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1. Introduction

Abstract — Hill and Newton showed that there exists a [20, 5, 12; 3]-code,
and that the weight distribution of a [20, 5, 12; 3}-code is unique. However, it
is unknown whether or not a code with these parameters is unique. Recently,
Hamada and Helleseth showed that a [19, 4, 12; 3]-code is unique up to equiv-
alence, and characterized this code using a characterization of {21,6;3, 3}-
minihypers. The purpose of this paper is to show, using the geometrical structure
of the [19, 4, 12; 3)-code, that exactly two non-isomorphic [20, 5, 12; 3)-codes ex-
ist.

Let V(n;q) be an n-dimensional vector space over GF(q). If C is a k-
dimensional subspace in V{(n;q) such that every nonzero vector in C has a
Hamming weight (i. e., number of nonzero coordinates) of at least d, then C is
denoted an [n, k, d; g]-code. The well-known Griesmer bound [Griesmer, 1960,
Solomon and Stiffler, 1965] states that

n> g [qﬂ (1.1

where [z] denotes the smallest integer > .

A coding theory problem that has been the subject of considerable research
is the following:

Main Problem. Characterize all [n, k,d; q)-codes meeting bound (1.1) with
equality.

Hill and Newton recently described a [20, 5, 12; 3]-code. In this paper we
show that, up to equivalence, there are two types of [20, 5, 12; 3]-codes.

2, Preliminary results

It is easy to show that if an [n, k, d < g¥~!; g]-code meets bound (1.1) with
equality, then any two column vectors of a generator matrix of the code must
be linearly independent over GF(g). Thus, in this case, it can be convenient
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to think of the set of columns of a generator matrix as a set of points in the
finite projective geometry PG(k — 1,g). Each column vector (cg, .. .,ck-1)T
represents a point P,

k-1
(cor--ycxo1)f o P= (Zc,-u,-) @.1)

=0

where (v9), ..., (vk-1) are k linearly independent, arbitrarily chosen points in
PG(k - 1,q).

Since the point (av) is equal to () for any nonzero element a € GF(qg),
we need to consider as potential generator matrix columns only those vectors
(coy.--,cr—1)T that have “1” as its last nonzero entry, i. e. that satisfy

3i:05i5k—1:{2:‘1), i<j<k-1 22

Let Si 4 be the set of vectors (c, . .., cx—1) that satisfy (2.2). Clearly S q
is isomorphic to PG(k — 1,g). When we, in the sequel, use the term “point”,
it will also refer to a point in PG(k — 1,q) as well as to the corresponding
vector in Sk,q.

Define v = (¢' — 1)/(g — 1), which is the number of points in a finite
projective geometry PG(l — 1,q9) (or in an (I — 1)-flat in PG(k — 1,q)). A
set F of f points in a finite projective geometry PG(2,q) is an {f, m;t,q}-
minihyper (also known as a min-hyper) if m(> 0) is the largest integer such
that all hyperplanes in PG(t, q) contain at least m points in F.

Proposition 2.1. [Hamada, 1987]. Let F be a set of f points in Sk, q, and let C
be the subspace of V(n;q) generated by a k x n matrix (denoted by G) whose
column vectors are all the vectors in Sy g\ F, wheren=vy— f, 1 < f < v —1.

(1) Let H, = {y € Sk,q | 2y = 0 over GF(q)} for any nonzero vector z
in Sx.q. Then H, is a hyperplane in PG(k — 1,q), and the weight of the code
vector zG is equal to

|FOH,|+¢"1-F.

(2)Inthe case k > 3 and 1 < d < ¢*~, C is an [n, k, d; q)-code meeting the
Griesmer bound if and only if F is a {v — n, vg_y — n+d; k — 1, q}-minihyper.

Definition 2.2. Two [n, k, d; g]-codes C; and C are said to be C-equivalent if
there exists generator matrices G; for C;, ¢ = 1, 2, such that G, = G1DP (or
G2 = G;PD) for some permutation matrix P and some nonsingular diagonal
matrix D with entries from GF(q).



Remark 2.3. (1) There is a one-to-one correspondence between the set of all
nonequivalent [19, 4, 12; 3]-codes meeting the Griesmer bound and the set of all
{21, 6; 3, 3}-minihypets,

(2) There is a one-to-one correspondence between the set of all nonequivalent
[20, 5, 12; 3])-codes meeting the Griesmer bound and the set of all {101, 32;4, 3}-
minihypers.

