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Abstract. Consider the following two-person game on the graph G. Player I and II
move altematingly. Eachmove consists in coloring a yet uncolored vertex of G properly
using a prespecified set of colors. The game ends when some playercanno longermove.
Player I wins if all of G is colored. Otherwise Player Il wins. What is the minimal
number 4(G) of colors such that Player I has a winning strategy? Improving a result
of Bodlaender {1990] we show 4(T) < 4 for each tree T. We, furthermore, prove
~(G) = 0(log |G]) for graphs G that are unions of k trees. Thus, in panticular, 7(G) =
0(log |G)) for the class of planar graphs. Finally we bound 4(G) by 3w(G) — 2 for
interval graphs G. The order of magnitude of 4(G) can generally not be improved for
k-fold rees. The problem remains open for planar graphs.

1. Introduction.

Consider the following two-person game on a graph G. Players I and II move
alternatingly with Player I moving first, say. Each move consists in choosing a
vertex, say v, which is not yet colored and assigning one color from a prespecified
set of colors to it so that the resulting partial coloring of G has no two adjacent
vertices bearing the same color. The game ends as soon as one of the two play-
ers can no longer execute a feasible move. Player I wins if all vertices of G are
colored; otherwise Player II wins.

The game chromatic number «(G) of G is the smallest number.colors such
that there is a winning strategy for Player I. Bodlaender [1990] introduces the
game chromatic number and studies its computational complexity. He shows, for
example, that y(T") < 5 holds for rees T" and exhibits trees satisfying y(T") > 4.
(Most of his results, however, deal with a variation of the above game, in which
the vertices of G have to be chosen in a prespecified order.)

We study (@) for several classes of graphs. In Section 2, we improve Bod-
laender’s bound to 4(T") < 4 for trees and introduce a modified coloring game
on trees, which is useful for analyzing other classes of graphs. In Section 3, we
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look at graphs G' whose edge sets are unions of edge sets of k trees and prove
(@) = 0(log |G]) for fixed k. We, furthermore, exhibit an infinite number of
graphs G that are unions of two trees and satisfy 4(G) > c- log |G| for some con-
stant ¢ > 0. A direct application of these results yields v(G) = 0(log |G|) for
planar graphs G. (The problem of determining nontrivial lower bounds remains
open for planar graphs.) Section 4 is devoted to interval graphs G, which turn out
to satisfy 7(G) < 3w(G) — 2. Interval graphs G with 7(G) > 2w(G) can be
constructed.

It may be interesting to observe that many of our results for upper bounds on
7(G) actally refer to a generalization of the coloring game in the following way.
Instead of “coloring” vertices, the players just “mark” vertices of the graph G
alternatingly. Player I loses as soon as some unmarked vertex of G is adjacent to
more than K marked vertices. What is the minimum number K such that Player
I has a winning strategy?

2. Trees.

In this section, we will consider graphs that do not contain cycles. There is no loss

in generality when we assume that these graphs are connected, that is, are trees.
Bodlaender [1990] has shown that the game chromatic number (T’) of a tree T
satisfies y(T") < 5 and that there are trees T" with 4(T) > 4.

Theorem 1. If T is atree, then v(T) < 4.

Proof: We will give a winning strategy for the coloring game described in the
Introduction using only 4 colors.

Initially, Player I chooses an arbitrary vertex r of T", which will, henceforth, be
called the root, and assigns some color to it. During the whole game, Player I
maintains a subtree To of T that contains all the vertices colored so far. Player I
initializes Tp = {r}.

Suppose now that Player II has just moved by coloring vertex v. Let P be the
(unique) directed path from r to v in T and let u be the last vertex P has in common
with Tp. Then Player I does the following:

(1) Update Tp:=To U P.
(2) If u is uncolored, assign a feasible color to u.
(3) Ifuiscolored and Ty contains an uncolored vertex v € Ty, assign a feasible
color to v.
(4) Ifall vertices in Ty are colored, color any vertex v adjacent to Tp and update
To:=To U {v}.
It is clear that this strategy of Player I guarantees each player the existence of an
uncolored vertex with at most 3 colored neighbors until the whole tree is colored.
|
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Let us now consider a modification of the coloring game in which Player II
is allowed to color 3 vertices in one move. We denote by 7 the modified game
coloring number.

