Subdesigns in Complementary Path Decompositions and Incomplete Two-fold Designs with Block Size Four

Rolf Rees

Department of Mathematics and Computer Science Mount Allison University

C. A. Rodger

Department of Algebra, Combinatorics and Analysis Auburn University

Abstract. We give a complete solution to the existence problem for subdesigns in complementary P_3 -decompositions, where P_3 denotes the path of length three. As a corollary we obtain the spectrum for incomplete designs with block size four and $\lambda=2$, having one hole.

1. Introduction.

In a recent paper, Rees and Stinson posed, and gave nearly complete solutions for, several problems involving subdesigns in combinatorial designs [7]. Since then, two of these problems have been completely solved (embeddings of Kirkman Triple Systems and embeddings of (v, 4, 1)-BIBDs [8, 9, 10]). In this paper, we give a complete solution to a third problem, namely, that of determining the spectrum for complementary path decompositions with subdesigns, where the paths are all isomorphic to P_3 , the path with three edges.

A complementary decomposition $2K_v \to (P_3, P_3)$ is an edge decomposition of the complete graph K_v into P_3 s with the property that upon taking the complement of each path one obtains a second decomposition of K_v into P_3 s. (The complement of the path abcd is the path bdac.) Note that if D is such a decomposition then the set $\{\{a,b,c,d\}: abcd \in D\}$ is an edge decomposition of $2K_v$ into K_4 s, that is, a (v,4,2)-BIBD. The following result was proven by Granville, Moisiadis, and Rees in [2] (and, with a few small exceptions, also follows from the techniques in this paper):

Theorem 1.1. There exists a complementary decomposition $2 K_v \rightarrow (P_3, P_3)$ if and only if $v \equiv 1$ modulo 3.

A subdesign (or subsystem) in a complementary decomposition $2K_v \to (P_3, P_3)$ is a complementary decomposition $2K_w \to (P_3, P_3)$ for some complete multisubgraph $2K_w \subseteq 2K_v$. Since this yields a (v, 4, 2)-BIBD with a sub-(w, 4, 2)-BIBD a necessary condition for existence is that $v \ge 3w + 1$. It was shown in [7] that this is sufficient in all but finitely many cases:

Theorem 1.2. Let $v \equiv w \equiv 1$ modulo 3, $v \geq 3w + 1$ and $v - w \geq 411$. Then there exists a complementary decomposition $2K_v \rightarrow (P_3, P_3)$ containing a subsystem $2K_w \rightarrow (P_3, P_3)$.

We will show that the condition $v - w \ge 411$ can be removed from the hypothesis of Theorem 1.2. Our techniques will be essentially independent of those in [7]; we will use a type of design called an incomplete self-orthogonal latin square for our constructions.

A latin square is called *self-orthogonal* if it is orthogonal to its transpose. An *incomplete self-orthogonal latin square* ISOLS(n, k) is an $n \times n$ array A with entries from an n-set S, such that for some k-subset $S' \subset S$:

- (i) each cell of A is either empty or contains an element of S;
- (ii) the subarray indexed by $S' \times S'$ is empty;
- (iii) the elements in row or column s are precisely those of $S \setminus S'$ if $s \in S'$, and those of S if $s \notin S'$; and
- (iv) if we superimpose the transpose array A^T onto A we obtain all ordered pairs in $(S \times S) \setminus (S' \times S')$.

Note that an ISOLS(n, 1) is equivalent to a self-orthogonal latin square of order n. The spectrum for ISOLS(n, k) has been almost completely determined (see Heinrich and Zhu [3], and Heinrich, Wu and Zhu [4]):

Theorem 1.3. Let k > 0. There exists an ISOLS (n, k) if and only if $n \ge 3k + 1$, with the exceptions (n, k) = (6, 1) and (8, 2), and possibly $(n, k) \in \{(6m + 2, 2m): m > 1\}$.

2. Constructing complementary P_3 -decompositions from self-orthogonal latin squares.

Let A be a self-orthogonal latin square of order n and A^T be its transpose. We may assume that A is written on the symbols $1,2,\ldots,n$ and, furthermore, that the (i,i)-entry in A is i, for each $i=1,2,\ldots,n$. For each i and j with $1 \le i$, $j \le n$ let us denote the (i,j)-entry in A by i * j and the (i,j) entry in A^T by $i \cdot j$. Let v=3n+1 and label the vertices of K_v with $(\{1,2,\ldots,n\} \times Z_3) \cup \{\infty\}$. Consider the following collection of paths in K_v (note that since $i \cdot j$ is the symbol j * i, i * j and $i \cdot j$ are distinct when $i \ne j$): (i * j, x + 1) $(i, x)(j, x)(i \cdot j, x + 1)$ where $1 \le i < j \le n$ and x = 0, 1, 2 (addition is modulo 3 in the second coordinate), together with

