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Abstract

A graph H is collapsible if for every even subset W C V(H), H has
a spanning connected subgraph whose set of odd-degree vertices is W. In
a graph G, there is a unique collection of maximal collapsible subgraphs,
and when all of them are contracted, the resulting contraction of G is a
reduced graph. Reduced graphs has been shown to be useful in the study
of supereulerian graphs, hamiltonian line graphs, and double cycle covers,
(see [2], [3], [4], [6]), among others. It has been noted that subdividing
an edge of a collapsible graph may result in a noncollapsible graph. In
this note we characterize the reduced graphs of elementary subdivision of
collapsible graphs of diameter at most two. We also obtain a converse
of a result of Catlin [3] when restricted to graphs of diameter at most
two. The main result is used to study some hamiltonian property of line

graphs.

INTRODUCTION

We shall use the notation of Bondy and Murty [1], except for contractions,

and we allow graphs to have multiple edges but loops are forbidden. We shall
use dg(u, v) to denote the distance between the two vertices u,v in G. When
no confusion arises, we use d(u,v) for dg(u,v). The diameter of G, denoted by

diam(G), is defined thus:

diam(G) = . Jrel‘a,a(tc) d(u,v).

The degree of a vertex v in a graph G will be denoted by dega(v), or deg(v).

For integer ¢ > 0, we define

D;(G) = {v € V(G) ldega(v) = s}.
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As in [1], §(G) denotes the minimum degree of G, and x(G) and «'(G) denote
the connectivity and the edge-connectivity of G, respectively.

For a set X C E(G), we define the contraction G/X to be the graph ob-
tained from G by contracting the edges of X and deleting all resulting loops.
When H is a connected subgraph of G, we use G/H for G/E(H).

In [2], Catlin defines the collapsible subgraphs. A graph G is collapsible
if for every subset R C V(G) with |R| even, G has a subgraph I' such that
G — E(T) is connected and such that the set of odd-degree vertices of T is R.
The subgraph T is called an R-subgraph of G. It is routine to show that G
is collapsible if and only if for every subset W C V(G) with |W| even, G has
a connected spanning subgraph whose set of odd-degree vertices is W. In [2],
Catlin showed that every vertex of a graph G is in a unique maximal collapsible
subgraph of G. The reduction of G is the graph obtained from G by contracting
all nontrivial collapsible subgraphs of G. A graph is called reduced if it is the
reduction of some graph.

A graph G is eulerian if G is connected and every vertex of G has even de-
gree. Note that the trivial graph K is regarded as both collapsible and having
spanning eulerian subgraphs.

Theorem A (Catlin [2]) Let G be a graph.

(a) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(b) If G is reduced, then G is simple with 6§(G) < 3, and G contains no
subgraph isomorphic to Ks.

(c) If each edge of a spanning tree of G is in a collapsible subgraph, then G
is collapsible.

(d) If H is a connected subgraph of G and if G is collapsible, then G/H is
collapsible; if H is a collapsible subgraph of G and if G/H is collapsible, then
G is collapsible.

() G has a spanning eulerian subgraph if and only if the reduction of G has
a spanning eulerian subgraph.

(f) If G is collapsible, then G has a spanning eulerian subgraph. 0.

Reduced graphs of diameter two are characterized in [6]. Let m,l be two
positive integers. Let Hy; = K, ,, and H; = Kj; be two complete bipartite
graphs. Let vy, u; be two nonadjacent vertices of degree m in H;, and vy, u; be
two nonadjacent vertices of degree ! in H;. Let S; ,, denote the graph obtained
from H; and H3 by identifying v; and va, and by connecting u; and u; with a
new edge ujuz. Note that S ; is the same as Cs, the 5-cycle.

