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Abstract. We give a complete solution to the existence problem for subdesigns in
complementary Pj-decompositions, where P3 denotes the path of length three. As a
corollary we obtain the spectrum for incomplete designs with block size fourand A = 2,
having one hole.

1. Introduction.

In a recent paper, Rees and Stinson posed, and gave nearly complete solutions
for, several problems involving subdesigns in combinatorial designs [7]. Since
then, two of these problems have been completely solved (embeddings of Kirk-
man Triple Systems and embeddings of (v, 4,1)-BIBDs [8, 9, 10]). In this pa-
per, we give a complete solution to a third problem, namely, that of determining
the spectrum for complementary path decompositions with subdesigns, where the
paths are all isomorphic to P, the path with three edges.

A complementary decomposition 2K, — (P, P3) is an edge decomposition
of the complete graph K, into P;s with the property that upon taking the com-
plement of each path one obtains a second decomposition of K, into Pys. (The
complement of the path abcd is the path bdac.) Note that if D is such a decompo-
sition then the set {{a, b, ¢, d}: abcd € D} is an edge decomposition of 2 K, into
Kys, that is, a (v,4,2)-BIBD. The following result was proven by Granville,
Moisiadis, and Rees in [2] (and, with a few small exceptions, also follows from
the techniques in this paper):

Theorem 1.1. There exists a complementary decomposition 2 K, — (Ps, P3)
ifand only if v = 1 modulo 3.

A subdesign (or subsystem) in a complementary decomposition2 K, — (Ps, P3)
is a complementary decomposition 2 K, — (Ps, P3) for some complete multi-
subgraph 2 K, C 2 K,,. Since this yields a (v,4, 2)-BIBD with a sub-(w, 4,2)-
BIBD a necessary condition for existence is that v > 3w + 1. It was shown in [7]
that this is sufficient in all but finitely many cases:
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Theorem 1.2. Left v = w = 1 modulo 3, v > 3w+ 1 and v—w > 411,
Then there exists a complementary decomposition 2 K, — ( Py, P3) containing
a subsystem 2K, — (P, P3).

We will show that the condition v — w > 411 can be removed from the hypoth-
esis of Theorem 1.2. Our techniques will be essentially independent of those in
(7); we will use a type of design called an incomplete self-orthogonal latin square
for our constructions.

A latin square is called self-orthogonal if it is orthogonal to its transpose. An
incomplete self-orthogonal latin square 1SOLS(n, k) is an n x n array A with
entries from an n-set S, such that for some k-subset &' C S:

(i) each cell of A is either empty or contains an element of S;
(ii) the subarray indexed by S’ x &' is empty;
(iii) the elements in row or column s are precisely those of S\S' if s € S, and
those of S if s ¢ S'; and
(iv) if we superimpose the transpose array A7 onto A we obtain all ordered pairs
in(Sx8)\(§x8).
Note that an ISOLS(n, 1) is equivalent to a self-orthogonal latin square of order
n. The spectrum for ISOLS(n, k) has been almost completely determined (see
Heinrich and Zhu [3], and Heinrich, Wu and Zhu [4]):

Theorem 1.3. Let k > 0. There exists an ISOLS(n, k) if and only if n >
3k + 1, with the exceptions (n, k) = (6,1) and (8,2), and possibly (n,k) €
{(6m+2,2m):m > 1}.

2. Constructing complementary P; -decompositions
from self-orthogonal latin squares.

Let A be a self-orthogonal latin square of order nand AT be its transpose. We
may assume that A is written on the symbols 1,2, ... ,n and, furthermore, that
the (4,4)-entryin A is 1, foreachi = 1,2,... ,n Foreachiand j with 1 < 1,
7 < nletus denote the (i, 7)-entry in A by 1 * j and the (4, ) entry in AT by i-;.
Letv = 3n+ 1 and label the vertices of K, with ({1,2,... ,n} x Z3) U {oo}.
Consider the following collection of paths in K, (note that since 1. j is the symbol
J *4,i%jand . j are distinct when i # j): (4% j,2+ 1) (4,2)(7,z)(i-j,z+ 1)
where 1 <1 < j < nandz = 0,1,2 (addition is modulo 3 in the second
coordinate), together with

oo (1,0) (4,1) (4,2)
(4,0) (1,2) oo (3,1)

where 1 < 1 < n. Since A is idempotent and i- j = j * 1 it can be readily verified

that the above forms an edge-decomposition of K,. Moreover, since A and AT are
orthogonal, we obtain a second edge-decomposition upon taking the complement
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of each of the above paths:

(1,2) (4-5,z+ 1) (ixj,2+1) (j,z)
4,0 (1,2 oo @i,
oo (3,00 (1D (2

wherel1 < i< j<nandz=0,1,2.

Now consider an ISOLS(n, k) A, with symbol sets S = {1,2,...,a} and
S'={n—k+1,n—k+2,...,n}. Again we may assume that the (3, 1)-
enryin Aisiforl1 < i< n—&k Letv=3n+1andw = 3k+ 1. Then
the foregoing construction, with i restricted to 1 < 1 < n— k, will yield and
edge-decomposition of the graph K,_,, VK, (where V denotes the usual join
function and K ,, is the empty graph with w vertices) into Pss with the property
that upon taking the complement of each path one obtains a new decomposition of
Ky—w VK, into Pss. By constructing a complementary decomposition 2 K, —
( P;, P3) (the existence of which is guaranteed by Theorem 1.1) on the ‘hole’ in
the above design, we have now established the following:

Theorem 2.1. If there is an ISOLS (n, k) then there is a complementary decom-
position 2 K31 — ( Py, P3) containing a subsystem 2 K331 — (P, P3).

