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Abstract

We introduce a new concept called algebraic equivalence of sigra-
phs to study the family of sigraphs with all eigenvalues > —2. First
we prove that any sigraph whose least eigenvalue is —2 contains a
proper subgraph such that both generate the same lattice in IR™.
Next we present a characterization of the family of sigraphs with all
eigenvalues > —2 and obtain Witt’s classification of root lattices and
the well known theorem which classifies the first mentioned family
by using root systems Dy,n € IV and Eg. Then we prove that any
sigraph whose least eigenvalue is less than —2, contains a subgraph
whose least eigenvalue is —2. Using this, we characterize the fami-
lies of sigraphs represented by the above root systems. Finally, we
prove that a sigraph generating En (n = T or 8) contains a subgraph
generating E,_;. In short, this new concept takes the central role
in unifying and explaining various aspects of the theory of sigraphs
represented by root systems and in giving simpler and shorter proofs
of earlier known results including Witt’s theorem and also in proving
new results.

1 Introduction

A sigraph S is a pair (X, ¢) where X is a finite set (called the set of vertices
and denoted by V(S)) and ¢ : X x X — {-1,0,1} satisfying for all z,y in
X, ¢(z,y) = ¢(y, z) and ¢(z,z) = 0 (¢ is called the edge function.). If for
any z,y in X, ¢(z,y) = %1, then we say that z and y are edjacent and the
set {z,y} is an edge. The function ¢* : X x X — Z (the set of integers)
defined by .
* _J =) fz#y
$*(=,y) = { 9

else

is said to be the associate edge function of S. ¢* is said to be linear, if it
has the following property:
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for any A C X and scalars a;,z € 4, if E az9*(z,t) = 0 holds for all

z€A
t € A then it does so for allt € X.

Let S = (X,¢) be a sigraph and Y C X. Then (Y, ¢'), where ¢ is the
restriction of ¢ to Y x Y, is said to be the subgraph of S on Y and denoted
by S[Y]. If a sigraph T is a subgraph of S, sometimes we write T cs.

A sigraph S is said to be minimally forbidden for a family F of sigraphs,
if § is not in F but every proper subgraph of S is in F.

Let IR be the countably infinite dimensional Euclidean space with
usual inner-product < -, > and W, a subset of IR®. A sigraph S = (X,¢)
is said to have a representation (abbreviated as RPN) pin Wifyp: X — W
such that for all 2,y in X,

¢*(z,y) =< ¥(z),¥(y) > .

A sigraph § is said to be represented by W, if every component of S has
a RPN in W. Let R(W) denote the family of sigraphs represented by W
and M(W), the class of minimal forbidden sigraphs for R(W).

Let B = {e,- 1=12,. } be an orthonormal basis for IR™. The root

systems A,, Dp,n € IN and Eg are defined to be

{#e-ep

{:i:\/fe,- 1<i< 8} U {‘/ii(:i:e.‘ tej ke teg)|(i 4,k 1) € D}

respectively (D is the set of blocks of the unique 3 — (8,4, 1) design with
{1,---8} as base set.). Let

15i<j$n+1}, {:he.-iej

15i<j$n} and

o0
Do = | Dn.
n=1

Let a and b two vectors in Eg such that < a,b >= 1. Then the root sysiems
E7 and Eg are defined to be

{‘UEEg

This definition does not depend upon the choice of a and b (cf, [CGSS] or
[VRS].).

A.J. Hoffman who initiated the study of graphs with all eigenvalues
2 —2 has proved (see [H].) that if a connected graph’s least eigenvalue
> —2 then either it is a generalized line graph or it has at most 36 vertices
(Generalized line graphs are precisely the graphs in R(Ds); but Hoffman

<v,a>= 0} and {vGE-;I <v,b>= 0}.
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defined them differently; the equivalence of these two definitions has been
shown in Theorem 4.2 of [CGSS].).

An improvement of the above result is the following one:

Theorem 1.1 Let S be a connected sigraph and A(S), its least eigenvalue.
Then the following are equivalent:

(1) A(S) > ~2.

(2) S is represented by IR™.

(3) S is represented by D, or Eg.