$$\infty$$
 (i,0) (i,1) (i,2) (i,0) (i,2) ∞ (i,1)

where $1 \le i \le n$. Since A is idempotent and $i \cdot j = j * i$ it can be readily verified that the above forms an edge-decomposition of K_v . Moreover, since A and A^T are orthogonal, we obtain a second edge-decomposition upon taking the complement

of each of the above paths:

$$(i, x) (i \cdot j, x + 1)$$
 $(i * j, x + 1) (j, x)$
 $(i, 0)$ $(i, 2)$ ∞ $(i, 1)$
 ∞ $(i, 0)$ $(i, 1)$ $(i, 2)$

where $1 \le i < j \le n$ and x = 0, 1, 2.

Now consider an ISOLS(n,k) A, with symbol sets $S=\{1,2,\ldots,n\}$ and $S'=\{n-k+1,n-k+2,\ldots,n\}$. Again we may assume that the (i,i)-entry in A is i for $1 \le i \le n-k$. Let v=3n+1 and w=3k+1. Then the foregoing construction, with i restricted to $1 \le i \le n-k$, will yield and edge-decomposition of the graph $K_{v-w} \vee \overline{K}_w$ (where \vee denotes the usual join function and \overline{K}_w is the empty graph with w vertices) into P_3 s with the property that upon taking the complement of each path one obtains a new decomposition of $K_{v-w} \vee \overline{K}_w$ into P_3 s. By constructing a complementary decomposition $2K_w \to (P_3, P_3)$ (the existence of which is guaranteed by Theorem 1.1) on the 'hole' in the above design, we have now established the following:

Theorem 2.1. If there is an ISOLS (n, k) then there is a complementary decomposition $2K_{3n+1} \rightarrow (P_3, P_3)$ containing a subsystem $2K_{3k+1} \rightarrow (P_3, P_3)$.

3. The results.

It will be assumed throughout this section that the reader is familiar with the definitions and notation for group-divisible designs (GDDs) and pairwise balanced designs (PBDs).

We will need the following preliminary result.

Lemma 3.1. For each $u \ge 4$ there is a 4-GDD of type $6^u(3u-3)^1$. Also, there is a 4-GDD of type 3^46^2 .

Proof: A 4-GDD of type 3^46^2 appears in the appendix of [7]. A 4-GDD of type $6^u(3u-3)^1$ is obtained by adjoining a group 'at infinity' to a resolvable 3-GDD of type 6^u . These latter designs exist for all $u \ge 4$ (see [1,6]).

Theorem 3.2. Let $v \equiv w \equiv 1 \mod 3$, $v \geq 3w + 1$, $v \neq 3w + 4$ and (v, w) / = (19, 4). Then there exists a complementary decomposition $2K_v \rightarrow (P_3, P_3)$ containing a subsystem $2K_w \rightarrow (P_3, P_3)$.

Proof: If w = 1 apply Theorem 1.1. Now suppose that $w \ge 4$ and let $n = \frac{v-1}{3}$ and $k = \frac{w-1}{3}$. From Theorem 1.3 there is an ISOLS(n, k). Apply Theorem 2.1.

Theorem 3.3. For each $w \equiv 1$ modulo 3 there is a complementary decomposition $2 K_{3w+4} \rightarrow (P_3, P_3)$ containing a subsystem $2 K_w \rightarrow (P_3, P_3)$.

Proof: If w = 1 apply Theorem 1.1, and if w = 4 apply Theorem 2.1 to an ISOLS(5, 1). If w = 7 adjoin a point to each group in a 4-GDD of type $3^4 6^2$

to obtain a PBD($\{4,7\}$; 25) and construct a complementary path decomposition on each block. If $w \ge 10$ adjoin a point to each group in a 4-GDD of type $6^{\frac{w+2}{3}}$ $(w-1)^1$ to obtain a PBD($\{4,7,w*\}$; 3w+4) and construct a complementary path decomposition on each block.

Theorem 3.4. There is a complementary decomposition $2K_{19} \rightarrow (P_3, P_3)$ containing a subsystem $2K_4 \rightarrow (P_3, P_3)$.