Theorem B (Lai [7]) Let G be a reduced graph. If diam(G) = 2, then exactly
one of the following holds:

(2) G = Kysyt > 2;
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(b) G =] Kg,g,t Z 2;
(c) G=Sim, bm21;
(d) G is the Petersen graph. O

In [3], Catlin developed the idea of collapsible graphs. Let H be a graph and
let 7 be a partition of V (H) into two nonempty sets V1, V2. We shall denote this
by # =< V3,V2 >. Then H is called 7-collapsible if for every subset R C V(H)
of even cardinality, the following hold:

(i) if [R N V3| is odd, then H has an R-subgraph;
(ii) if |[R N V2| is even, then H + ¢ has an R-subgraph, for any newly added
edge ¢ = v v; with v; €V} and v, € V2.

As examples, the 2-cycle is collapsible, complete graphs of order at least 3
are collapsible; collapsible graphs are w-collapsible, for any partition . How-
ever, the following example, as noted by Catlin in 3], is 7-collapsible but not
collapsible.

Example 1 Let Cy = vyvpu3v4v; denote the 4-cycle, let V3 = {vy, v}, V2 =
{v2,v4}, and let * =< V},V; >. Then Cj is w-collapsible.

Suppose that H is a m-collapsible subgraph of G with =< V;,V; >. De-
note by G/x the graph obtained from G by identifying all vertices of V; to form
a single vertex v;, by identifying all vertices of V to form a single vertex vz,
and by joining v; and v, with exactly one edge. This new edge is denoted by e,.

Theorem C (Catlin [3]) Let H be a m-collapsible subgraph of G. If G/~ is
collapsible, then G is collapsible. O

It is easy to construct examples to show the converse of Theorem C is not
true in general: '

Example 2 Let H = K;, with ¢t > 2. Let ¢ = zy € E(H). Let K be the

graph with
V(K) = {zl; z2,%3,Y1,Y2, y3}
and
E(K) = {z122, 223, Z3y1, Y1¥2, Y2¥3, YaZ1, T2Y2, T3Ys }-

Define G(t) to be the graph obtained from H — e and K by identifying z; with
z and indentifying y; with y. It is shown in [3] that K is collapsible. Note that
every edge of G(t)/K is in a 3-cycle and so by (c) and (d) of Theorem A, G(t)
is collapsible. Both K and G(t) contain a 4-cycle z3z3y3y2z2. Let 7 denote the

bipartition of this 4-cycle. Then neither K/x nor G(t)/x is collapsible, for their
reductions are K, and K, respectively.
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MAIN RESULTS

Theorem 1 Let G be a graph of diameter at most 2 and let Cy, the 4-cycle,
be a nonspanning subgraph of G. Let x denote the bipartition of C4. Then G
is collapsible if and only if one of the following holds:

(a) G/ is collapsible.

(b) G is spanned by a subgraph H £ K3 ,_ such that there are two vertices
in Dy(H) adjacent in G.

Let Py = z12223z4 denote a path of length 3. Let H be a graph disjoint
from P, that is isomorphic to a K;; with t > 2 (respectively, an Sj,, with
n > 2 and m > 1). Let zy € E(H) be an edge of H that is lying in a 4-cycle
of H. Define K;': + (respectively, S,'f'm) to be the graph obtained from H and P,
by identifying z with z; and y with z4.

We say that an edge ¢ € E(Q) is subdivided when it is replaced by a path
of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting
graph, denoted by G(e).

Theorem 2 Let G be a collapsible graph of diameter at most 2, and let ¢ be
an edge of E(G). If [G(e)]’ denotes the reduction of G(e), then exactly one of
the following holds:

(3) [G(e)]' = Ky

(b) [G()l = Kay, ¢ > 2;

() [Ce) = Siym, 1 22,m 215

(d) [Gle))' = K3, t 22

(¢) [Gle)) =S, 1>22,m>1

THE PROOF OF THEOREM 1

Lemma 1 Let n > 5 be an integer and let H be a graph isomorphic to a
K3 n—2. Let G be a spanning supergraph of H such that there is an edge inci-
dent with two vertices in Dz (H), then for any edge e € E(G), G(e) is collapsible.

