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Abstract. We examine properties of a class of hypertrees, occurring in probability,
which are described by sequences of subscripts.

1. Introduction.

Tomescu [6] shows how to improve the Bonferroni inequalities for the proba-
bility of a union of events by including a term determined by a hypertree (de-
fined in the next section). Specifically, if {Ai, ..., A,} are arbitrary events and
Sjn = ZP(A; ... Ay)), where A;, ... Ay is the notation for the intersection of
these events, and the sum is taken over all subsets 1 < ) < ... < i; < nof size
j then:

P (UA.—) <Y (-1 S~ Toarm, 7 o0dd; (1.12)
s=1 j=1
n r 3

P (UA,') > E(—l)"_l Sj,u + Tr+1,m r éven; (1.1b)
i=1 j=1

where Ty 1,4 = Z P(A;, ... Ai,,), the summation being over all the edges {1, ... ,
ir+1} Of any hypertree of order n and degree r + 1. Referring (o a probability

term or bound as being of degree d if it involves intersections of at most d of the
{Ai,...,A,} then these bounds are of degree ~+ 1. When r = 1 (1.1a) becomes

the degree two upper bound

P (U A.-) < S1a— ) P(4i4)), 12)

f=1 T
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7 being any tree with vertices {1,2,... ,n}, an inequality due to Hunter [4].
A degree three lower bound

n -1
( A) > Sin—S2a+ D0 P(Aj1AsA), 13)
1=1

i=3 j=2

was earlier obtained by Hoppe [2] by a method in which an existing upper (lower)
bound is “iterated” into a lower (upper) bound. (1.3) is of the form (1.1b) with
r = 2 because the collection of triples {(j — 1,/,1):2 < j<i—1,3<i< n}
form the edges of a 3-hypertree, and, in fact, this method is closely related to
Tomescu’s inductive proof of (1.1) since a hypertree emerges as the object to which
a tree iterates,

Using iteration beginning with the inequality

(UA.) > max P(A)

f=1

and then optimizing over all permutations of subscripts Seneta (5] obtained

P (UA.-) < 81 — max E max  P(A;A) (1.2p)

et <k<Li-1

where IT is the set of all permutations of subscripts of A,,... , A,. Since, subject
to some permutation, the edges of any tree can be described as a collection of pairs
{(4,k); i >2, 1 < k < i— 1} this formulation produces the optimal bound in
the class (1.2) by finding a maximal spanning tree using permutation of subscripts
to generate all trees.

More recently Hoppe and Seneta [3], refining [2], developed a direct approach,
not requiring induction or iteration, by first establishing an identity for the proba-
bility of a union

P (UA;-) =) (1S (=) Aty 720 (14)
i=1 j=1
where

-1
Ar+l,n= E P(U AkA,'iA,'z...A,',)

2<i1<iz..<ir<n k=1

and then bounding each P(UAA; A;, ... A;,) by the probability of a single term
in the union, say P(AgA; A;, ... A;) forsome 1 < k < i) — 1. The events
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A; are given an arbitrary labelling from which ensue the following degree r + 1
bounds:

i=1

n T
P (U A.-) <3 (=1)/"'8j = Drar, 7o0dd; (1.5a)

j=l

P (UA.) >3 (=1)"'Sja = Dyurp, 7evem (1.5b)

i=1 j=1
where

Dys1 4 =max E max P(AgA;A; ... As).
I ) iy iz mcipgn ' SkSH (1.6)

When r > 2 the collection of subscripts permitted on the right side of (1.6) has
the structure

(kyityeen in): 2<i1<...<ip<m 1<k<ii—1 (L)

subject to some permutation. Since all trees can be generated by permutation of
subscripts as in (1.2p) it might be expected that »-hypertrees (r > 3), which are
defined recursively and have a structure not as visually transparent as that of trees,
could also be described concretely with the representation (1.7). However, (1.7)
does not generate all hypertrees. It does describe a large class of r-hypertrees
having an interesting structure some of whose properties are presented here,

2, Recursive definition of hypertrees.

Let X = {z1,...,z,} be a set of vertices and E = {E},..., En} a collection
of subsets of X whose members are called edges. The pair (X, E) is called an
r-uniform hypergraph if, for each 1 < 1 < m, E; contains exactly r vertices.

