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1. Introduction
A (v,k,)) packing design (briefly packing) is a pair (X,B) where X is a
v-set, BB is a collection of some k-subsets (called blocks) of X such that every
pair {x,y} C X is contained in at most X blocks of B. The packing number
D(v, k, )) is defined to be the maximum number of blocks in a (v, k, M) packing.
A (v, k,\) packing with D(v, k, )) blocks will be called a maximum packing.
The function D(v, k, 1) is of importance in coding theory since the block in-
cidence vectors of a (v, k, 1) packing form the codewords of a binary code of
length v minimum distance 2(k — 1) and constant weight k. Thus D(v, k, 1) is
the maximum number of codewords in such a code.
Schoenheim [20] has shown that

D(v,k,)) < [{ ["(,:’_—‘IDJJ = B(v,k,)) L.1)

where |z| is the largest integer satisfying |z < z.

Other upper bounds on the function D(v, k, 1) have been given by Johnson
[14] and Best et al. [3]. Lower bounds on the function D(v, k, \) are generally
given by construction of (v, &, \) packings.

" The values of D(v,3,)) for all v and A have been determined by Shoenheim
{20], and Hanani [12]). The values of D(v, 4, 1) have been determined for all v
by Brouwer [6] and the values of D(v,4,)) for all v and A > 1 are given by
Billington, Stanton and Stinson [4], and Assaf [1], Hartman [13]. Yin [22], [23]
has determined the values of D(v,5,2) for all v with 11 possible exceptions of
v. The values of D(v,5,4) for all v are determined by Assaf and Hartman [2].
Recently, an analysis of D(v,5,)) forallvand A = 0 (mod 4) was done by
Yin [16]. The function of D(v,5,1) forv = 0 (mod 4) has been investigated
in [17] by Yin.

In this paper we are concerned about the packing number D(v, 5, 1). The val-
ues of D(v,5,1) forallv = 3,9 or 17 (mod 20) except v € {29,49,243}
will be determined. Some infinite families for D(v,5,1) with v = 7,11 or 15
(mod 20) are also mentioned. For ease of notation, we write D(v) and B(v) for
D(v,5,1) and B(v, 5, 1) respectively.
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2. Preliminaries

For definitions of incomplete PBD and incomplete GDD se¢ (11). By (v, w; K, \)-
IPBD we mean an incomplete PBD of order v, block sizes from K, hole size w,

and index A. We say that an incomplete GDD (X, Y, G, A) of index M isa (K, )\)-

IGDD if [A] € K for every block A € A. The type of the IGDD is defined to

be the multi-set of ordered pairs {(|G|,|GNY]) : G € G}. We shall use the

‘exponential’ notation as in [11]. A ({k}, 1)-IGDD of type (n,w)* is denoted by

TD(k,n) — TD(k,w). WhenY = ¢, a (K, \)-IGDD is essentially a (K, \)-

GDD. A resolvable ({k}, 1)-GDD of type (k¥ — 1)* is also known as a nearly

Kirkman system and denoted NKS (2, k; s(k —1)).

We now list some of those results which will be used in this paper.

Lemma 2.1. ([12]) If v = 1 or 5 (mod 20) and v > 5, then there is a
(v,5,1)-BIBD.

Lemma 2.2. (111 If v=9 or 17 (mod 20) and v > 37, v # 49, then there
isa(v,9;{5},1)-IPBD.

Lemma 2.3, ([18],[19)) If v>24,v € E and v = 0 (mod 12), then there
exists an NKS (2,4; v), where E = {84,132, 264,372,456, 552, 660, 804,
852,6312}.