The equivalence of (1) and (2) is easy to demonstrate (see the paragraph
preceding Remark 2.6.). (2) = (3) has been proved in [W] which has
classified all the root lattices of IR",n € IN; for a combinatorial proof, the
reader is referred to [CGSS].

As a consequence of this theorem, root systems have gained much atten-
tion to investigate the properties of R(IR*°). The graphs in M(D) have
been computed in [CDS], [RSV] and [V1]. A description of the graphs in
M(IR*°) has been given in [VRS). In [BN], all the graphs in M(IR*) have
been computed. They are 1812 in number. In [V2], a characterization for
the family R(Dy,) has been found and 10 has been shown to be the best
possible upper bound for the order of any sigraph in M(IR*).

In this paper, we introduce a new concept called algebraic equivalence
of sigraphs to study the families R(IR*°) and M(IR™). Roughly speaking,
an algebraic equivalent of a sigraph S is obtained by replacing a subset 4
of V(S) by a set of vertices which are “integral combinations of elements of
A” and defining the edge function accordingly. Using this, we give a new
proof of Theorem 1.1. The crux of this proof is in showing that a connected
sigraph with least eigenvalue > —2 is an algebraic equivalent of a Dynkin
graph. This concept is used quite extensively in the proof of the following

Theorem 1.2 A sigraph whose least eigenvalue < —2 contains a subgraph
of order < 9 whose least eigenvalue is —2.

This result for the particular case of graphs has been verified, by using
computer calculations, in [D] and later in [BN]. Using this theorem we
characterize algebraically the family R(IR*>):

Theorem 1.3 A sigraph is represented by IR™ if and only if its associate
edge function is linear.

An outline of the paper is as follows: In the next section we introduce
necessary terminology and prove some preliminary results. In the third
section first we prove the following

Theorem 1.4 If the least eigenvalue of a sigraph S is —2, then S has a
representation £ in IR® such that for some a € V(S),£(a) is an integral
combination of elements of {{(z) | z € V(S) — {a}} (while classifying the
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root systems, a similar result has been proved - cf. the second chapter of
[C] - Any root system is generated by a linearly independent subsct.).
Next we characterize the family of sigraphs with all eigenvalues > —2:

Theorem 1.5 A connected sigraph whose least eigenvalue > —2 is an
algebraic equivalent of one of the graphs P,,Q,,n € IN or Ry, k = 6,7,8
(these graphs generate A,,Dp,n € IN and Ex,k = 6,7, 8 respectively; in
the literature, they are known as Dynkin graphs.).

A consequence of Theorems 1.4 and 1.5 is Theorem 1.1.

1o

Qn

..

R

N S

Ry

R

Ry
Figure 1.6

A root lattice is an additive subgroup £ of IR", gencrated by a set X
of vectors such that for all z,y in X,< z,z >= 2 and < z,y >€ Z. The
vectors in £ of norm /2 are called the roots of L. A root lattice is said to
be irreducible if it is not a direct sum of proper sublattices. In [W], the
root lattices have been classified:

Theorem 1.7 If R is the set of roots of an irreducible root lattice then
there exists an automorphism 8 of IR™ (a bijective linear inner-product
preserving map from IR™ to IR™) such that 8(R) is one of the root systems
Ap,Dy,n€IN or Ex,k=6,1,8.

We derive this result from Theorems 1.4 and 1.5.

In the fourth section, first we derive some properties of R(Do) and
M(D). Next we prove Theorems 1.2 and 1.3. Then we present charac-
terizations of R(Dy) and R(Eg), as the following theorems:

Theorem 1.8 A sigraph S is represented by Do, if and only if the following
hold:
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(1) No subgraph is an algebraic equivalent of Rg (in Figure 1.6).

(2) If any subgraph S[A] is switching equivalent to T; for some i, i < 3
(in Figure 1.11), then for all z,y in V(S), the associate edge function of
S[A U {z,y}] is linear.

Theorem 1.9 A sigraph is represented by Eg if and only if the following
hold:

(1) No subgraph is an algebraic equivalent of Py or Qg (in Figure 1.6).

(2) The associate edge function is linear.