Proof: Let z,y € Dz(H) be two vertices of G such that zy € E(G). Thus
H, = H + zy is a spanning subgraph of G. By (c) of Theorem A, it suffices to
show that for any e € E(H,), H;(e) is collapsible.

If e # zy, then H;(e) contains a 3-cycle C5. Note that either every edge in

H)y(e)/Cs is in a 3-cycle or G(e)/Cs has a 2-cycle C; such that every edge in
[G(e)/C3]/C: is in a k-cycle with k € {2,3}. It follows from (d) of Theorem A
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that G(e) is collapsible.

If e = zy, then since n > 5, n— 2 > 3. It follows from Theorem 11 of [3]
that G(e) is collapsible. O

Lemma 2 Let H be a graph that contains a nonspanning w-collapsible sub-
graph K, where # =< V3,V > is a bipartition of V(H). If e, is contained in
a collapsible subgraph of H/m, then the reduction of H/x is the same as the
reduction of H.

Proof: Let H' and (H/x)' denote the reductions of H and H/x, respectively.
Since e, is in a collapsible subgraph L; of H/, the subgraph

L = H[(E(L,) — {ex}) U E(C4)]

is a collapsible subgraph of H, by Theorem C. By the definition of contractions,
we have

H/L = (H/x)/L. 1)
By (d) of Theorem A, (1) implies that H' = (H/x)'. O

By Theorem C and Lemma 1, it suffices to show that if G is collapsible, then
either (a) or (b) of Theorem 1 holds.

Note that the hypothesis of Theorem 1 implies that n > 5. Let G' denote
the reduction of G/m. If G' = K, then by (d) of Theorem A and by Theorem
C, G/ is collapsible and so (a) of Theorem 1 holds. Thus we assume that

G' is not collapsible. (2)

Since contracting the edges does not increase the diameter and since the
operation to get G/n from G does not increase the diameter either, we have
diam(G') < 2. Thus by Theorem B, one of the conclusions of Theorem B must
hold or G' = K.

Since G is collapsible, if e, is in a collapsible subgraph of G/, then by
Lemma 2, G' is collapsible, a contradiction. Hence we assume that

ex € E(G'). (3)

If G’ does not have a cut edge, then by Theorem B, G’ is either a Ky, or an
Sp,m, or the Petersen graph. In any case, by (3), one of the edges of G' is 5. It
follows that the diameter of G would be at least 3, contrary to the hypothesis
of diam(G) < 2.
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Since G is collapsible, G is 2-edge-connected. If G’ has a cut-edge, then this
cut-edge must be created in the process of getting e,. This, in conjunction with
(3), implies that e, is the only cut-edge of G'. By Theorem B, we have

G' = K,. (4)

Let the Cy subgraph be C; = z,z223z42, and let # =< V;,V, > with
Vi = {21,23},V2 = {22,24}. Then by (4), E(Cy) is an edge-cut of G. Let
G, and G; denote the two sides of G — E(Cy) such that V; C V(G;) and
V2 C V(G3). Since diam(G) < 2, at most one of the V(G;)’s contains more
than two vertices. Since n > 5, we may assume that

V(G| =2, [V(Gz)|=n—-22>3.

Since diam(G) < 2, for every vertex w € V(G3) — {z3,,}, we must have
wzz,wz4 € E(G). Thus G has a spanning subgraph H & K, ,_, with D;(H) =
{z2,24}. Since H is not collapsible but G is collapsible, and since E(Cy) is an
edge-cut of G, there must be vertices in Dy(H) that are adjacent. Hence (b) of
Theorem 1 holds. O

THE PROOF OF THEOREM 2

In this section, for v € V(G), Ng(v) denotes the set of vertices in G that are
adjacent to v.