Lemma 2.4. ([111) There exists a TD(5,n) if n > 4 and n # 6,10. There
existsa TD(6,n) if n>5 and n # 6,10,14,18,22,26,30,34,42,

Lemma 2.5. ([8]) If TD(6,t) and TD(5,m + m;) — TD(5,m;) (for j =
1,2,...,t)all exist, then alsoa TD(5, mt+2,g<, m;) —TD(S,EISK, m;)
exists. - -

Lemma 2.6. (/10]) There exists a TD(5,10) — TD(5,2).
As a consequence of Lemmas 2.4-2.6, we have

Lemma 2.7. There exists a ({5}),1)-IGDD of type (72 + 15,15)5 or
(72+5,5)5.

Proof: UseLemma2.5 witht = 9, noting that thereexistsa TD(5, 8) —TD(5, 0),
aTD(5,9) — TD(S,1),and a TD(5, 10) — TD(5,2). |

Lemma 2.8. ([5]) Let g be a prime power. Then there existsa (¢°> +1,q+1,1)-
RBIBD.

Lemma 2.9. ([15)) Let q be a prime power. Then there exists a
(@ +¢*+q+ 1,9+ 1,1)-RBIBD.

Now we give some families of GDD or IGDD.

162



Lemma 2.10. Let n be a positive integer and n # 1,7,9 or 10. Then there
exists a ({5}),1)-GDD of type (24)°"(4u)', where 0 < u < 6.

Proof: For these values of nexcept n = 4 or 5, an RTD(6,5n + 1) exists by

[7]. Taking a parallel class of blocks in an RTD(6,5n + 1) as groups we ob-
tain a ({Sn+ 1,6},1)-GDD of type 65™!, Whenn = 4 or 5, we have a
(30n+ 6,6, 1)-RBIBD from taking ¢ = 5 in Lemmas 2.8 and 2.9. Therefore a
({5n+1,6},1)-GDD of type 6°™! also exists forn = 4 or 5. Delete 6 — u

points from one groupina ({5n+ 1,6}, 1)-GDD of type 6™, Give each point
of the resulting design a weight of 4. Apply the Fundamental Construction (see
[21]). This produces the required result. All GDDs required as ingredients come
from Lemma 2.1. [ |

Lemma 2.11. Suppose there exists 8 TD(6,n), and 0 < u < n. Then the
following designs exist:

(1) a({5},1)-IGDD of type (4n,4)°(41,0)! or (4n,4)°(4u,4)};

(2 a({5}),1)-IGDD of type (8n,8)° (8u,0)" or (8n,8)°(84,8)".

Proof: Delete n— u points from one group of aTD(6,7) toyielda ({5,6},1)-
GDD of type n’ u!. Remove one block of size 5 or 6 from the above GDD. It
is shown in [9] that a ({5}, 1)-GDD of type 8% exists. Hence we can use the
Fundamental Construction to get (1) by giving points of the resulting design a
weight of 4 and to get (2) by giving the points a weight of 8. 1

In analogy with Lemma 2.11, we have

Lemma 2.12. Suppose that there exists a TD(6,mn), and 0 < u < n. Then the
following designs exist:

(1) a({5},1)-GDD of type (4m)3(4v)'; and

(2) a({5},1)-GDD of type (8n)°(8u)'.

3. Maximum incomplete packing designs and their construction

The concept of a maximum incomplete packing design (MIPD) has been used by
Yin in [22] to determine packing numbers D(v, 5, 2). For simplicity, we shall not
state the most general form, but only the special case required to meet the paper.

Let v and w be non-negative integers. A maximum incomplete packing design,
denoted by (v, w)-MIPD, is defined to be a triple (X, Y, B) where X is a v-set,
Y C X is a w-set, B is a collection of B(v) \B(w) 5-subsets (called blocks) of
X which has the following properties:

(1) each pair of distinct points = and y from X', where at least one of z and y
does not lie in Y, occurs in at most one block of B;

(2) no block contains any pair of Y';

(3) there are exactly v — w pairs of (X\Y) x (X\Y') blocks of B;

4) w=v=3(mod4).
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We adopt the convention that B(w) = 0 forw < 5, and we admitY = ¢. The
setY is referred to as the hole of the design.
The following two lemmas are straightforward.