Let R® S denote the 1-flat in PG(¢, 3) that contains two points R and S.

Definition 2.4. Let .7_-'(1, 1,2;¢,3), t > 3, denote the family of all sets K in
PG(t,3) such that

3 .
K =(V\{Qhu (U (R:® s,-)) 23)

i=1

for some points @, Ry, R3, R3, 51,52, S3 and some 2-flat V C PG(%,3) such
that (a) {Q, Ry, R, R3} is a 1-flat in V' and (b) {So, 51, S2, S3} is a 1-flat in
PG(t7 3) such that V'N {501 51, 52, S3} = {SO} and SO ¢ {Q: Rl) R2a RS}'

Remark 2.5. For i = 1,2, 3, let Tz and T3 be two points such that R; & S; =
{R;i, Si, Ti2, Tiz}. Then K in (2.3) can also be expressed in the form

K = (V\{@}U{(S1 =)T11, Tu2, Tv3, (S2 =)To1, Tao, Tos, (S5 =)T1, Ts2, Ts3}-
249

Proposition 2.6. [Hamada and Helleseth, 1990]. F is a {21, 6; 3, 3}-minihyper
ifand only if F € F(1,1,2;3,3). Equivalently, any [19, 4, 12; 3])-code must be
generated by a matrix on the form Sy 3\ F with F € F(1,1,2;3,3).

Let @, Ry, Ry, R3, Sy, S1, S2, S3 be the points corresponding to the follow-
ing column vectors:

1 2
0 1
0 0 !

o - OO
_=o oo

0
0
1
1

OO~
-_NOo o

0
1

3 0 b
0

0 0

Then V is the 2-flat in PG(3,3) generated by points Q, Ry, and Sy. We
can assume without loss of generality (w. 1. o. g.) that the six points
T2, T13, T2a, Tp3, T30, T33 can be represented by the following vectors:

0 0 1 2 2 1
1 2 1 2 1 2
o)'to)prlr)pirprte)'ye2
1 1 1 1 1 1



Thus, any {19, 4, 12; 3]-code is C-equivalent to the code generated by the matrix
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We shall employ the following fact:

Proposition 2.7, Let F be a {21, 6; 3, 3}-minihyper as defined by (2.4). There
exist six lines Ly, Ly, Ly, My, M, M3, satisfying the following conditions:

C-1. Three lines L1, Ly, L3 are parallel and V O\ L; = {R;} for j = 1,2,3.

C-2. Three other lines My, M2, M3 are parallel and V N M; = {R;} fori =
1,2,3.

C-3. There is a unique point T;; such that M; N L; = {Ty;} for 4,5 € {1,2,3}.

C-4. The sets {Q, Ry, Ry, R3} and {Q, Ry, Rs, R3} are two lines in V.,

Further, three points Ta1, Tp2, Ty (0r Tia, T2p, T3y) are collinear if and only
fo=p=nr
This structure is described by Figure 1.

Figure 1. 7(1,1,2;3,3)




Proof. We can assume w. 1. o. g. that the points @, Ry, So,S1, S2, S3
correspond to the vectors

1 )

o= O o

0
0
0
1

N —-X-
=N o o

1 0
0 1
oj'ro})’
0 0

where the vector notation still is defined by (2.1). We can further assume that
Ry = (vo + 1), R3s = (2vp + v1) (since the case of R, = (2vo + 1), R3 =
(vo+ v1) can be linearly transformed into the assumed one). Also, {Tis, Ti3} =
{(v1 + v3), (2v1 + v3)} and we can assume w. 1. 0. g. that Ty = (v1 + v3) and
T3 = (2v1 + v3).
It follows that {T%2, T3} = {(Vo +vi+va+ Vs), (21/0 +2u + v + 1/3)}, and
{T2, Tss} = {(2v0 + v1 + 2v2 + v3), (Vo + 201 + 202 + 13)}.
Let Top = (vo+v1+ve+vs), Tos = (2v0+ 201+ va+vs), Tse = (2vo+11+2vp+
v3), T3 = (vo+2v1+2v9+v3), and let L; = {R;, Ty;, T, T3j}’i_.= 1,2,3, and
M; = R ® S; = {R;, Ti1, Tip, i}, i = 1,2, 3, where Ry = Sp, Ry = (vo + va)
and R3 = (21/0 + l/z).
{M;li =1,2,3}U {L;|j = 1,2,3} are sets of lines that satisfy conditions C-1,
C-2, C-3, and C-4. The final statement of the theorem is obvious (see Figure 1).
a

