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Abstract. Let T,(m, n) (respectively, Py(m, n)) be the number of rooted maps, on
an orientable (respectively, non-orientable) surface of type g, which have m vertices
and n faces. Bender, Canfield and Richmond [3] obtained asymptotic formulas for
Ty(m,n) and Py(m,n) when ¢ < m/n < 1/eand m,n — oo. Their formulas
can not be extended to the extreme case when m or n is fixed. In this paper, we shall
derive asymptotic formulas for T,(m, n) and P,(m,n) when m is fixed and derive
the distribution for the root face valency. We also show that their generating functions
are algebraic functions of a centain form. By the duality, the above results also hold for
maps with a fixed number of faces.

1. Introduction.

A map is a connected graph G embedded in a surface S in such a way that every
component of S — G (called aface) is a topological disk. A map is rooted by dis-
tinguishing an edge, a direction along the edge and a side of the edge. Throughout
weuse g = 1 — x/2 to denote the type of a surface with Euler characteristic x.
For an orientable surface, g is the same as the genus. (See (2] for more details
about type.)

Consider m-vertex rooted maps which have some distinguished faces indexed
by a finite set I. Let ﬁg,,,.( z,y,21) be the generating function for such maps on
an orientable surface of type g, where £ marks the number of faces which are
neither the root face nor the distinguished faces, y marks the root face valency
and z; = {2;: 1 € I} marks the valencies of the distinguished faces. We similarly
define Mg.,,.(z, y,z;) for non-orientable surfaces, and define

M,,m(a:,y,zx) = ﬁg.m(ms v,z;) + Mg,m(zpyle)- Let

Ty(m,n) =[2"" IMym(z,1,20), Py(m,m) = [z"' 1My m(z, 1,2p);
T (m,n) =[z"" y*IMgm(Z,v,20), Pf(m,m) = [z v*1 MMy (2, v,20) .

Then Ty(m, n) (respectively, Py(m,n)) is the number of rooted maps, on an ori-
entable (respectively, non-oricntable) surface of type g, which have m vertices
and nfaces. Tf(m, n) and P§(m,n) are the number of such maps with root face

valency k. Bender, Canfield, and Richmond [3] obtained asymptotic formulas for
Ty(m,n) and Py(m,n) whene < m/n< 1/eand m, n — oo. In this paper, we

study the extreme case when one of m and n is fixed while the other goes to infin-
ity. By duality, we only need to study the case when m is fixed. The one-vertex
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maps have been studied in (4, 7, 8, 9], its generating functions (with respect to the
number of edges) have been calculated by Canfield [6] for g < 3. Some results
on two-vertex maps have been obtained in [10].

To state our results, we first introduce some notations. Throughout this paper,
R denotes /1 — 4 z. Ifu; is a set of indeterminates indexed by a finite set I, then
P( R; u;) denotea polynomial of R and u; with rational coefficients and Q( R; u)
denote the ring whose elements are of the form

R(1+ B[ (1 - (1 - Bu/2)™ P(Rup),
i€l
where a, b, and ¢;, are non-negative integers. When I = @, we simply denote

them, respectively, by P( R) and Q( R). We shall prove the following results.

Theorem 1. ﬁ,,,,(z,y,z;),[{,,m(z,y,z;) € Q(R;y,z;). Therefore, they are
algebraic functions.

Corollary 1. M,m(z,1,29) and Myu(z,1,29) are of the form
R™°(1 + R)~*P(R) for some non-negative integers a and b and polynomial
P.

Theorem 2. Forany e > 0, let k depend on n such that k/n € [e,1 — €] and
y = 2+ k/(n— k). Then there are positive numbers t(g, m; y) and p(g,m;y)
such that

2 n
TH(m, ) ~ t(g, m: ) 9" 3m=5 /2™ ( ;'L_l. ) ,

2 n
PE(m,n) ~ p(g,m;y)ntor2mS/2evt (y_yT) ,

uniformly for all such k as n — oo.