Let n = |V(G)|. When n < 4, Theorem 2 is obvious. Thus we assume that

n 2> 5. Let G and e satisfy the hypothesis of Theorem 2 and suppose that G(e)

is not collapsible. Denote ¢ = z1y), 1,31 € V(G) and let z; denote v(e). By

cotradiction, we assume that the conclusions of Theorem 2 is false. Let G be

a counterexample of Theorem 2 with as few vertices as possible. Thus, by the
minimality of G, we have

G(e) is reduced. (5)

By (5) and by (b) of Theorem A,
G(e) is K3-free. (6)

Lemma 3 G(e) contains no 4-cycle C with E(C) N {z121,2131} = @ (such a
4-cycle C is called a forbidden 4-cycle).

Proof: Suppose that G(e) has a forbidden 4-cycle C. Let m denote the
bipartition of V(C). Since z121, z1y1 & E(C), we have

(G/7)(e) = G(e) /. (7)
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Let [(G/7)(e)]' and [G(e)/n]' denote the reductions of (G/x)(e) and G(e)/,
respectively. Then by (7)

[(G/x)(e)] = [G(e)/]". @)

By Theorem 1, either G/x is collapsible, or G has a spanning subgraph H =
K3 n—2, with two verices in D2(H) adjacent in G. If the latter case holds, then
by Lemma 1, and by (c) of Theorem A, we have [G(e)]' = K, and so (a) of The-
orem 2 holds, contrary to the assumption that G is a counterexample. Hence
G/x must be collapsible.

Note that diam(G/n) < diam(G) < 2. By the minimality of G, [G(e)/x]'
must satisfy one of the conclusions of Theorem 2. If e, & E(|G(¢)/x]'), then e,
is in a collapsible subgraph of [G(e)/x]’. It follows by Lemma 2 that

[G(e)]' = [G(e)/=]', (9)

and so by (8) and (9), one of the conclusions of Theorem 2 must hold for [G(e)]’,
contrary to the assumption that G is a counterexample. Hence we may assume
that

ex € E([G(e)/x]). (10)
But then (10) and any one of (b), (c), (d), and (e) of Theorem 2 would imply
that the diameter of G exceeds 2, a contradiction. This proves the lemma. O

If diam(G(e)) < 2, then by (5) and Theorem B, (a) or (b) or (c) of Theroem
2 must hold, contrary to the assumption that G is a counterexmaple. Hence by
the hypothesis of diam(G) < 2, we may assume that

diamG(e) = 3. (11)
By diam(G) < 2 again, for any distinct vertices u,v € V(G(e)) — {21}, either
da(e)(u,v) < 2, (12)
or in G(e),
all shortest (u,v)-paths are of length 3 and contain z;z,y;2;. (13)

By (11), there are distinct vertices z,y € v(G) such that dg()(z,y) = 3. By
(13), we may assume that y = y; and that zz,2,y is a shortest (z, y)-path.
By the hypothesis that G is collapsible, we have «x’'(G) > 2 and so

K'(G(e)) > 2. (14)
This, in conjunction with (5) and (b) of Theorem A, implies
2<6(G(e)) <.
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Thus we have
2<6(G)<3. (15)

Lemma 4 x(G(e)) > 2.

Proof: By contradiction, we assume that G(e) has a cut-vertex v and so it
has two nontrivial connected subgraphs G; and G- such that

E(G(e)) = E(G) U E(Gz) and V(G1) NV(G3) = {v}.
By (11), we may assume that in G3, there is a vertex u such that
dg(e) (v,u) > 2. (16)
Thus every vertex in V(G;) — {v} is adjacent to v, by (11). By (5) and by (a)
of Theorem A, both G; and G2 are reduced. It follows that G; must have a
cut-edge, contrary to (14). O
By Menger’s Theorem ([1], page 16), by Lemma 4 and (11), we have
every two edges of G(e) is in a cycle of length at most 6. (17)

We shall divide the rest of the proof into several cases.
Case 1 Either deg(z;) or deg(y) is equal to §(G(e)).