Theorem 2. There is a constant ¢ such that forevery tree T with n vertices the
modified game coloring number F(T) satisfies §(T) < c-logn.

Proof: The winning strategy for Player I is as follows. Before his r-th move, the
set V' of uncolored vertices of T" partitions into non-empty connected components
S7,...,87 (£ < m). Each such component S} is weighted with the number m( ST)
of colored vertices adjacent to Sf.

Player I now chooses a component S7 of maximal weight m(ST) and colors
a vertex v € ST so that SJ\{v} decomposes into connected components each
having weight at most 1 + [m(s])/2]. It is clear that Player I can indeed find
such a vertex v. The Theorem will follow if we can show that after Player I's r-th
move each component of V7\{v} has weight O(log n).

Itis convenient to consider the reduced weights s(S) = m(S) — 1 of connected
components S of uncolored vertices. The next property is obvious.

Claim A: Assume that the subset C C S of the connected component S is colored
and denote by S,..., S; the connected components induced on S\C. Then the
reduced weights satisfy

8(S1) + .-+ 38(8) < s(8) +]|C|

We need another technical fact.

Claim B: Assume that s, sy,..., s; and k are nonnegative integers such that s >
k+6,3;, >k (i=1,...,t),ands; +---+ 8; < s+ k. Theneithert =1 or

(4/3)° > (4/3)% +---+ (4/3)™.

We will use claim A and claim B with k£ = |C| < 3 in order to analyse the move
of player II. Informally, the two properties imply that player II cannot create many
large connected components and increase their “potential” at the same time. To
be more definite, let us say that a component S of uncolored vertices is large if its
reduced weight satisfies s(S) > 18; otherwise it is small. It follows from claim
A that Player II cannot induce large components when coloring at most 3 vertices
of S unless claim B becomes applicable in the analysis.

Let S1,...,S, be the nonempty connected components of uncolored vertices
after move » — 1 of player I. We associate with this collection of components the
potential

$ro1 = (4/3)% +(4/3)% + .-+ (4/3)%,
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where s; = m(8;) — 1. Note that the contribution of small components to the
potential ¢ is always bounded by

n(4/3)"" < 134n

ClaimC: ¢, — ¢,—1 < 1340

To prove claim C, consider the situation after Player I's (~— 1) st move. Player
II colors 3 vertices and thus induces a partition of the remaining uncolored ver-
tices into connected components ST, ..., Sj. Let s be the maximal reduced weight
occurring in this partition and denote by ¢!_, the associated potential. If s <
17, then Player I will also keep all components small in his r-th move. Thus
$r—dr-1 < $r < 134m

Assume, therfore, that s > 18. Suppose Player I colors & vertices, 1 < k< 3,
of 51, say, so that S; induces the new components S, ..., s{. If s; < 8, then the
new components are all small. If s; > 9, then claim B says that either exactly
1 large component is created or the net contribution to ¢.._; arises at most from
small components. Moreover, if exactly 1 large component arises from S}, then
the net contribution to ¢,_, comes from small components plus possibly a value

bounded by
(1/3) - (4/3)*! ifk=1
{ (2/3) - (4/3)*! ifk=2
(4/3)*! ifk=3
In other words, we obtain the bound
¢y — b1 <(4/3)*7 + 134n.

On the other hand, Player I's strategy for carrying out move r yields a decrease of
"y Of at least

(4/3)° = 2(4/3) 12,
Because s > 18, we observe
(4/3)°71 < (4/3)° —24/3)1**.
Hence
br — br-1 = (¢ — $y_1) + ($loy — bro1) < 134m.