Theorem 3. There are positive contants t(g, m) andp(g, m) such that

Ty(m,m) ~ (g, m)n*?e*m=D/242,

Py(m,m) ~ p(g, m)n’o*m=2/24m,

as n— oo.

To avoid considcrable repetitions, we shall rely heavily on [2]. Refer to [2] for
those notations and terminologies not defined here.
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2. Functional equations.

For convenience, we shall use My (2, y, I) todenote My n(z,y,25), €tc., through-
out this section. Using the argument similar to that used in [2], we obtain that for
wél,

Mg,m(x: v, D)
m-1 (g.m)

=y, ). Mjuz,9,8) My jm-o(z,y,1- )
£=1 (4,5)=(0/29)

]
+2¢° E;M,_llm(z, g, I+ {w}) |z=y
w

2
+y? 3y (yMy12 m(z,9, 1))

+ ‘EEI zlyily [zIMg,m( z, 21,1 — {‘}) - yMg.m(:E: y, I — {1})]

+ yz—yl (Mg.m(x.!/, n- Mg.m(-'ﬂ: 1, I)) + 8""-18 '051'0'

and

Mom(Z,9,1)
m—-1 (g.m)

=12Y. Y Mz 9,8 Mg-jm-t(z,u,] - 5)
£=1 (4,5)=(0/2,9)

9 -
+ y3 TMg—l.m(-T; v, I+ {w}) Izu=ll
w

Z — . — .
+y z,y = " [leg,m( z, 21,1 = {i}) — yMom(z,y, I — {t})]
sel
Ty
y—1
Multiplying by 1 — y and rearranging terms, we can rewrite the above recursions
as

+

(Mom( 9, 1) = Mom(, 1,1)) + 61800815,

A(T, y)Mg.m(zy !/, I) (l)
m-1 (g,m}

=PF(1-). Y. Mdz,y,S My jmo(z,9,]-5)
L&=1 (j,5)=(0/29)

d
+ 2y3(1 - y)bTMg—l,m(xl vy, [+ {w}) Ilu=9

F (1 - y)a% (YMyo1f2.m(5.9, D)
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+(l—y)EZIsz

€1 1Y
+ 2y (Mym(z,1,1)) + (1 = y) 8m,18,087.9,

[Z]My.m(.'l:,ZI, I- {l}) - yMg,m(zsan - {i})]

and
Az, ) Mym(z,y, D) @
=y’ (A-9 Y. Y Midz,9,)My—jm-t(z,9,] - 5)
£=1 (5,5)=(0/2.8)
d -
+ ys(l -9 5;_Mg—l.m(xs v. I+ {w}) Iz.=y
w
+(1=9) 3 22 [erbMom(a, 21,1 = (i) = ¥¥om(z, 3,1 - {iD)]
i€l
+ 2y (Mom(,9,D) + (1= 9)8ma80081,
where
Alz,y) =zt +1—y. €))
3.
Proof of Theorem 1: Since A(z,y) = 0 has a unique power series solution
2
y=f(z) = T+ B’

Equations (1) and (2) determine My ,,(z,y,I) and ﬁg,,,.( z,y, I) recursively in
lexicographic order of (g, m, |I|), where |I| is the cardinality of I. Settingg = 0,
m=1,I=0andy = f in (2), we obtain

- 2
Mo,i(z,1,0) = TR
Substituting it into (2), we obtain
- 1
= 4
Mor( 00 = T T 7 @

Thus, Theorem 1 holds for (g, m, |I|) = (0, 1, 0). Suppose that Theorem 1 holds
for (7,£,|8]) < (g, m,|I|) with respect to lexicographic order. Then

M2z, 9,5) € Q(R:y,zs) forall (5,28 < (g, m, |I]).
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Setting y = £ in (2), we have My.m(z,1,1) € Q(R;Z;); substituting it into (2)
and cancelling out the factor 1 — (1 + R)y/2, we have

Mgm(z,9,I) € QUR;y,21).
Similarly, we can show that My m(z,y, ) € Q(R;y,2). Therefore,
ﬁg.m(z: y,I) = Mg.m(zg v, In - ﬁg,m(z’ y, I e Q(R; y:zl)

and, thereby, establishes Theorem 1.

