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Abstract. Let Ey, denote the minimum number of edges in a graph that contains every

tree with n edges. This article provides two sets of data conceming (n + 1)-vertex
graphs with E, edges for each n < 11: first, a minimum set of trees with nedges such
that all trees with n edges are contained in such a graph whenever it contains the trees
in the minimum set; second, all mutually nonisomorphic graphs that contain all trees
with nedges.

1. Introduction.

Let E, denote the minimum number of edges in a graph that contains every tree
in T3, the set of all trees with n edges. Let S, and P, denote the star and path,
respectively, in T,. Following [1] we refer to a graph that contains S, and P, as a
star-path containment graph, and let (SP), denote a star-path containment graph
onn+ 1 vertices. For n > 2, an edge-minimum (SP),, has 2n— 2 edges when
*, the central vertex of Sy, is an interior vertex of P,, andhas 2n— 1 edges when
* is a terminal vertex of P,: see Figure 1.1. We always use x to denote the center
of S, and will often omit nonpath edges between x and other vertices.
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Figure 1.1

In accordancc with [1], we let

e, = E, — minimum number of edges in an (SP),;

on = number of unlabeled, mutually nonisomorphic graphs with n+ 1 vertices
and E, edges that contain 7;

Ko = minimum cardinality of S, C T; such that every (n+ 1)-vertex E,-edge
graph that contains S,, also contains 7;,.

We refer to such an S, with |Sy,| = u, as a minimum sufficient set.

Table I summarizes the main enumeration results for n < 11 taken from Fish-
bum [1].

‘This anticle was written during the author’s visit to the Department of Mathematics, University of
Stirling, Scotland in 1990-91. The author is grateful for financial support from the British Council.
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n E, e, 0n lT;tl Hn
1 1 0 1 1 1
2 2 0 1 1 1
3 4 0 1 2 2%
4 6 0 2 3 2%
S 8 0 2 6 2
6 11 1 7 11 3
7 13 1 13 23 3
8 16 2 26* 47 5
9 18 2 2% 106 5

10 22 4 235

11 24 4 551

We have checked these independently for n < 11 and found that the numbers
for p3, pa, os, and oy, in Table I are incorrect. Table IT summarizes our main
enumeration results.

Table II
n E, e, [ IT;LI Hn
1 1 0 1 1 1
2 2 0 1 1 1
3 4 0 1 2 1
4 6 O 2 3 1
5 8 0 2 6 2
6 11 1 7 11 3
7 13 1 13 23 3
8 16 2 25 47 5
9 18 2 17 106 5
10 22 4 776 235 14
11 24 4 2307 551 38

The values for Ey, ey, and T, (1 < n < 11) are easy to verify. In this article
we discuss only o, and u,,.

2. Minimum sufficient sets.

It is easily seen for n= 1 and n = 2 that S,, which is identical to P,, forms a
minimum sufficient set.

Therearc 2 trees in 3. Graph GC3.1 withn+ 1 = 4 verticesand E; = 4 edges
contains all trees in 73 except S3. Hence, we have S3 € S3,and so u3 > 1. There
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is only one graph (G3.1) with 4 vertices and 4 edges that contains S3 . Graph G3.1
also contains P;, and, hence, G3.1 contains all trees in T3. Therefore, S3 = {S3},
p3 = 1,03 = 1. (See Figure 2.1.)
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P3 s3 . GC3.1
Figure 2.1 T3 and graphs GC3.1 and G3.1
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G3.1

Similarly, there are 3 trees in 73. Graph GC4.1 withn+ 1 = 5 vertices and
E4 = 6 edges contains all trees in T4 except S;. Hence, we have S5 € Sa,
pa > 1. There are only two graphs (G4.1 and G4.2) with 5 vertices and 6 edges
that contain S;. Both G4.1 and G4.2 contain P, and Ty, hence, contain all trees
in T3. Thercfore, we have S4 = {S4}, p4 = 1, 04 = 2. (See Figure 2.2.)
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Figure 2.2 7Ts and graphs GC4.1, G4.1, G4.2
From the above, we have

Theorem 2.1. For n from 1 to 4, the values of p,, and oy are :py = o1 = 1;
pr=02=1; p3=03=1; pa=1;, 04 =2.