The relation ¢, < 134 7% now is a direct consequence of claim C. It implies that
8(S) = O(log n) holds for all connected components S of uncolored vertices
occurring after any move of Player I, which proves the theorem. |

It will follow from the proof of Theorem 3 together with Theorem 4 below that
Theorem 1 cannot substantially be improved. If we define

g(n) = max{7(T) | T tree on n vertices},

then there is a constant € > O such that g(n) > ¢log n for infinitely many #»’s.
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3. Unions of trees.

‘We now turn our attention to k-fold trees, that is, to graphs that can be obtained as

aunion of k trees. If G is a union of trees T3, ... , T}, there is no loss in generality
when we assume that each tree T is a spanning tree of G. To keep our discussion
simple, we will only consider 2-fold trees, that is, the case k = 2. Note that the
usual chromatic number of a 2-fold tree G satisfies x(G) < 4. The situation turns
out to be quite different for the game chromatic number v(G).

Theorem 3. There is a constant ¢ such that each 2-fold tree G on n vertices
satisfies 7(G) < clogn.

Proof: Assume G is the union of the trees T and T>. We will bound the game
chromatic number of G by the modified game chromatic numbers of T and 75 :

G < () +(T2).

To see that this relation holds, compare the situation for Player I at move r +
2 with the situation at move r: some “opponent” has colored 3 vertices in the
meantime. A winning strategy for Player I can thus consist in playing according
to the modified coloring game relative to T if r is even and relative to T if r is
odd. |

Theorem 4. There is an infinite class of 2-fold trees G satisfying v(G) >
3 log, n, where n is the number of vertices of G.

Proof: We construct a graph G from the complete graph K, on ¢t = 2* vertices
as follows: we replace each edge of K; by 2t parallel edges and subdivide each
edge. Itis easy to see that G is a 2-tree. We claim that the game chromatic number
satisfies y(G) > k+ 1.

Let X, be the vertex set of K; and zy(s) be the vertex introduced on the sth
edge between x and y by the subdivision. We describe a coloring strategy for
Player II which will eventually force one of the players to use a (k + 1)st color.
This strategy is divided into & rounds; the ith round consists of 2 ¥~ plays.

At the start of the (¢ + 1)stround, ¢ = 0,... ,k — 1, there will be a subset
X; C X, of 2%= uncolored vertices, each of which is adjacent to a vertex already
colored with color o, fora = 1, ... , 1. Let M; be a matching of Z,. in K;. On his
Jth play of the ith round, Player II colors an uncolored vertex of the form zy( s)
with color ¢ + 1, where zy is the jth edge of M;. Note that such a vertex will
always be present, because there have been less than 2¢ plays so far.

At the end of the ith round each of the vertices in X; will be adjacent to a vertex
colored 1 + 1 and at least half will be uncolored. Thus, the uncolored vertices of
X will be sufficient to form X, ,. Clearly, after k rounds, one of the vertices in

X, will require the (k + 1) st color. |
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It is straightforward to extend the modified game on a tree to the case where the
opponent may color k vertices. With the potential function

o (52 e ()

then the analogue of Theorem 2 can be proved. Hence, also the statement of
Theorem 3 holds for k-fold trees (k fixed). As an application we are lead to

Corollary 5. There is a constant ¢ such that each planar graph G on n vertices
satisfies
1(G) < clogn.

Proof: Because each planar graph contains some vertex of degree at most S, each
planar graph is a 5-fold tree. 1

We do not know whether Corollary 5 is “best possible” in any sense. In fact, we
know nothing about the game chromatic number of series-parallel graphs. (Series-
parallel graphs are, in particular, planar 2-fold trees.)

4. Interval graphs.

Recall that the graph G is an interval graph if G is isomorphic to some graph
G(I) where the vertices of G(I) are a set I of intervals of the real line and two
distinct intervals 1, k € I are considered adjacentin G(I) ifiNk # ¢. Itis conve-
nient to think of an interval graph G = G(I) in terms of its interval representation
I. There is no loss in generality when we assume that all intervals ¢ € I have mu-
tually distinct left endpoints 2(1) and mutally distinct right endpoints r(1). Itis
well-known that the interval graph G allows a feasible coloring with w(G) colors,
where w(G) denotes the size of the largest clique in G.