By carrying out the first few calculations, (with the assistance of the symbolic
manipulation system Maple) we obtain

—t 2
Moa (=, 1.0 = gy gy
— 4
MOﬁ(zal:a) = Rs(l"'R)’

- 2(8 —2R—- R?
M0,4($’lsﬂ)= (Rg(l}:R)}z))

421 - 11R-4R*+ R?)

- 2
My 1(x,1,0) = BO+R)’
- 9+ R
Myp2(2,1,0) = BO+R)’
. 59 ~-6R—9R?
My 3(z,1,0) = “RBOIR
- 1773 — 627 R — 469 R? + 67 R?
Ml/2,4(xlllw) = 4R"(1+ R) ’
- 14325 — 8874 R — 4436 R? + 1954 R® + 119 R*
Ml/z,s(z)loo) = 4R|4(1+ R) ’
- 1
Ml.l(zylxw) = Es.)
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2(3+R)
R’(1+R)’
14+9R-3R?
RE(1+R)
3(29+ 4R—5R?)
R:(1+ R) !
2(83+27R-38R% —2R?)
R"(l + R) ’
1059 — 109R — 357 R? + 15R?
R(1+ R) ’
1864 + 38R — 1200 R + 75R® + 63 R*
R“¥(1+ R) !
48567 — 17532 R — 21706 R? + 4700 R® + 931 R*
4R“(1+ R) '
- 2(10203 —2845 R—7715 R% + 1953 R® + 807 R* —93 R)
Mis(z, 1,0) = R”(l"’ R) ’
3(180303—113193 R—88092 R2+43872 R>+6589 R*—1611 RS)
4R(1+ R) !
2y(y(R*+4R—-1)—2R+2)
R?*(2 —y+yR)? '
4yPo3(R,y)
R (2 -y+yR)>’
2y(y(R*+4R-1)—2R+2)
R*(2 —y+yR)? ’
- P12 2(R,
Myp2(z,y,0) = R;’(zl/_z_'z;+ y!g)5 ’

(1+ R)yP11(R,v)

[[1'1(17, 1:0) =
Mi2(z,1,0) =

Mi2(2,1,0) =

ﬁl}(x) 1,@) =

My3(z,1,0) =

Mia(z,1,0) =

M4(z,1,0) =

Ms(z,1,0)=

ﬁO.Z(x: v, ﬂ) =

Mo3(z,y,0) =

Mip1(z,y,0) =

Ml,l(-'ﬂ,!l,ﬂ) = R5(2—y+yR)5 )
Y _ 2yPi(R,y)
Ml,l(x:y’w) = R5(2 —y+ yR)5 ]
Where

Poa(R,y) =y’ (9R* + 18R’ — 16 R* +6R— 1)
+y*(—-8R* - 14R* + 42R* — 26 R+ 6)
+y(—20R? +32R—12) + (8 — 8R),
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Pij2a(R,y) = v’ (R° +99R* + 154R® — 138R* + 53R - 9)
+ 4> (86 R* —92R® + 352 R* — 228 R+ 54)
+y(—20R> — 148 R?> + 276 R — 108) — 8R> — 64 R + 72,
Pii(R,y) =y (R*+26R* —16R2 + 6R— 1)
+y*(-22R*+42R* —26R+6)
+y(-20R*> +32R-12) -8R+ 8,
Pii(R,y) =P (RS +45R* +46 R> —92R® + 17TR - 3)
+y*(-38R* —8R*+ 100R?> - 72R + 18)
+y(—20R? —28R? + 84 R - 36)
+(—8R? — 16 R+ 24).