Definition 2.8. Let G C PG(t,q). Alternatively, the points of G can be viewed
as the columns of a generator matrix (also denoted G) with ¢ + 1 rows of a
g-ary linear block code. Let £(G) be the set of lines in PG(%, ) that contain at
least two points in G. For each point P € PG(t, g), let I(P, G) be the number
of lines in £(G) that contain P. Finally, let the line incidence distribution
{l:(G)} be defined by

I(G) = [{P € PG(t,q) | (P, G) = i}}.

Lemma 2.9. Let G be a matrix containing as columns three linearly dependent
points of PG(t,q),

P10 P20 P30 = apio+ Bp2o
Pi=|pu |, Po=| pu |, Ps= | p3i = apri+ Bpx

D P2 Pt = apy + Bpa

Then a row operation on G transforms P, P, Py into three points Py, Py, P
that are also linearly dependent,



Proof. Suppose a multiple of the i row is added to the top row. Then

Plo = P10 + P Dhy = P20 + TP
Py = P Py = P
DPie P2
while
P30 = (apio + Bp2) + v(apii + Bp) ap}y + Bpiy
Py = P3i = apii + Bpai = | api+ Bpx
Pae = apie + Bpx apit + Bpx

O

Corollary 2.10. Let Gy and G3 be generator matrices of C-equivalent codes.
Then the line incidence distributions {1;(G1)} and {1;(G2)} coincide.

Progf. This follows from Definition 2.2 and Lemma 2.9.
O

Remark 2.11. From Corollary 2.10, the line incidence is specific to a code rather
than to a generator matrix for the code. Thus we shall also refer to the line
incidence of a code C, {1;(C)} = {l:(G)}, where G is any generator matrix for C.

3. The [20,5,12;3]-codes.

Hill and Newton recently gave an example of a [20,5,12;3]-code. In
this section we show that codes with these parameters are not unique up to
C-equivalence. We shall let C and G denote a [20, 5, 12; 3]-code and some
generator matrix for C, respectively.

Definition 3.1. Given a linear block code, let {A;} and {B;} denote the weight
distribution of the code and its dual, respectively.

Proposition 3.2. [Hill and Newton, 1988]The weight distribution of a
[20, 5, 12; 3]-code is

Ag=1,4,,=150,A4,5 = 72, Ay = 20,
and in particular By = Bs = B3 = 0. Hence, for any generator matrix G of

a (20,5, 12; 3)-code, it holds that any three points corresponding to columns of
G are linearly independent.



Proposition 3.3. Let C be the code described by Hill and Newton. The line
incidence distribution of C is

15(C) = 10, I3(C) = 40, 1,(C) = 20, I5(C) = 26, l(C) = 5, ho(C) = 20.
3.1

Proof. This follows by tedious but straightforward enumeration.
O
In order to characterize all nonisomorphic {20, 5, 12; 3]-codes, we shall use
Proposition 2.6 as follows: Let @ = (v), Ry = (»1),R2 = (vo +v1), R =
(2v9 + 1), So = (v2), 51 = (v3), 82 = (v2 + 13),53 = (2v2 + v3), where
(v0), (1), (v2), (v3) are linearly independent points in PG(3,3). We shall in
the following consider the points as column vectors as defined by (2.1).
W. 1 o. g, G has a “1” in the first position of the first row, and “0” in
the remaining positions of the first column. Deleting the first row and the first
column, we obtain a generator matrix for a [19, 4, 12; 3]-code, which w. 1. o.

g. can be assumed to be on the form of (2.5):

1 0 a; ap by by ¢e1 c2 di d2 e1 e2 i f2 g1 g2 b hy & 2
011 2 1 2 1 2 1 2 0 2 0 11 2 0 1 0 2
¢G=J|00 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
o0 0 0 0 0 0 01 1 1 1 11 2 2 2 2 2 2
o001 1111111 11111 11 111