Definition: [6] An r-hypertree 75 = (X, E) of order n and degree r is an r-
uniform hypergraph having the following additional structure:
(@) if r =2 then 7] is a tree;
(b) if r > 3 and r = nthen 77 has only one edge {z1,... ,Za};
(¢) ifr >3 andr < n—1 then there is some point, z, called a terminal vertex,
for which:
@) if B,... , En, are all the edges containing x then Ey — {z},... , Em—
{z} are the edges of an (r — 1)-hypertree with vertex set X — {z};
(@ii) if Fy,..., F, are all the edges not containing z then they form the
edges of an r-hypertree on X — {z}.
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The definition is recursive, an r-hypertree of order n being defined in terms of
an (r — 1) -hypertree of order n — 1 and an r-hyperiree of order n — 1. Each of
these hypertrees in turn is constructed from hypertrees of order n — 2. Thus, at
this stage four hypertrees are required. The procedure continues, each hypertree
generated requiring two for its construction, until either it has been reduced to an
a-hypertree of order a (3 < a < 1) or a 2-hyperiree (that is a tree) of order b
(2 < b £ n—r+2). Each of these may readily be constructed and may be
viewed as the ultimate basic building blocks.

We count the number required in general. Ateach step in the recursive construc-
tion the order of the trees involved is dropped, and the degree is either maintained
or reduced by one. In the steps to a 77 beginning with a 7] the penultimate hy-
pertrce must be a 72, ;. This requires r — a reductions of degree and n— (a + 1)
reductions of order. Since a reduction of degree always results in a reduction of
order, we need count the number of reductions of order which also reduce de-
gree. There are clearly (*;°;') such selections. To arrive at a 72 hypertree the
penultimate hypertree must be 13’” which requires r — 3 reductions of degree and
n— (b + 1) reductions of order, for a total of (*-%;') possible choices. These
binomial coefficients count the maximum number of hypertrees of the specified
types needed for the construction of a general 7. Of course, fewer may be needed
if the same lower order hypertrees are used more than once. For instance when
n= 10 and r = 5, in general as many as 56 individual hypertrees may need to
be constructed to build up a general 73, although as few as eight of these may
suffice (by duplication) to construct various special cases. These are enumerated
below according to type and multiplicity. The multiplicity refers to the maximum
number of hypertrees, of the degree and order specified, required for the general
case, calculated by the binomial coefficients above.

hypertree I O S
multiplicity 1 5 15 1 3 6 10 15.

If one is interested in optimizing the bounds (1.1) it is a tedious task to enumerate
all hypertrees.

3. Permutation hypertrees.

In this section we formalize some properties of the collections of subscripts (1.7)
defined in [3]. Let I,_; denote the collection of all (r — 1) tuples of integers
i=(1,...,5%),2 < <...<d <nlete: I,y — {1,2,... ,n—r+1}
be any function satisfying 1 < ¢(d) < i) — 1. Let 7 = (m,#2,...,m,) be any
permutation of (1,2,... ,n) and define the collection of ordered r-tuples

E.x= {(1r,-°,1r,~,,... ,11',-,_,): i€l and i =c(9)}.

We identify each (m;,,m;,,... ,7,_,) as an edge of an r-hypergraph whose ver-
tices are {1,2,... ,n}. When = is the identity the set E. is a typical collection
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of subscripts in (1.7) used to define D,+1,,. Use of a general 7 merely allows an
arbitrary labe1ling of the events { A;}, or equivalently, a permutation of subscripts.

Theorem 1. For each ¢ and w the pair (X, E.5) is an r-hypertree on X =
{1,2,...,n}.

Proof: Without loss of generality let 7 be the identity. Suppose we have verified
that (X, E. ) is an r-hypertree for those values of r and nsatisfying1 < n< N,
1 < r < n. Consider the vertex set X = {1,2,... , N+ 1}. If r = N + 1 this
theorem is trivially true. Assume then that r < N. Those subsets of X which
do not contain the point z = N + 1 are of the form (4o, 11,...,4r—1) Where
2 <4 <...< i1 £ N, ip = (i), and, thus, form the edges of an r-hypertree
on{1,2,...,N); while those subsets of X which do contain z are of the form
(40,%1,.-. ,4r-2,2) Where2 < i; < ... < i,_2 < N, ip = c(4), and, thus, with
z removed are the edges of an (r— 1) -hypertree on X —{z}. Hence, z is a terminal
vertex in the sense of part (c) in the definition of a hypertree, forcing (X, E,x)
to have the recursive structure defining an r-hypertree on X. This completes the
induction step and the proof. [ |

Definition: We call (X, E. ,) a permutation hypertree and denote it by 7 .
Tomescu [6] proves the following properties, by induction.
(i) Every r-hypertree of order n has ("_]) edges.
(i) If d( z) is the number of edges containing z then d(z) > ("~3) and d(z) =
“2) if and only if  is a terminal vertex.