In fact, S, must be a member of every minimum sufficient set. If G is a graph
onn+ 1 vertices with E, edges that contains T, and if one edge incident to x is
deleted and replaced by an edge elsewhere, then the modified graph can contain
virtually all trees in T, except Sy.

The trees in the minimum sufficient set need not be unique. Let us take n= 5,
for example. There are 6 trees in Ts. Graph GC5.1 with n+ 1 = 6 vertices
and Es = 8 edges contains all trees in Ts except T5.1 and T'5.2. Hence, either
T5.1 € Ss orT5.2 € Ss,and so us > 2. (See Figure 2.3.)
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Figure 2.3 TS.1, T5.2, and GC5.1

There are 13 trees besides Syo in a minimum sufficient set for n = 10. (They
are noted as T10.1 — T10.13 in Figure 2.4.) (For n from 5 to 9, see [1].)
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Figure 24 T10.1-T10.13 and GC10.1 - GC10.13

There are 37 trees besides S;; in a minimum sufficient set for n = 11; they are
available from the author on request.

Two things necd to be verified for each alleged minimum sufficient set. First
we must demonstrate that each set is sufficient, that is, every graph with n+ 1
vertices and E, edges that contains the trees in the set contains all trees in T..
This is discussed further in the next section. Secondly, we must show that the set
is minimum, and to that end we take n= 10, for example, to see how to establish
appropriate lower bounds for y.,.

There are 235 trees in Tjo. Graph GC10.i (1 < i < 13) withn+ 1 = 11
vertices and Eyo = 22 edges contains all trees in T3 except T10.i (1 <€ 1< 13),
ana so pjo > 14. (See Figure 2.4.)

In a similar way we have ps > 3, p7 >3, ug > 5, uo > 5,and p1; > 38.
From above we have

Lemma 2.2. For 5 < n< 11, wehave j, > B,, where Bs = 2, Bs=pr=3
Bo =P =5, Bio =14, and B, = 38.

3. Nonisomorphic containment graphs.
In view of Lemma 2.2 we now carry out the following procedure by computer:

(1) for 1 < i < By, construct the set SGn.i of all graphs with n + 1 vertices
and E, edges that contain T'n.¢ and S,;
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(2) determine SGn= SGn1NSGn2 N...NSGn.Gn;
(3) verify that cvery graph in SGn contains every tree in T,,.

We conclude the following, where M, denotes the setof trees Tn.iand S, (1 <
1< Bu)-

Theorem 3.1. For 5§ < n< 11, p, = Br and M, = S,.

We illustrate our procedure in the case n = 6. There are two trees in Mg besides
Ss. (See Figure 3.1.) There are 13 mutually nonisomorphic graphs withn+ 1 =7
vertices and Es = 11 edges that contain T6.1 and Sg. (See Figure 3.2.) There are
9 mutually nonisomorphic graphs with 7 vertices and 11 edges that contain T6.2
and Sg. (Sec Figure 3.3.) There are 7 graphs that belong to both SG6.1 and SG6.2.
(See Figure 3.4.) Every graph in SG6 contains all trees in T¢. Hence, we have
pe = 3, g6 = |SG6| = 7. We find similarly that g5 = 2, o7 = 13, 05 = 25,
o9 =17, o10 = 776, and oy1 = 2307.

Figure 3.1 The trees in Mg besides Sg
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Figure 3.2 The set SG6.1
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Figure 3.3 The set SG6.2
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G6.1 £ GG6.1.12 £ GG6.2.2

Pt 6.2 £ G6e6.1.1 £ GG6.2.3
* [l

—_— S G6.3 ¥ 6G6.1.8 £ GG6.2.5
»*

——N G6-4 £ GG6-1.5 £ GG6.2.6
»*

— . G6.5 £ 6G6.1.7 £ GG6.2.7
»*

—_— G6.6 £ 6G6.1.6 £ GG6.2.1

* .
- G6-7 £ 6G6.1.9 ¥ GG6.2.8

Figure 3.4 The set SG6

The graphs in SGn are called minimum containment graphs in [1]. Figure 3.5
shows all the graphs in SGn for n = 8 and n = 9. For n from 5 to 7, see [1].
There are 776 graphs in SG1o and 2307 graphs in SG; : they are available from
the author on request.
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