Lemma 3.1. If D(w) = B(w) and a (v, w)-MIPD exists, then D(v) = B(v).

Lemma 3.2. If (v, w)-MIPD and (w, u) -MIPD both exist, then a (v, u) -MIPD
also exists.

The significance of MIPDs defined as above is that the known techniques used
in construction of IPBD work also for them. Especially, we have the following
constructions.

Construction 3.3. Let ¢ > 0. Suppose that the following designs exist:

(1) a({5},1)-IGDD of type {(t1,v1)(t2,u2),... ,(ta,un)}, and
2 a(t;+q,ui+q)-MIPDfor1 <i<n

Then there exists a (t + q,u + q)-MIPD where t = Y t; andu =Y u;.

Construction 3.4. Suppose that the following designs exist:

(1) a({5},1)-GDD of type {t1,t2,... ,ts}; and
2) a(t;+q,9-MIPDfor1 <i<n—1.

Then there exists a (t + q,1, + q) -MIPD where t = ) . t;.
As an immediate corollary of Construction 3.4 and Lemma 2.12, we have

Lemma 3.5. Suppose that there exists a TD(6,t),and 0 < u < t. Then

(1) a(20t+4u+ q,4u+ q)-MIPDexists ifa (4t + q,q) -MIPD exists; and
(2) a(40t+ 8u+ g,8u + g)-MIPD exists ifa (8t + q, q) -MIPD exists.

Finally, we note the following results for MIPDs.

Lemma 3.6. If s=0 (mod 4),s > 8 and v = 3s ¢ E, then there exists a
(45— 1,8 — 1)-MIPD where E is the same as in Lemma 2.3,

Proof: It was pointed out in Lemma 2.3 that an NKS(2,4; v) exists for each
v = 3s. Adjoin new points to (§ — 1) parallel classes of a NKS(2,4; v). This
produces a ({5}, 1)-GDD of type 3°(s — 1)!. The collection of blocks this GDD
fooma(4s—1,s— 1)-MIPD. 1

Lemma3.7. If s=0 (mod 4),s > 12 and 33 ¢ E, thenan

(1) (15gs+(s—1),s—1)-MIPD,

(2) (15gs+(s—1),4s—1)-MIPD,
(3) (15gs+ (4s—1),s - 1)-MIPD and
4 (15gs+ (4s—1),4s—1)-MIPD
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all exist where E is the same as above and g is a positive integer.

Proof: For these values of s,a TD(5, 32) exists from Lemma 2.4. By Lemma 2.1
we have also a ({5},1)-GDD of type 459 or 439*! for each positive integer g.
Give points of such a GDD weight %2 The Fundamental Construction guaran-
tees that a ({5}, 1)-GDD of type (35)? or (3s)57*! exists. Apply Construc-
tion 3.4 with n = Sg and 5g + 1 respectivelyt; = ¢, = ... = t, = 3sand
g = s — 1 and Lemma 3.6 to obtain a (15gs + (s — 1),4s — 1)-MIPD and a
(15g9s+(4s—1),4 s—1)-MIPD respectively. And hencea (15gs+(s—1)-MIPD
anda (15gs+ (4s—1),s —1)-MIPD all exist by Lemma 3.2 and Lemma 3.6. §

4, Packing numbers D(v) for v =3 (mod 20)

Let MIPD(w) = {v : a (v, w)-MIPD exists}.

Lemmad.l. If v € {3,23,43,63,83,103, 123, 143,163, 183}, then D(v) =
B(v).