For permutation hypertrees these properties are intuitive. Assume without loss
of generahty that « is the identity. For 7 x property (i) is obvious because I,_l
has ( elements. As for (ii) if z € {2,3,... ,n} then z lies in exactly (
elemems of I,_; while additionally z may be determmed by the function ¢ as a
possible choice for io and so = lies in at least (*-2) edges. Butif = = 1 then any
(r —1)-tuple in I,_; with §; = 2 forces ¢(3) = 1 = z and the corresponding edge
must, therefore, contain z. So again d(z) > (*22).
Two other properties are:

(iii) d(Mp_rs2) = d(Mgors3) = ... = d(m,) = (*Z3) and so a permutation r-
hypertree contains at least » — 1 terminal vertices. This follows by noting
thatc(i) & {n—r+2,... ,n} sovertex j (n—r+2 < j < m) liesinanedge
(c(%),9) if and only if j is one of the subscripts comprising the elements of
i. Removing ; from the set {2,3,...,n} leaves n — 2 integers of which
r—2 must be selected, in addition to 7,tocompletes. Thus, d(m;) = (r_2

(iv) Every 2-hypertree is a permutation hypertree and, hence, a permutation 2-
hypertree contains at least two, not at least r — 1 (= 1) as whenr > 3,
terminal vertices.
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Theorem 2. Forr >3 andn> r+ 2 there exist permutation r-hypertrees with
exactly s terminal vertices, foranyr —1 < s<n-1.

Proof: Note the anomalous cases r = 2,andn=r+ 1 wherer < s < n— 1.
The proof given, counting edges and vertices, explains why the pattern breaks
down for these values. First let s = » — 1 and without loss of generality let =
be the identity. Introduce the term “facet” to refer to a subset of size r — 1 in
an r-uniform hypergraph. There are ("_}) facets in I,_;, represented as ordered
sequences 1, to each of which is adjoined another vertex c(f) to form all the edges
(c(1),3) of a general pennul.almn r-hypertree. Each of the vertices {2,3,... ,n}
appears in exactly ( of these facets. If 4; = 2 then c(d) must be 1 resulung in
(r-2) edges of the foxm (1, c(s)) in each of which both vertices 1 and 2 appear.
Thus, counting appearances of vertices in these ( ) edges and the remaining
(*21) = (*22) = (°2) facets in I,_; yet to be completed, we see that every
vertex {1,2,... ,n} has already appeared (*_2) times. Whenever we adjoin a
vertex to complete a facet into an edge, the vertex selected, as a consequence of
appearing in more than the permitted ("2 ) edges cannot be a terminal vertex.
As the r — 1 points {n— r + 2,... ,n} are terminal vertices and since c(f) ¢
{n—r+2,...,n}thenin order to achieve exactly r — 1 terminal vertices each
of the points {1,2,...,n— 7 + 1} must be selected at least once as a value of
¢(4) ,i ranging over all remaining (*~%) facets.

When r = 2 there are ("_2) = n— 2 facetsand n— r+ 1 = n— 1 vertices and
50 at least one vertex cannot be adjoined verifying that a tree must have at least
2 terminal vertices (which is well known and only included for completeness of
the argument). There are (/) facets to which j,2 < j < n—r+ 1, can be
adjoined, and note that vertices 1 and 2 share the same such facets since we have
considered those with 4; = 2. This quantity exceeds one unless n— j = r — 1
which, together with2 < j < n—r+1 forces n = 7+ 1 (and, consequently, j = 2
as the only permissable value), again leaving only one facet for the two vertices
1,2. Thus, all permutation hyperirees with n = r + 1 have at least r terminal
vertices. In the remaining cases, thatis r > 3 and n > r + 2, there are always
enough facets left to include each vertex {1,2, ... ,n—r+ 1} as a possible value
for (1) ; consequently, it is possible to construct permutation r-hypertrees with
exactly » — 1 terminal vertices.