(1A) deg(y) = 2.
Let 2,2, be the two vertices adjacent to y in G(e). By (11) and (17), we
may assume that G(e) has a 6-cycle

Hl = Y21212222Y. v
Since diam(G) < 2 and by deg(y) = 2, for every vertex w € V(G(e)) -

{ys 2,2, 21}
either zw or z;w is in E(G(e)). (18)

By (6) and (18), and by Lemma 3,
deg(z2) = deg(z) = 2. (19)

Since G is collapsible, G # H;. But by (14), (18) and (19), for every w €
V(G) — V(H,), we must have

wz, wz; € E(G(e)). (20)
By (6) and Lemma 3, E(G(e)) consists of edges in E(H,) and edges described
in (20) only. It follows that G is a subdivision of K, for some ¢ > 2, and so G
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is not collapsible, a contradiction.

(1B) deg(y) = 6(G) =S3.
Let 21,23, 23 be the vertices adjacent to y in G(e). By (5), (6) and (17), we
may assume that there are two more vertices 24, z5 such that in G(e),

Y22,2224, 24T, Y23, 2325, 255 € E(G(e€)). (21)
By 6(G) = 3, and by (6), (12) and (13), we can find zg, 27 so that
2227, 2725, 2326, 2624 € E(G(e)). (22)
Let H, denote the induced subgraph of G(e) with
V(H2) = {y, 71, 3, 21, 22, 23, 24, 25, 26, 27}

By (5), (6) and Lemma 3, E(H;) consists of the edges described in (21) and
(22), together with {yz,, 2,2y, z12}. Since §(G) = deg(y) = 3, for every w €
V(G(e)) - V(Hz),

one of wz;,wzz,wzs is in E(G(e)). (23)

Since H3/z,y is a subgraph of the Petersen graph, it is not collapsible, and so
there must be a vertex w; € V(G(e)) — V(H2).

Claim 1 If wy z; € E(G(e)), then w;zg, w127 € E(G(e)).
Suppose that wyz¢ & E(G(e)). By (12) and (13), dg(e)(w1,26) = 2 and so
there must be some vertex wy € V(G(e)) such that

wy wo, waze € E(G(e)).

Then by (23), either w21, or wazz, or w223 is an edge of G(e). By (6), it must

be woz; € E(G). By §(G) = 3, there is some w3 € V(G) — [V (Hz2) U {w1, ws}]

such that wsw, € E(G). By (6), ws & V(H2) U {w;,wz2}. By (23), G(e) has

either a k-cycle, 2 < k < 3, or a forbidden 4-cycle, contrary to (5) or Lemma 3.
Similarly, w27 is in E(G(e)). O

Claim 2 The degrees of 24, 25, z,z; in G(e) are at most 3.

It follows from Claim 1 and Lemma 3 that degg(c)(z1) is at most 3.

Suppose that there is a vertex w ¢ V(H;) such that wz, € E(G(e)). By
(23), one of wz;, wzz,wz;3 is in E(G(e)). But then by Claim 1 again, G(e)
contains either a K3 or a forbidden 4-cycle, contrary to either (6) or Lemma 3.

Similarly, 25, £ must have degree 3 also. O

By Claim 2, we have G =2 G(e)/z12; is isomorphic to the Petersen graph
and so G is not collapsible, a contradiction.
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(10) degc(e)(z1) = 6(G).
If y is adjacent to a vertex w such that

dG(e)(w) 21) =3,

then we are back to Case 1A or Case 1B, by renaming the vertices w,y, z;,z;
by z, z;, 21, y, respectively. Hence we may assume that

for any w & {y, 21, 71,2}, wy € E(G(c)) => wz; € E(G(e)). (24)

By (24), we have degg(.)(y) = degg(e)(z1) = 6(G), and so we are back to Case
1A or Case 1B again.

Case 2 degg(e)(z) = 6(G) and degg(c)(z1) > 6(G), degg(e)(y) > 6(G).

(2A) §(G) =2.
Let 21,3 be the vertices in G(e) adjacent to z. By (17) and by the assump-
tion of dg(¢)(2, y) = 3, there is some z € V(G(e)) such that

Hj3 = yzzy23121y

is a 6-cycle of G(e). Since degg(c)(21) > 3, there is some vertex w; € V(G(e)) -
V(H3) such that wyz; € E(G(e)). By (12) and (13), we must have

dg(e)(w1, 22) < 2.