Proof: For v = 3, there is nothing to do. For the other values of v, we construct

directly a (v, 5, 1) -packing with B(v) blocks as follows, and then the conclusion
follows from (1.1).

v=23 0 1 4 6 13 (mod 23)
v=43 0 1 5 13 15 (mod 43)
03 9 2 27 (mod 43)
v=63 0 1 7 36 55 (mod 63)
0 2 12 23 26 (mod 63)
0 4 17 22 47 (mod 63)
v=8 0 1 9 29 69 (mod 83)
0 2 12 18 39 (mod 83)
0 3 22 48 53 (mod 83)
0 4 11 36 70 (mod 83)
v=103 0 1 17 64 74  (mod 103)
0 2 23 45 78  (mod 103)
0 3 3¢ 62 71  (mod 103)
0 4 18 42 54  (mod 103)
0 5 11 8 95  (mod 103)
v=103 0 1 17 64 74  (mod 103)
0 2 23 45 78  (mod 103)
0 3 3¢ 62 71  (mod 103)
0 4 18 42 54  (mod 103)
0 5 11 8 95  (mod 103)
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v=123 8 76 99 (mod 123)
11 60 95 (mod 123)
15 44 81 (mod 123)
20 71 89 (mod 123)
26 36 106  (mod 123)

33 19 83 (mod 123)

v =143 9 20 43 (mod 143)
12 2 90 (mod 143)
16 57 9 (mod 143)
21 49 87 (mod 143)
27 75 112 (mod 143)
35 67 97 (mod 143)
25 40 99 (mod 143)
v =163 10 25 59 (mod 163)
13 8 103  (mod 163)
17 70 124  (mod 163)
2 69 137 (mod 163)
28 55 130  (mod 163)
35 72 118  (mod 163)
43 64 84 (mod 163)
52 40 71 (mod 163)
v =183 11 27 125  (mod 183)

4 42 64 (mod 183)
18 104 152 (mod 183)
23 55 116 (mod 183)
29 46 123 (mod 183)
36 74 117 (mod 183)
4 83 170 (mod 183)
53 88 158 (mod 183)
63 84 136 (mod 183)

Lemma 4.2. Suppose that m is an non-negative integers and q = 7,23 or 31.
Then 120m + g € MIPD (g).

Proof: Taking s = 8 in Lemma 3.6 yields 31 € MIPD(7). So, whenm # 1,7, 9
or 10, the conclusion follows from Construction 3.4 and Lemma 2.10. Form = 1
and ¢ = 7, note that by Lemma 2.4 a TD(5, 24) exists. This may be viewed as a
({5},1)-GDD of type 24 50!. Since there exists an (31,7)-MIPD as shown above,
then there exists a (127,7)-MIPD by Construction 3.4. For m = 1 and ¢ = 23,
note that since there exists a TD(6,7), then by Lemma 2.11(1), there exists a
({5},1)-IGDD of type (28,4)°. By applying Construction 3.3 withg = 3, a

COOOCOOOOO0O0 OCOOCOOOOO0 OO0OC0COOOO OCOOOOCOC
VO NNANMPDEBWLWNE ONAANNMBAEWLWND R YNONUMEWLENNE ANE WN -~
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(143,23)-MIPD is obtained. For m = 1 and ¢ = 31, note that by Lemma 2.4 there
exists a TD(6,7). By deleting a block and the points on it from a TD(6,7), a
({5,6},1)-GDD of type 6° is obtained. If each point is assigned a weight of 4
and the fundamental construction [21] is applied, a ({5}, 1)-GDD of type 246 is
obtained. Since there exists (31,7)-MIPD, then there exists a (151,31)-MIPD by
Construction 3.4.

Before treating the cases m = 7, 9, and 10, we require a (191,47)-MIPD, a
(255,63)-MIPD and a (255,15)-MIPD. These may be obtained by applying Lemma
3.6 to s = 48, 64, and 16 respectively, applying Lemma 3.2 to obtain the last
case from that proceeding it. The cases m = 7,9, and 10 are now treated in the
following table, applying Lemmas 3.5(1) and 3.2. (The required TD’s come from
Lemma 2.4).

m gq 120m+q 4t 4u ¢ auxiliaryM IPD
7 17 847 144 80 47 (127,7)

7 23 863 144 96 47 (143,23)

7 31 871 144 104 47 (151,31)

9 7 1087 192 64 63 (127,7)

9 23 1103 192 80 63 (143,23)

9 3 1111 192 88 63 (151,31)

10 7 1207 192 184 63 (247,7)*

10 23 1223 240 8 15 (23,23)

10 31 1231 240 16 15 (31,31

* This is the case m = 2, ¢ = 7 covered above.