A sigraph S is said to generaie a root system W, if S has a RPN ¢ such
that the lattices generated by W and £(V(S)) are same (Note that S has
to be connected.). A consequence of Theorem 1.8 is the following

Theorem 1.10 A sigraph generating Ey, (n = 7 or 8) contains a subgraph
generating E,_;.
Here is a list of sigraphs which occur often in this paper:

°
/\
/ \
Ts
Figure 1.11 Sohd lines are positive edges and broken lines are negative.

\
\

./_____\

T3

Notation When a sigraph is denoted by S, its set of vertices is X. For any
sigraph, we denote its edge function by ¢, unless otherwise stated.

The least eigenvalue of a sigraph S is denoted by A(S); for any a in
X, its neighbourhood N(a) is the set of its adjacent vertices; its degree is
denoted by deg a; we write S — a for S[X — a]. The sigraph whose set of
vertices contains X — a and one more vertex denoted by —a such that its
subgraph on X —a is S — a and ¢(—a,z) = —¢(a,z) for all z in X — q,
is denoted by S(—a). S, = (X, ¢,) is the underlying graph of S where
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du(z,y) = |¢(z,y)|, for all z,y € X. Forany z,y € X and T C S,d(z,y) is
the length of a shortest path joining z and y and d(z,T) = tn‘l,i(x;_ )d(:c,t).
€

A denotes Dy, or Eg and Q is A or IR®. For any W C IR, L(W) and
I(W) are the set of linear combinations and the set of integral combinations
respectively of elements of W; dimW is the dimension of L(W);

R* (W) = {s e ‘R,(W)l,\(S) > -2} and Ro(W) = R(W) — R*(W).

2 Algebraic Equivalence of Sigraphs

The following proposition is useful to find the inter-relations of the RPNs
of any sigraph in R(IR™).

Proposition 2.1 If a sigraph S has two RPNs £; and £; in IR™ then there
is an automorphism 8 of IR™ such that 8 0§y = £».

Proof: Since

Z az61(z) =0 (az,z € X are scalars) =—> Z azfa(z) =0
zeX zeX

for when 1 =1,2

< Zaxﬁi(m)sza:&(z) > = Zaxay < ‘fi(z)’ si(y) >

= Z a:ay¢* (31 y)

Ty

it can be verified easily that the map * from L(£;(X)) to L(£2(X)) defined
by

0*( Z axﬁl(z)) = Z az2(z) (az,z € X are scalars)
zeX zeX
is a well defined isomorphism. Since L(£;(X)),%? = 1,2 are finite dimen-
sional, 6* can be extended to an automorphism 0 of IR™. Clearly fof; = &,.
This completes the proof.

Proposition 2.2 If two sigraphs S and T have RPNs 1 and £ respectively
in IR® and T C S, then £ can be extended to a RPN of S.

Proof: By the previous proposition, there is an automorphism 8 of IR*
such that oy = £, where ¥ is the restriction of ¥ to V(T'). Clearly 6o
has the required property.

Let D = (E,) be a 3 — (8,4,1) design with E = {1,-.-8} as the set
of points; 3 is a set of 14 blocks. We list a few well known properties of D
(cf. [VRS] for details.):
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Remark 2.3

(1) For any three distinct z,y,z € E, there exists a unique block in 3,
containing z,y, z.

(2)Bep=(E-B)ep.

(3) By, By € 3, By # By = |Blnle =0or 2; B4jAB, € 3, if IBlnle =2
((2) and (3) follow from (1).).

Let Eg be defined by this design D, as in the introduction. Using the
above remark, it is easy to verify that Eg shares the following properties
with Do
Remark 2.4 For all z,y in A,

(1) —z € A,

2)<z,z>=2,

B)z#ty 2> <z,y>==lor,

(4)<zy>=1<=z—-y€Aand

(5) {z e Z(A)| < z,z >=2} = A.

Proposition 2.5 If a connected sigraph S has a RPN % in JR® such
that for some a € X,9(a) € I(¢(X — a)) then § — a is connected and
S—a€cR(A)=> S eR(A).

Proof: By hypothesis, Z(#(X — a)) = Z(¥(X)) and therefore irreducible,
since S is connected. Hence S — a is also connected.