Our results on one-vertex maps are independent verifications of some of the results
given in [6]. (Note that the generating functions given in [6] are by the number of
edges, thus, differ from ours by a factor z29 = (1~ R?)29/429.) The above results
also suggest that Mg,,,.( z,y,0) and Mg,,.(x, y, ®) have no factor (1+ R) in their
denominators and that Mg m(z,1,0) and Mg,,,,( z,1,0) only have (1+ R) to the
first power in their denominators. This could probably be proved by using a more
delicate inductive argument similar to the one used above. Another interesting
fact is that 1\7['0 2(z,y,0) equals M, ra(z,y, @) which can be proved directly by
the following combinatorial argument: For any rooted two-vertex planar map, add
a cross-cap in a face which is incident to both vertices (say, the first such face in
the cyclic order around the root vertex) and identify the two vertices through the
cross-cap, the resulting map is a rooted one-vertex map on the projective plane.
Clearly, this process is reversible.

4,

Proof of Theorem 2 and Theorem 3: Letar be a vector of positive integers indexed
by I andlet jof = 3" . Asin [2], we define

—(n) ™

e
Mgm(z,y,I,0) = -—,‘WMg.m(-’B,y:ZI)lzﬁw
—(n) gkl
Mgm(-'" IL,a) = —7Mgm(z y,zl)lz:=v=f

Similarly define M{%(z,y,l,0), M{"(z,I,a), M{3(z,y,I,a) and
M{" (z,I,@). Let ~ be as defined as in [2]. We first establish the following
results.
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Lemmal. Fora=4g+2m+2|I|+|al+ n—1and y > 2, there are positive
numbers Myw(I,a y) and MD(I,05y) such that

(2, La) & M (TLe y) (1 = z/r(y)) =,
M{2(z,y,1,0) ~ M{D(I,0 y)(1 - z/r(y))"°,

as z —r(y) =(y— 1) /y2.
Lemma 2. Forb= (6g+3m+3|I|+ |a|+n—2)/2, there are positive numbers
;’[;?r)n( I,a) and M;.’,‘),,(I,a) such that

—| —(n) -
Mom(z,1,0) m Mom(L,a) (1 — 42)™,

Mo (z,1,a) & M{D(1,0)(1 —4z)7°,
asz—1/4.

Proof: (Lemma 1) The proof is very similar to that of [2, Theorem 3], by us-
ing induction on the lexicographic order of (g, m,|I|,n). By Theorem 1, for
any y > 2, the smallest positive singularity of 1\7[',,,,(::, y, I,a) is the solution to
1—-(1-R)y/2=0,thatis,r(y) = (y—~1)/y%. (Clearly,0 < r(y) < 1/4 for
y > 2.) From (4), we obtain

—() 1-R\" 1-R \~™D
Mo (z,9,0,0) = =! l - — . )
2 2
Thus, Lemma 1 holds for g = 0, m = 1 and I = §. The rest of the proof is
essentially the same as that of [2, Theorem 3]. [ |

The proof of Lemma 2 is essentially the same as that of [2, Theorem 3], while
the initial case can be verified from (5). Theorem 3 now follows immediately from
Lemma 2 and [1, Theorem 4] by setting y = f in (1) and (2). (c.f. [2, Section 6])

We now use a local limit theorem to prove Theorem 2. We have

2 y

(y-1n?’

y-<

d o _
y_l.—plogr(e)-

d o~ _
—Elogr(e ) =

and

. 1 1 .
r e’a = - ‘1 -— _e-‘o
Ir(ye™] v ”

- 2y
-T(y)\/l"' (y—l)z(l —cos 6).

Therefore, for any ¢ > 0, there exist §; > 0 and §; > O such that

[7(ye®)| > () (1+ &) for2+ e < y < 1/eand & < |0] < .
Theorem 2 now follows from Lemma 1, [1, Theorem 4] and [5, Corollary 2].
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