The auxilliary MIPDs for m = 7 and 9 come from the case m = 1.
This covers all cases for m and g, and completes the proof. | |

Lemma 4.3. If v € {383,403,423,443,703,723}, then D(v) = B(v).

Proof: It has been shown in Lemma 3.6 and Lemma 4.2 that {95, 143} C MIPD
(23). Apply Lemma 3.5(2) with (8¢,8u,q) = (72,0,23), (72,40,23) and
(120,80,23). This works forv € {383,423,703} by Lemma3.1 and Lemma4.1.
Since a ({5}, 1)-IGDD of type (77, 5)° and (87, 15)° exists by Lemma 2.7 we
can take ¢ = 18 and 8 respectively in Construction 3.3 to get 403 € MIPD(43) and
443 € MIPD(83) respectively. The result for v € {403,443} then follows from
Lemmas 3.1 and 4.1. In view of Lemma 2.11, we have a ({5}, 1)-IGDD of type
(28,4)3(4,4)". Give points of such a IGDD weight 5 to yielda ({5}, 1)-IGDD
of type (140, 20)5(20,20)!. Thus the result for v = 723 can be taken care of by
Construction 3.3 with g = 3. |

We now give our main results of this section.
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Theorem 4.4. If v=3 (mod 20) and v # 243, then D(v) = B(v).

Proof: From the above lemmas, we need only to consider the case v > 203 and
v # {243, 383,403,423,443,703, 723 }. Itis sufficient to show v € MIPD(w)
such that D(w) = B(w). We apply recursively Lemma 3.5(1)in Table 1 to give

this proof. All of the required TDs have been shown to exist in Lemma 2.4.

Table 1
vu=5.(4t)+4u+gq 4¢ g 4u+gq 4t+qeMIPD(q)
203-223 36 11  23-43 Lemma3.6
263-303 48 15 2363 Lemma3.6
323-363 60 19 23-63 Lemma3.6
463-543 92 3 3-83 NKS(2,4;72)
523-603 96 31 43-123 Lemma3.6
583-683 108 35 43-143 Lemma3.6
743-863 144 7 23-143 Lemma 4.2, 31 € MIPD(7)
883-923 156 51 103-143 Lemma 3.6
943-1043 180 11 43-143 Lemma37s=12,9=1(1)
1063-1103 192 63 103-143 Lemma 3.6
1123-1223 216 11 43-143 Lemma3.7s=12,9=1(3)
1223-1343 240 15 23-143 Lemma37s=16,g=1 (1)
1343-1463 264 7 23-143 Lemma4.2,31 € MIPD(7)
1463-1583 288 15 23-143 lemma37s=16,g=1 (3)
1603 -1643 300 99 103-143 Lemma 3.6
1643-1743 276 91 263-363 Lemma 3.6
1763-1883 300 99 263-383 Lemma 3.6
1903-1943 360 23 103-143 Lemma373=24,g=1 (1)
1943-2123 336 111 263443 Lemma 3.6
2143-2263 360 119 343-463 Lemma 3.6
2283-2503 396 131 303-523 Lemma 3.6
2523-2783 444 147 303-563 Lemma 3.6
2783-3123 504 167 263-603 Lemma 3.6
3143-3643 576 191 263-763 Lemma 3.6
3623-4243 672 223 263-883 Lemma 3.6
4263-4463 720 239 663-863 Lemma 3.6
> 4463 120m(m >7) 23 263-863 Lemma4.2