Suppose S — a € R(A). By Proposition 2.2, S has a RPN ¢ such that
€(X —a) C A. Then by Proposition 2.1 and hypothesis £(a) € Z(£(X — a)).
Hence the conclusion follows from (2.4.5).

Now let us give a series of definitions which play important roles in
proving the main theorems and corresponding remarks.

Let £ be a RPN of a sigraph S; € is said to be linearly independent
(dependent) representation (abbreviated as LIR (LDR)) if £(X) is a linearly
independent (dependent) subset of IR*®.

Let A be the adjacency matrix of a sigraph § with A(S) > —2; then
A + 21 is positive semi-definite and therefore A + 2I = M M7, for some
matrix M. Hence we have a RPN £ of § in IR® where £(z), z € X are
row vectors of M. Conversely it is casy to see that if § has a RPN then
A(S) > —2. Further one can note the following
Remark 2.8 For a sigraph S
(1) A(S) > —2 <= S has an LIR and
(2) A(S) = -2 <= S has an LDR.

Two sigraphs S and T are said to be switching equivalent (abbreviated
as SE) if there are functions f : X — V(T') and o : X — {—1,1} such that
f is a bijection and for all z,y in X

o()é(=,y)o(y) = ¢(f(z), f(v)).
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Note that for any a € X, S is SE to S(—a).

Remark 2.7 If two sigraphs S and T are SE, then

(1) SER(N) =T € R(N) and

(2) Se M(Q) = T € M(9).

Remark 2.8 If a subgraph T of a sigraph S € R(Dy,) is SE to T} then
two vertices of T have the same neighbourhood in S.

Let S be a sigraph and a,b € X such that ¢(a,b) = 1 and
(*%) for all z € X, S[a,b,z] is not SE to T.
Clearly for all =z € X,

$"(a,z) — ¢*(b,z) =0o0r 1.

The sigraph whose set of vertices contains X — b and one more vertex
denoted by a — b such that its subgraph on X — b is S — b and for all
z€X b,
¢(a—b,z) = ¢*(a,z) — ¢" (b, z)

is said to be an algebraic transform (abbreviated as AT) of S and denoted
by S(a: b).

Similarly for any a,b € X, when ¢(a,b) = —1 and (**) holds, S(a : b)
can be defined and in this case the new vertex is denoted by a + b.

=]
/‘l
[~

[ 1

1~

[~

|
Qu 'Q"

|

|

do

Figure 2.9

Remark 2.10

(1) It is easy to verify that S is also an AT of S(a : b).

(2) If S has a RPN £ in Q then by (2.4.5), £(e) —a€(b) € 2 where @ = ¢(a, b)
and S(a: b) also has a RPN 7 in  defined by

£(o ifzeX—b
1= {80 acy .

(3) If a sigraph T € R*(IR™), then for any adjacent z,y € V(T), T(z : y)
exists.
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Now let us define the concept of algebraic equivalence which plays the
central role in the remaining portion of this paper.

A sigraph S is said to be an algebraic equivelent (abbreviated as AE)
of another sigraph T if there is a sequence {S;}2., of sigraphs such that
§$=5,T=S,andfori=1,-.-n—1,5; is an SE or AT of Sit1.

Remark 2.11 If two sigraphs S and T are AE, then the following hold:
(1) S is connected = T is connected

(2)SER()=>TeR(N)

(3) S has an LIR (LDR) ¢ in Q = T has an LIR (LDR) % in § such that
Z(¢(X)) = I(n(V(T))).

3 Properties of R(Q)

First we give the proof of Theorem 1.4: Suppose the theorem does not hold
for S. We can assume that

(2) the theorem holds for any sigraph S’ with |V(S’)| < |X|.
By (a), it follows that
(b) any proper subgraph of § is in R*(R>).
By hypothesis and (b), S has a RPN £ such that
(%%) E az(z)=0
TEX
where a;,z € X are nonzero scalars. Define

o(S) = (g{ |a,|) / (Eéiﬁ |a,|).

Note that by Proposition 2.1 and (b), this definition depends upon neither
the RPN £ nor the equation (**). Let us assume that among the sigraphs
with |X| vertices for which the theorem does not hold, S is chosen such
that o(S) is as maximum as possible.