Proof: Vertex set $(Z_5 \times \{1,2,3\}) \cup \{\infty_1, \infty_2, \infty_3, \infty_4\}$. Develop the following paths modulo 5:

Collecting Theorem 3.2, 3.3, and 3.4, we now have established

Theorem 3.5. There is a complementary decomposition $2K_v \to (P_3, P_3)$ containing a (proper) subsystem $2K_w \to (P_3, P_3)$ if and only if $v \equiv w \equiv 1$ modulo 3 and v > 3w + 1.

Recalling that a complementary decomposition $2K_v \rightarrow (P_3, P_3)$ gives rise to a (v, 4, 2)-BIBD we get the following as a by-product of Theorem 3.5:

Corollary 3.6. There is a (v,4,2)-BIBD containing a (w,4,2)-BIBD as a (proper) subdesign if and only if $v \equiv w \equiv 1 \mod v \geq 3w + 1$.

An incomplete PBD (of index λ) is a triple (X, Y, B) where X is a set of points, Y is a subset of X (called the *hole*) and B is a collection of subsets of X (blocks), satisfying:

- (i) each unordered pair of points from X occurs either in Y or in exactly λ blocks; and
- (ii) for each block $B_i \in B$, $|Y \cap B_i| \le 1$.

A (v, w; K)-IPBD of index is an incomplete PBD with |X| = v, |Y| = w, and $|B_i| \in K$ for each block $B_i \in B$.

The spectrum for incomplete PBDs of index 1 with block size 4 has been determined by Rees and Stinson [9] and Mills [5]:

Theorem 3.7. Let w > 0. There exists a $(v, w; \{4\})$ -IPBD of index 1 if and only if $v \ge 3w + 1$ and either

- (i) $v \equiv 1$ or 4 modulo 12 and $w \equiv 1$ or 4 modulo 12; or
- (ii) $v \equiv 7$ or 10 modulo 12 and $w \equiv 7$ or 10 modulo 12.

Note that this yields a broader spectrum of pairs (v, w) than that which occurs by considering only embeddings of (w, 4, 1)-BIBDs. The same phenomena does not occur when $\lambda = 2$, however; it is not difficult to verify that if a $(v, w; \{4\})$ -IPBD of index 2 exists, then $v \equiv w \equiv 1 \mod 3$ and $v \geq 3w + 1$. Hence, the spectrum for these designs is an immediate consequence of Corollary 3.6:

Theorem 3.8. There exists a $(v, w; \{4\})$ -IPBD of index 2 if and only if $v \equiv w \equiv 1 \mod 3$ and v > 3w + 1.

Proof: Remove the blocks from the sub-(w, 4, 2)-BIBD to create a hole of size w.

Conclusion.

In concluding, we would like to thank the referee for pointing out that R. Wei has determined the spectrum for incomplete BIBDs with block size four and $\lambda = 3$, while G. Kong and L. Zhu have settled the case $\lambda = 6$. These results, together with our Theorem 3.8, and the results of [9], will determine the spectrum for $(v, w; \{4\})$ -IPBD of index for any $\lambda \geq 1$.

Acknowledgements.

Research supported in part by NSERC grant OGP 36507 (first author), and by NSA grant MDA-904-88-H2005, and NSF grant DMS-8805475 (second author).

References

- 1. A.M. Assaf and A. Hartman, Resolvable group divisible designs with block size 3, Annals of Discrete Math. 77 (1989), 5-20.
- 2. A. Granville, A. Moisiadis, and R. Rees, On complementary decompositions of the complete graph, Graphs and Combinatorics 5 (1989), 57-61.
- 3. K. Heinrich and L. Zhu, *Incomplete self-orthogonal latin squares*, J. Austral. Math. Soc. Ser A 42 (1987), 365–384.
- 4. K. Heinrich, L. Wu, and L. Zhu, *Incomplete self-orthogonal latin squares ISOLS* (6 m + 6, 2 m) exist for all m, Discrete Math. 87 (1991), 281-290.
- 5. W. H. Mills, Certain pairwise balanced designs, Utilitas Math. 36 (1989), 153-159.
- R Rees and D. R. Stinson, On resolvable group-divisible designs with block size 3, Ars Comb. 23 (1987), 107–120.
- R. Rees and D. R. Stinson, On combinatorial designs with sub-designs, Discrete Math. 77 (1989), 259–279.
- 8. R. Rees and D. R. Stinson, On the existence of Kirkman triple systems containing Kirkman subsystems, Ars Comb. 25 (1988), 125-132.
- 9. R. Rees and D. R. Stinson, On the existence of incomplete designs of block size four having one hole, Utilitas Math. 35 (1989), 119-152.
- R. Wei and L. Zhu, Embeddings of S(2,4,v), Europ. J. Combin. 10 (1989), 201–206.