(3.2

Since B3 = 0, we note that certain restrictions apply on a;, ay, by, . . ., %2.
For instance, the sum of two times the second column, two times the third
column and the fourth column must be nonzero, hence 2a; + a3 # 0(mod 3).
Similar arguments lead to a set of 39 restrictions on a1, a, by, - . ., 22:

a1 +2a#0
al+81+i2$0
as+batcaZE0

aitbh+ea#0
a1 +e+iuF0
ay+da+g2#E0

ay+di+g1 0
a1+ fa+ha EO
ayter+iaE0

as+ fi+ho O ag+foth 0 b +2baF0

bi+da+i 0 bi+ea+hi#0 bi+fi+g#O

bi+ fo+g1#0 bot+di+4u#0 by+dy+ia#0

boter+haZ0 ba+fitgiEO0  c1+20F0 (33)

cit+di+heZEO0 ci+da+h1#E0 cr+er+g2#E0

e+ fitiaEz0 ca+di+hF0 coter+g1#0

catea+gaZEO 62+f2+i1¢0 di+2dy#0

di+er+fiEg0 doter+foE0  e1+2e#0
fi+2f#0 91+292#0 g1+hi+ia#0

gathe+i1#£0 hi+2ha %0 11+2i Z0



Observe that by deleting the second row and second column of G, we
obtain the matrix

1 a1 a2 by b2 ) c2 di dz e1 e2 f1 fo g1 92 hy hy @& 2
00 0 1 1 2 2 0 0 1 1 2 2 00 1 1 2 2
00 000 00 1 1 1 1 1 1 2 2 2 2 2 2
01 1 11111 11111111 111
34
which generates a [19, 4, 12;3]-code. Hence, the set of columns of S 3\G4
must equal a set F' constructed according to Definition 2.4, where each col-

Gi=

3
umn (ug, u1, ug, u3)* corresponds to the point (2 u‘-p.-), for some linearly

i=
independent points (l"'O)» (P"l)s (“2): (l‘3)'

From Propositions 2.1 and 2.6, and from (3.4), we see that Q =
(1,0,0,0) = (uo), and V is the 2—flat generated by (uo), (1), and (u3).

Let x; denote the i™ column of the matrix G* given by

.

a3 by c3 d3 es f3 g3 hy i

«_(0 1 2 0 1 2 0 1 2
=10 001 11 2 2 2 @.3)
1 1 1 1 1 1 1 1 1
where {a1,a2,a3} = {b1,boyb3} = --- = {i1,ia i3} = {0,1,2}.

Then it follows from Propositions 2.1 and 2.6, and from (3.4), that
{T,]l) le, T]3x T21) T22) T23: T3h T321 T33} = {xl: X2y -0 )x9}'

Let g;, for < = 1,2,...,9, denote the vector obtained from x; by deleting
the first component. Then it can be shown that there are exactly 12 subsets of
{21,y . ..,20}, each consisting of three vectors which are linearly dependent
over GF(3). These subsets are:

{21, 72, 23} {21, 24,27} {21, 25, 39} {21, 7, 25}
{22, 24, 20} {22, 25, 28} {z2, 76, 27} {23, 74, 28}
{23: 25, 27} {23, Zg, z9} {24, Zs, 26} {57! Zg, 29}

In order to find the correspondence between the set {x1,x»,...,xg} and
the set {T3;} in Figure 1, we consider all 3 x 3 arrays that satisfy the following
conditions:

1. Each array consists of 9 vectors 21, 23, .. ., 2g.
2. Each row consists of three vectors that are linearly dependent.
3. Each column consists of three vectors that are linearly dependent.