3. The results.

It will be assumed throughout this section that the reader is familiar with the
definitions and notation for group-divisible designs (GDDs) and pairwise balanced
designs (PBDs).

We will need the following preliminary result.

Lemma3.1. Foreach u > 4 there is a4-GDD of type 6%*(3u—3)". Also, there
is a4-GDD of type 3462.

Proof: A 4-GDD of type 3462 appears in the appendix of (7]. A 4-GDD of type
6"(3u—3)! is obtained by adjoining a group “at infinity’ to a resolvable 3-GDD
of type 6. These latter designs exist for all u > 4 (see [1,6]). [ |
Theorem 3.2, Letv=w=1modulo3, v>3w+1,v#3w+4 and (v,w) /

= (19,4). Then there exists a complementary decomposition 2 K, — (Ps, P3)
containing a subsystem 2K, — (B, B).

Proof: If w = 1 apply Theorem 1.1. Now suppose that w > 4 and letn = %1
and k = 251, From Theorem 1.3 there is an ISOLS(n, k). Apply Theorem 2.1.

Theorem 3.3. For each w = 1 modulo 3 there is a complementary decomposi-
tion 2 K3y+a — (P3, P3) containing a subsystem 2K, — (B, P3).

Proof: If w = 1 apply Theorem 1.1, and if w = 4 apply Theorem 2.1 to an
ISOLS(5,1). If w = 7 adjoin a point to each group in a 4-GDD of type 34 62
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to obtain a PBD({4, 7 }; 25) and construct a complementary path decomposition
on each block. If w > 10 adjoin a point to each group in a 4-GDD of type 6 5t
(w - 1)! to obtain a PBD({4,7,w«}; 3w + 4) and construct a complementary
path decomposition on each block. |

Theorem 3.4. There is acomplementary decomposition 2 K19 — (P, Ps) con-
taining a subsystem 2 K4 — (P3, P3).

Proof: Vertex set (Zs x {1,2,3}) U {oo1, 002,003,004}
Develop the following paths modulo 5:

001(0,1)(3,1)(3,2) 003(0,3)(3,3)(3,1) (4,1)(3,2)(2,1)(4,2)
(4,2)001(0,3)(1,3) (4,1)003(0,2)(1,2) (2,2)(1,3)(0,2)(2,3)
002(0,2)(3,2)(3,3) 004(0,1)(3,2)(1,3) (0,3)(1,1)(2,3)(0,1)
(4)3)002(0)1)(111) (1v2)°°4(0!3)(211) 001 002 603004

002 004 001 003

Collecting Theorem 3.2, 3.3, and 3.4, we now have established

Theorem 3.5. There is a complementary decomposition 2 K, — (P, P3) con-
taining a (proper) subsystem 2K, — (Ps, P3) ifand only if v = w = 1 modulo
3andv > 3w+ 1.

Recalling that a complementary decomposition 2 K, — ( P3, P3) gives rise to
a(v,4,2)-BIBD we get the following as a by-product of Theorem 3.5:

Corollary 3.6. There is a (v,4,2)-BIBD containing a (w,4,2)-BIBD as a
(proper) subdesign if and only if v=w =1 modulo 3and v > 3w+ 1.

An incomplete PBD (of index )\) is atriple (X, Y, B) where X is a set of points,
Y isa subset of X (called the hole) and B is a collection of subsets of X (blocks),
satisfying:
(i) each unordered pair of points from X occurs either in Y or in exactly A
blocks; and
(ii) foreachblock B; € B,]Y NB;| < 1.
A (v, w; K)-IPBD of index is an incomplete PBD with |X| = v, [Y| = w, and
|Bi| € K for each block B; € B.
The spectrum for incomplete PBDs of index 1 with block size 4 has been deter-
mined by Rees and Stinson [9] and Mills [5]:

Theorem 3.7. Let w > 0. There exists a (v, w; {4})-IPBD of index 1 if and
only if v > 3w + 1 and either

(i) v=1 or4modulo 12 and w = 1 or4 modulo 12; or
(ii) v=7 or 10 modulo 12 and w = 7 or 10 modulo 12,
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Note that this yields a broader spectrum of pairs (v, w) than that which occurs
by considering only embeddings of (w, 4, 1)-BIBDs. The same phenomena does
not occur when A = 2, however; it is not difficult to verify that if a (v, w; {4})-
IPBD of index 2 exists, then v = w = 1 modulo 3 and v > 3w + 1. Hence, the
spectrum for these designs is an immediate consequence of Corollary 3.6:

Theorem 3.8. There exists a (v, w; {4})-IPBD of index 2 if and only if v =
w=1modulo3and v > 3w+ 1.

Proof: Remove the blocks from the sub-(w, 4, 2) -BIBD to create a hole of size
w. |

Conclusion.

In concluding, we would like to thank the referee for pointing out that R. Wei has
determined the spectrum for incomplete BIBDs with block size four and A = 3,
while G. Kong and L. Zhu have settled the case A = 6. These results, together
with our Theorem 3.8, and the results of [9], will determine the spectrum for
(v, w; {4})-IPBD of index for any A > 1.
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