Theorem 6. The game chromatic number v(G) of the interval graph G = G(I)
satisfies

HG) < 3w(G) - 2.

Proof: We give a winning strategy for Player I using 3w(G) — 2 colors. Ateach
turn Player I assigns a feasible color to the unique interval ¢ € I such that,

(a) if possible, 1 contains the last interval colored by Player II and
(b) subect to (a) 1 has the largest right endpoint r(1).
It remains to prove that this strategy works. First we introduce some notation.
At a given stage of the game, let C be the set of colored intervals. Define the
colored left, right, and middle degree cfd(1), crd({), and cmd({) by

ctd(i) = |{j € C\{i}: &(3) € j}|
crd(d) = |{j € C\{i}: 7(3) € j}|
emd(d) = |[{j € C\{i}:j C i}|.
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Clearly, cZd(1) and crd(s) never exceed w(G) — 1. If emd(s) # 0, let

w(s) = max{€(k):k € Iand k C 1}.

The Theorem now follows from the Lemma 7.

Lemma 7. At the end of every play by Player I, for every uncolored interval
i, there are at least emd(4) colored intervals k such that both r(i) € k and
w(d) € k; hence, cmd(i) < w(G) — 2.

Proof: We argue by induction on the number plays. After the first play the result
holds trivially. So assume the result is true for the first s plays by Player I and con-
sider the (s + 1) st play. First note that Player I always colors a maximal interval;
thus, cmd(s) does not increase during Player I's turn, for any interval 1.

Suppose that cmd(4) increased during the previous play by Player II, for some
uncolored interval . Then Player II colored an interval j C i. Thus { satisfies
condition (a) of Player I's strategy. If Player I colors ¢, then we are no longer
concerned about 5; otherwise Player I colors an interval, which contains 7, but has
r(j) > r(i). This increases the number of colored intervals k such that both
(1) € kand w(i) € k. [ |

To complete the proof of Theorem 6, note that at the end of any play by Player I,
any interval ¢ is adjacent of d = ¢2d(1) +crd(3) +cmd(d) colored intervals. So
d < 3w(@) — 4, and at the start of Player I’s next turn, d < 3w(G) — 3 and
3w(G) — 2 colors suffice. 1

We do not know whether the upper bound in Theorem 6 can be improved in
general. When proving lower bounds on the game chromatic number of the class
of interval graphs, we may assume that Player II plays first on a graph G, by taking
two disjoint copies of G. Itis easy to show that for each w, there is an interval graph
G withw(&) = w and

G > 2w (@) - 2.

Indeed, let Player II play first on the graph K, + Ip(,-1y, where G + H denotes
disjoint copies of G and H with all possible edges between the vertices of G and
H, and I,, is an independent set on » vertices. On each play Player II colors a
vertex of the independent set with an unused color. He can use at least w — 1
colors before Player I colors all the vertices of K,,_; withw — 1 different colors.

Similarly, Ip¢y_1) + Ky-1 + It + Ky_1 + In(,—1) has game chromatic number
2w — 1 when Player II goes first. We mention without going into details that
interval graphs can be constructed with game chromatic number 2w.

Finally, we observe that the following strategy, which we call the greedy strat-
egy, is not effective for Player I. When following the greedy strategy, Player I
always colors a vertex whose neighborhood has been colored with the maximum
number of colors.
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Theorem 8. For every k, there exists an interval graph G such that w(G) = 3,
but Player II can force k colors if Player I uses the greedy strategy.

Proof: Again, assume that Player II goes first. Let G consist of 2%-2 disjoint
copies of K3 + I Player II's strategy consists of kK — 2 rounds. At the start of the
ith round there are 2%-1-% copies of K + I such that none of the points in the
K, have been colored and exactly 1 — 1 of the points in the I have been colored,
using the colors 1,... ,i — 1. Player II completes the round in 2%~ plays by
coloring one point from each of these Iy with color i+ 1. Player I must respond by
completely coloring 2%-2-% of the cliques K. Thus, after k — 2 rounds & colors
will have been used. [ |
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