By Lemma 3, there must be a vertex wy & V(Hs) U {w1} with w;w, wez, €
E(G(e)). By (12), (13) and Lemma 3, there are must be a vertex ws ¢
V(Hs) U {w1,w;} with wows, wsy € E(G(e)). Then by Ng()(z) = {z1, 72},
and by (12) and (13), either wsz; or wyz, is in E(G(e)). It follows that G(e)
contains either a forbidden 4-cycle or a 3-cycle, contrary to Lemma 3 or to (6).

(2B) §(G) = 3.

Let z;,%3,z3 be the vertices in G(e) adjacent to z. By (17), by the as-
sumption of dG(e)(z, y) = 3 and by Lemma 3, there are vertices z,4, z5 such
that

Z2%4, T4Y, T3%s5, 25y € E(G(e)).

By (12), (13), we have degg(e)(23, %4) = 2, and so by Lemma 3, there is a vertex
zg & {y’ Z,21, %1, T2, T3, 24, 15} with

T4, z3z¢ € E(G(e)).
By (6) and by dcgc$e) (y) > 4, there is a vertex z7 & {z1, 72, Z3, 24, Zs, %6, %, ¥, 21 }

with 27y € E(G(e)). By (12) and (13), we have dg()(z7,2) = 2 and so by
Ng(e)(z) = {z1, %2, 23}, either z127, or 2227 or 2327 is in E{G(e)). It follows
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by Lemma 3 that z,z7 € E(G(e)). Similarly, dg(.)(ze,z7) = 2 and so there is
some vertex w with wze, wz7 € E(G(¢)). Then by Ng(¢) = {z1, 22, 23}, and
by (12) and (13), one of z;w, zaw, zaw is in E(G(e)). It follows that G(e) has
either a K3 or a forbidden 4-cycle, contrary to either (6) or Lemma 3.

Case 3 All degg(.)(21),degc(c)(y), deg(c)(z) are greater than §(G).
Let z € V(G(e)) — {21} be a vertex with degg(.)(2) = &(G).

(3A) zy € E(G(e)).

If dg(e)(2,21) = 3, then by (13), 2y € E(G(e)), and so we are back to
Case 2 with the path zyz;z, replacing zz,2,y. Hence dg()(2,21) < 2. If
2z; € E(G(e)), then by replacing zz121y by 2z,2,y, we are back to Case 2
again. Thus we assume that there is some z; € V(G(e)) with z2z,22z, €
E(G(e)). If degg(e)(2) = 2, then by (12), dg(¢)(z,2) = 2 and so by (6) and
N¢(e)(2) = {y, 22}, we must have zy € E(G(e)), contrary to the assumption of
dg(e) (%, y) = 3. Thus we assume that

degg(e) (z) =3.

Let y, z2, z3 be the vertices in G(e) that are adjacent to z and that zz3, 7oz, are
in E(G(e)). By (12) and (6), and by zy & E(G(e)), we have zz5 € E(G(e)). By
degg(c)(z) 2 4, we assume that z4, z5 are in V(G(e)) with z4z, z52 € E(G(e)).
By (12) with {u,v} = {z,z;}, (s = 1,2), and by (6), we must have z4y, zsy €
E(G(e)). It follows that G(e) contains a forbidden 4-cycle, contrary to Lemma 3.

(3B) 2z, € E(G(e)).

Since degg(c)(z) > degg(e)(2) + 1, by (12) with {u,v} being 2 and one vert-
dex adjacent to z, G(e) contains either a 3-cycle or a forbidden 4-cycle, contrary
to (6) or to Lemma 3.

(3C) 2z € E(G(e)).