10



There are exactly six (nonequivalent) arrays that satisfy these three conditions.
These are:

Z1 Z4 2Z7 Z1 24 2Zv Z1 Zg Zg
Ay z5 %Zg 22 As=| z¢ 2o 23 Ag= | 2z¢ 27 22
Zg %3 Zg Zg Zo &g Zg 23 Z4

Observe that each of these arrays represents a set of six equations (of rank
five). The solutions of these equation sets can be expressed in terms of four
parameters, say, «, 3,7,6. For example, the solutions to the first equation set

be expressed as
a B 200+ 20
204+2y 28+26 a+B+vy+6
Since this set of solutions also represents the ordered set (a3, b3, . . ., i3), we can

assume (by performing suitable row operations on the matrix G* in (3.5)) that
a = 8 = v = 0. Thus, the solution of the first equation set is simplified to

0 0 0
Al = 0 6 26 .
0 25 ¢

Further, by multiplying the first row of G* in (3.5) by §, we can assume that
§ = 1 (since we are only interested in nonzero solutions).
Thus, the vector (as,bs,...,%3) can be assumed to be on one of the

following forms:

Case a3 by c3 di3 ez f3 g3 hy i3
I 0o 0 0 0 1 2 0 2 1
II o 0 0 0 2 1 2 0 1

II1 0o 0o 0 0 2 1 1 2 0
v 0 0 2 0 2 0 o0 1 1
v 0 0 2 0 1 1 0 2 o0
VI 0 0 2 0 0 2 1 1 0

11



It is a simple matter to check these six cases against the conditions (3.3).

Applying a simple bactracking search, in case I we get the nine solutions
vi,..., Vg, where

ar a2 by b2 c1 c2 di dy e e2 fi fo g1 g2 hi Ry i 4
v 2 1 1 2 1 2 1 2 2 0 1 0 1 2 1 0 2 o0
vz2: 1 2 2 1 2 1 1 2 2 0 1 0 2 1 0 1 o0 2
vs: 1 2 2 1 2 1 2 1 0 2 0 1 1 2 1 0 2 0
vg: 2 1 1 2 2 1 2 1 0 2 1 0 1 2 1 0 0 2
vs: 1 2 2 1 1 2 2 1 0 2 1 0 2 1 0 1 2 0
vg: 2 1 1 2 2 1 1 2 2 0 0 1 2 1 0 1 2 0
vp: 1 2 1 2 2 1 2 1 2 0 0 1 2 1 1 0 0 2
vg: 2 1 2 1 1 2 1 2 0 2 1 0 2 1 1 0 0 2
ve: 2 1 2 1 1 2 2 1 2 0 0 1 1 2 0 1 2 0

Let G, be the family of matrices on the form (3.2) with one of the vectors
vi,t = 1,...,9 in the place of (a1,a2,...,12), and let C; be the family of
codes generated by some G € G;. It can be verified that all codes in C; have
minimum distance 12.

There are no solutions in cases II, III, IV, and V, but in case VI we get
the solutions

a; a2 by b2 c1 c2 dy dy e e fi f2 g g2 h hy i 42
w: ¢ 2 1 2 0 1 1 2 2 1 0 1 2 0 2 0 2 1
w: 2 1 2 1 1 0 2 1 1 2 1 0 0 2 0 2 1 2

Let G2 be the family of matrices on the form (3.2) with one of the vectors
u;,i = 1,2 in the place of (aj, az,...,12), and let Cy be the family of codes
generated by some G € G. Again, it can be verified that all codes in C, have
minimum distance 12.

Theorem 3.4. For i € {1,2}, let Cy and C» be two codes in C;. Then C; and
C2 are C-equivalent.

Proof. Let C, be the code generated by the rightmost 18 columns of matrix G4
of (2.5). Let m and 7 be two permutations of 18-tuples such that

1r|=(127813143491015165611121718)
m=(13 14 15 16 18 17 1 2 4 3 5 6 7 8 10 9 12 11).

(For instance, w maps the vector v = (v1,v2v3,...,v3) into vy =
(v13, V14, 15, . . ., ¥11)). It is easy to verify that =, and v, are automorphisms
of C4. Applying these permutations to the vectors vy, ..., vy (or uy, uy), and
adding a suitable linear combination of the three lower rows of G4, we find
that all the vectors vi,..., vy (resp. uy, ug) generate C-equivalent codes, as
shown in Figure 2:

12



Figure 2. Action of the permutations m; and .

O
Theorem 3.5. Let C, € C, and C; € Cy. Then C, and C, are not C-equivalent.
Proof. The line incidence of C; is given by (3.1), while the line incidence of
Cy is

L(Cq) = 10, ly(C2) = 90, ho(C2) = 1, Ly(C2) = 20.

By Corollary 2.10, C; and C, are C-nonequivalent.
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