..n i given by min; ¢;<p{p, p — j + n;}, applies. This gives the desired
equality. : |

In [3], Folkman proved the existence of graphs with any specified F-free chro-
matic number. In particular, he was able to keep the clique number of such graphs
down to that of F', a fact that is crucial to the proof of our main result.

1.10 Theorem (Folkman). For each integer k > 2 and each graph F there
exists a graph Hy with x(Hy: —F) = k and w( Hy) = w(F).

2. Main resuits.
We first establish distant relatedness between any two complete graphs, thence ex-
tending to the general case by proving that any connected graph is related to some
complete graph. By using Proposition 1.3, we then prove that the correspond-
ing relatedness holds between any two null graphs and between any disconnected
graph and some null graph. A link between the null graphs and the complete
graphs completes the chain of relatednesses.

From the inequality in Corollary 1.7 it follows that K, and K,,_; are chromat-
ically alien. The following theorem of Broere and Frick [1] asserts that all the
complete graphs in between are in fact chromatically related.

2.1 Theorem. Let m, v, k be integers withm > r > 2 and k > 2. Then there
exists a graph G such that

xX(G:—K,) =x(G:=K,1) =...=x(G:—=K,) = k
ifandonlyif n<2r -2,
2.2 Corollary. Let p, q and k be integers with k > 2. Then we have K,=: K,
if and only if there exists an integer r with r < p,q < 2r — 2.

Since any two graphs are 1-chromatically related, this result implies that K, <
K, if and only if there exists some integer r such thatr < p, ¢ < 2r—2. In
particular, this means that the result of Corollary 1.7 is best possible. Also, using
this result, it is easy to see that any two complete graphs on more than two vertices

are distantly related. We cannot deduce distant relatedness between K, and K;
from this result; the next two lemmas take care of this case.
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23Lemma. Kj; < P;.

Proof: Let m > 1. The graph establishing m-chromatic relatedness is an m-
partite complete graph Ky, n,,... n, : By Theorem 1.9 and Proposition 1.4 it is suf-
ficient to choose the numbers ny,m, ... , i insuch a way thatm — j + n; = m.
This is achieved by letting n; = j forj = 1,2,... ,m. Then, forallm > 1,
X(Km,m,...,n.. :_P3) = X(Km,m,... Tim :—Kj)=m. |
24Lemma. K; <P,

Proof: Let p be even. Again, x(Kn n,...n : —K3) = [327] = § by Proposition
14and x( K m,.. n, : —P3) = min1¢j<p {p, p—j+n;} by Theorem 1.9. Equality
of these two chromatic numbers will follow if p — j + n; > £, with equality for
some ;. Let

m=j  H1<i<E
=P P

Thenp—j + n; = £ forall j > £. Thus we obtain the value £ for the P;-free
chromatic number of Ky, x,,...s, fOr every evenp > 4. By choosing m = £ for
allevenp > 4, we get

x(Kﬂ[,m,...,lb =B) = X(Km.m,...,n, :—K3)=m

for all m > 2. Therefore, P; and K3 are chromatically related. |
‘We now summarize the preceding three results as Theorem 2.5. By using Propo-
sition 1.3, we also obtain the corresponding result about the null graphs.

2.5 Theorem. K,, ~ K, forall m,n>2.
2.6 Corollary. N, ~ N, forall m,n> 2.

2.7 Theorem. G =< K, for every connected non-complete graph G and every
integer n> w(G).

Proof: For any m > 2, we know from Folkman’s theorem that there is a graph
Gm With x(Gp: —G) = m and w(Gyp) = w(@). Let H,, = Gy U K., where
r.= (m — 1)(n— 1) + 1. From Proposition 1.8 then follows that x( Hy,: —Q)
= max{x(Gm: -G, x(K,: —G) } = m,as x(K,: —G) = 1 and G is connected.
Also,
X(Hm: —K,) = max{X(Gm: —Ka), x(K: "Kn)}
= max{1,x(K,: —K,)}

= max {1, [T}
= max{1, m}
=m.
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Here, the second equality follows from n > w(G) = w(Gy,); the third from
Corollary 1.5 and the fourth from the choice of r. Thus, we have m-chromatic
relatedness between G and K, for all m > 2, proving chromatic relatedness. §I

2.8 Corollary. G = N, for every disconnected non-trivial graph G and every
integer n> B(G).

Proof: Suppose that G is disconnected and non-trivial, and n > 8(G). Then G is
connected and non-complete and w(G) = B(G) < n. By Theorem 2.7 we have
G = K, and, thus, G < N,. [

Using the results proved up till now, we see that any two connected graphs are
distantly related through the complete graphs and any two disconnected graphs
are distantly related using the null graphs. The following result now establishes
distant relationship between any two graphs by linking the complete graphs with
the null graphs.

2.9 Proposition. Every complete graph is distantly related to every null graph.

Proof: Let S be any self-complementary graph of order at least two. Since S is

necessarily connected, Theorem 2.7 may be applied to find a complete graph K,

with S < K,. From this also follows that S =< N,. Thus, we have distant relat-

edness holding between every complete graph and every null graph by applying

Theorem 2.5 and Corollary 2.6. 1
We are now in a position to state our final result.

2.10 Theorem. Every two non-trivial graphs are distantly related.
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