For general s we merely omit some vertices, say {n—s+1,... ,n—r+1}, for
definiteness, as possible values for c(f) and so achieve exactly s terminal vertices
foreachr—1<s<n-1. |

Theorem 3. Forr > 3 there exist hypertrees containing only one terminal vertex.

Proof: LetX = {1,2,3,4,5,6},7 = 3,and E = {(1,2,3),(1,2,4),(1,2,5),
(1,2,6),(1,3,5),(1,4,5),(2,3,6),(3,4,5),(3,4,6),(4,5,6) }. The edges
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containing the point6 are (1,2,6),(2,3,6),(3,4,6),and(4,5,6). Removing
6 from each edge leaves (1,2),(2,3), (3,4), and (4,5). These are the edges
of atree on {1,2,3,4,5}. The edges not containing 6 are (1,2,3), (1,2,4),
(1,2,5),(1,3,5), (1,4,5), and (3,4, 5), and these form the edges of a per-
mutation 3-hypertree on {1,2,3,4,5} where 7 = (21534) and c((2,3)) = 1,
c((2,4) =1,¢((2,5)) = 1,¢((3,4)) =2,¢((3,5)) = 1,and c((4,5)) =
3. Hence, (X, E) is, by definition, a 3-hypertree with a terminal vertex 6. A
check verifies that 6 is the only terminal vertex since all other vertices lie in at
least five edges, while a terminal vertex must lie in exactly (") = (3) edges. 1

Corollary. Forr > 3 there exist hypertrees which are not permutation hyper-
trees.

4. Final comments.

There appears to be scant literature on hypertrees. Tomescu’s recursive definition

was designed specifically [personal communication] to extend Hunter’s inequality
(1.2) to higher degree bounds. Permutation hypertrees form a proper subclass for
degree r > 3 and whenn > 6, as shown by our example in Theorem 3 display an
interesting contrast, when r > 3, between hypertrees, which can have only one
terminal vertex, and permutation hypertrees which must have at least r — 1.

There are other graph theoretic structures having tree-like properties, such as
k-matroid trees, a generalization of hypertrees, for which properties (i) and (ii)
hold [1].

In the probabilistic setting it is of interest to maximize (1.1). For degree three
and higher the issue of finding an efficient algorithm is open for both hypertrees
and permutation hypertrees.

For an r-uniform hypergraph H on {1,2,... ,n} the degree of a subset S in
H, denoted by dg(8), is the number of edges of H which contain S as a sub-
set. An r-uniform hypergraph H is called prunable if there exists an ordering
Ey, BE,..., E, of the cdges of H such that there exists a facet f; € E; with

dg_(&,,..5)(fj) = 1. 4.1)

Theorem 4. Every hypertree is prunable.

Proof: When» = 2 this is abasic property of trees and when n = 7 there is nothing
to prove. Suppose the theorem is true for all (r— 1) -hypertrees and all r-hypertrees
of order n— 1. Let z be a terminal vertex of an r-hypertree H = (X, E) where
E,,... , By, areall the edges containing z. By definition By —{z}, ... , Em—{z}
form all the edges of HX, an (+ — 1)-hypertree of order n — 1 with vertex set
X — {z}, which, by induction, is prunable. Let By — {z},... , Em — {z} be the
order in which these edges must be pruned. Thus, there exist facets fi,... , fm
where f; € E; — {z} whose degree in HX — {E) — {z},... ,Ej_1 — {z}} is
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1. Thus, the degree of f; U {z} in H — {E,,... , Ej_ } is 1. Consequently, the
edges E,,... , E, may be pruned in that order from H leaving those edges not
containing z which, being the edges of an r-hypertree of order n — 1 (on vertex
set X — {z}), may also be pruned, by induction. |

We close with an observation about the identity (1.4). It is not immediately
obvious from [6] that the bounds (1.1) become identities when each of the events
Ajp,..., A, is the sample space Q. However, this is clear from (1.4) since each
probability term then becomes unity reproducing the known combinatorial identity

°_jn=_°n—l)
> v/(3) =0 (";

with a probabilistic interpretation.
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