5. Packing numbers D(v) for v =9or 17 (mod 20)
Lemma 5.1 If v=9,13 or 17 (mod 20), then D(v) < B(v) — 1.

Proof: Let (X,B) be a (v,5,1) packing such that v satisfies the given con-
gruence. Define Y to be the number of blocks in B which contain z for any
z € X. ThenY; < "4;‘ by the definition of a packing. From (1.1) we have
also [B] < %e=U=12 = B(y), which implies that there is at least one point
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of X such that Y; < z!. Therefore, there must be 4 pairs of X involving z,
say {z;,z}(1 < i < 4), which do not appear in any block of B. This implies
that Y, < % foreach 1 < i < 4. It follows that |B| = (3 ,ex Y2)/5 <
3 (%erl _ 5) = we=D=2 and hence [B| < B(v) — 1. ]

Lemma 5.2. Ifa (v,9; {5}, 1)-IPBD exists, then D(v) = B(v) — 1.

Proof: It is easy to show that v = 9 or 17 (mod 20) whenever a (v,9; {5},1)-
IPBD exists. Let X,Y, A be a (v,9; {5},1)-IPBD. Since D(9) = 2 from the
Table in [3], we can construct a (v, 5,1) packing on Y with two blocks. Use B
for its block set. Then it is readily checked that (X', AUB) isa (v, 5, 1) packing
with B(v) — 1 blocks. The conclusion then follows from Lemma 5.1. 1

Combining Lemma 2.2 and Lemma 5.2 with the Table in [3] we are able to give
our main result of this section.

Theorem 5.3. Forall positiveintegersv =9 or 17 (mod 20), we have D(v) =
B(v) — 1 with exception v = 17 and possible exceptions v = 29,49.

Unfortunately we do not have an analogous result for the case v = 13 (mod 20),
since this would constitute the case v =1 (mod 4).

6. Packing number for v = 7, 11 or 15 (mod 20)

Lemma 6.1 Let n be a positive integer, and suppose that v = 100n+ 7. Then
D(v) = B(v).

Proof: Forn # 12,D(20n+ 3) = B(20n+ 3) and a TD(5,20n + 1) exists
from Theorem 4.4 and Lemma 2.4. Let (X,G,.A) be a TD(5,20n + 1). Add
two new points oo;, 002 to each group of a TD(S5,20% + 1) and then construct
a (v,5,1) packing with B(20mn + 3) blocks on G| J{o01,002} such that pair
{01,002 } does not occur in any block. Write Ag for its block set foreach G € G.
Then (X U {o0; 002}, AU(|JAg)) is a packing with B(1007n+ 7) blocks. The
conclusion follows from (1.1).

For n= 12, see Lemma 6.4. |

Lemma 6.2. Let n be apositive integer # 12, and suppose that v = 100 n+ 11.
Then D(v) = B(v).

Proof: Add one new point to a TD(5, 20 n+ 2). The proof is similar to the above.
|

Lemma 6.3. Let n be a positive integer, and suppose that v = 100n+ 15. Then
D(v) = B(v).

Proof: Forn # 12, the conclusion follows from the fact that a TD(5,20n + 3)
exists and D(20n+ 3) = B(20n+ 3) for these values of .
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For n = 12, proceed as follows. Note that by Lemma 2.12,a ({5}, 1)-GDD of
type 1926 exists, and by Lemma 3.6, a (255, 63)-MIPD exists. Apply Const 3.4

withn=6,t) =ty =...=ts = 192 and g = 63 to for (1215, 63)-MIPD, Since
by Lemma 4.1 we have D(63) = B(63), it follows that D(1215) = B(1215) as
required. |

Note that D(7) = B(7) and 31 € MIPD(7). Combining Lemma 3.1 with
Lemma 4.2, we have also the following.

Lemma 64. If v=7 or 31 (mod 120), then D(v) = B(v).

7. Conclusion

We have determined the packing numbers D(v) forv = 3,9 or 17 (mod 20)
with possible exceptions of v € {29,49, 243 }. The results shown in section 3 can
be used to investigate the case v = 7, 11, 150r 19 (mod 20) which is currently
under consideration. Further results will be reported in a subsequent paper.
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