Since degg(c)(y) 2 degg(e)(2) + 1, by (12) and (13) with u, v being nd one
vertex adjacent to y, G(e) must contain a 3-cycle or a forbidden 4-cycle, con-
trary to (6) or Lemma 3.

(3D) 2z,2z1,2y & E(G(e)).
By (12) and the assumption of Case 3D, there are z3, z3, 4 such that

2%3, T2%, 23, T3T1, 234, T4y € E(G(e)).

Hence degg(c)(2) = 3 and so degg(c)(z) > 4. By (12), (6) and by Ng(.)(z) =
{22, 73,24}, there is a vertex adjacent to z and one of z3,z4. By degg(.)(z) > 4,
by (12) and by Lemma 3, we may assume that z5 is adjacent to both z and zs.
By (12) and Lemma 3 again, there is a vertex z¢ adjacent to both y and z.
By the same reason once more, there is some vertex w adjacent to z5 and ze.
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Since Ng(c)(2) = {%2,%s, 4}, and by (12), one of wz3, wzs, wz, is an edge of
G(e). It follows that G(e) has either a 3-cycle or a forbidde 4-cycle, contrary to
(6) or to Lemma 3.

Since all cases lead to contradictions, the proof of Theorem 2 is complete.

AN APPLICATION

We conclude this note with an application of Theorem 2. The line graph of
G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are
adjacent in L(G) if and only if the corresponding edges are adjacent in G. A
trail T of G is called a dominating trail of G if G — V(T) is edgeless.

Theorem D (Harary and Nash-Williams [5]) Let G be a graph with at least
3 edges. L(G) has a hamilton cycle if and only if G has a dominating eulerian
subgraph. O

Imitating the proof of Theorem D, one has:

Lemma 4 Let ¢ be an edge of G. Then L(G) has a hamilton path starting
with e if and only if G has a dominating trail starting with e. O

A dominating trail of G starting with an edge e € E(G) is called a dominat-
ing e-trail of G.

Lemma 5 ([7], Corollary 9) If G is collapsible, then for any v,u € V(G),
(possibly u = v), there is a spanning (v, )-trail in G. O

Corollary 1 If G is a graph of diameter at most two, then for any edge
e € E(G), in L(G), the line graph of G, has a hamilton path starting with e.

Proof: Let e be an edge of G. To avoid trivial cases, we assume that G has
at least 3 edges. By Lemma 4, it suffices to show that G has a dominating e-trail.

Case 1 G is collapsible.

Note that G has an e-trail if and only if G(e), the graph obtained from G by
subdividing the edge e once, has a dominating trail with v(e) at an end of the
trail, (call such trails dominating v(e)-trails). Note that any spanning v(e)-trail
(spanning trail starting with v(e)) is a dominating v(e)-trail.

If G(e) is collapsible, then by Lemma 5, G (e) has a v(e)-trail and we are done.
So suppose that G(e) is not collapsible. Let [G(e)]’ denote the reduction of G/(e).
By Theorem 2, [G(e)]' € {K2+, Si,m, K3y, Siho}, (¢ 22,12 2,m > 1). Since
G is collapsible, v(e) must be a trivial vertex of [G(e)]’. It is then easy to check
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that [G(e)]' has a spanning v(e)-trail. Thus G has a spanning trail starting with
v(e) and so G has a dominating e-trail.

Case 2 G is not collapsible.

Let G' denote the reduction of G. By Theorem B, G’ € {K;, K1., K2,
Si,m, P}, where t > 2, I,m > 1 and P is the Petersen graph.

If G’ = P, then by Corollary 7 of [7], G = G' = P and so G has a spanning
e-trail. By dlam(G) < 2, if G' = K4, then G = G' = K;, again and so
G has a dominating e-trail. Hence we assume G' € {K2, Ka:, Si,m}. Since
diam(G) < 2, at most one vertex of G’ is nontrivial, and if H denotes the only

nontrivial collapsible subgraph of G, then H is spanned by K, ¢, (¢ > 1). Thus
G has a spanning e-trail again.

This proves Corollary 1. O
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