Since any SE of S also satisfies our requirement, we can have a, > 0,
for all z € X, by replacing = by —=z, if necessary. Then for any a,b in X,
¢(a,b) # 1 for otherwise assuming as > oy, it can be seen by (++) and
Proposition 2.1, the theorem does not hold for S(a : ), contradicting our
choice of S since a(S(a : b)) > o(S).

Since for polygons, the theorem holds and S is connected by (b), S, is
a tree. Therefore for all z € X,degz < 3, for otherwise by (b), S, would
be isomorphic to Ty and the conclusion would hold for S. Let

A={z€X degz=3}.
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Obviously A # ¢.If | 4] > 1, S is isomorphic to the first graph in Figure 3.1.
If |A] = 1, Su[X —A] is a disjoint union of three paths and by hypothesis and
(b), Sy is isomorphic to one of the other graphs in Figure 3.1. However
it can be verified that the conclusion holds for the graphs in Figure 3.1
(The required vertex is starred; note that by deleting that vertex, we get
a Dynkin graph.) and consequently for S also. A contradiction. Therefore
the theorem is proved.

AL

0—0—4L—o—o

*

[
R B

Figure 3.1

An interesting consequence of this theorem, Proposition 2.5 and (2.6.2)
is the following

Corollary 3.2 For any sigraph S € M(A), A\(S) # -2.
Now let us prove Theorem 1.5: Let S be a connected sigraph in R*(IR™)
and 9, a RPN of S. Let
w= Z ¥(z)-

z€X

If nis a RPN of an AE T of S in Z(%(X)) such that for some nonzero
scalars a;,z € V(T),

Z azn(z) =w
zeX
then define
o(n) =Y le]
z€X

(Note that by (2.11.3), T € R*(IR*°) and therefore a;, z € V(T) are
uniquely determined by w.). Among such RPNs, choose a RPN € of a
sigraph R such that o(£) is as maximum as possible (Note that the number
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of RPNs in Z(3(X)) is finite.). Now by the same argument of the above
proof, it follows that R, is one of the graphs in Figure 1.6.

Remark 8.3 By Theorems 1.4, 1.5 and Proposition 2.5, any irreducible
root lattice is generated by a connected sigraph AE to one of the graphs in
Figure 1.6. Since P,,Qn,n € IN and R,k = 6,7, 8 generate A,, D, and
Ey, respectively, by (2.11.3), Witt’s theorem and consequently by Remark
2.6, Theorem 1.1 follow.

The main tool for proving Theorem 1.2 is the following

Proposition 3.4. If G is a graph having a vertex p adjacent to all other
vertices, then either a subgraph H € Ro(IR™) such that p € V(H) or
G € R(IR™).

Proof: First note that

(a) any z € X — p can be replaced by p — z (for if the theorem holds for
G(p: z), it does so for G also).

If the components of G — p are at most two and they are complete graphs
then it is easy to verify that G € R(Dco). Otherwise there exists A C V(G)
such that p € A and G[A4] is isomorphic to T} or T. We can assume the
first possibility by (a) and also

(b) for all a,b € A and 2,y € X, G[p, a,b,z,y] & Ro(IR™).

Then it follows that any z € X — A, replaced by p — z if necessary, is
adjacent to exactly one of {z1,22,23} = A — p. By (b), G[N(z;)],i < 3,
are complete graphs; two of them can be assumed to have more than one
vertex for otherwise it can be easily verified that G is in R(D, ).

Now define a sigraph T with V(T') = V(G) — A and edge function p
given as follows:

-1 if ¢(z,y) =0
() forallz,ye V(T),p(z,y) =40 ifz,yc N(z;) for some i < 3
1 else.

It can be verified that for any B C V(T),

G[AU B] € R(IR®) < T[B] € R(IR™).
In fact if 9 is a RPN of T'(B] such that < e;,n(z) >= 0 for all i < 4 and
z € T[B], then G[AU B] has a RPN 4 given by

2e; if 2 = z; for some i < 3
\/51[)(3;) = {(81+62+e3+84) ifz=p
(ei + e4 +n(z)) if z € N(z;) N B for some i < 3.
It is enough to show that either for some B C V(T),T[B] € Ro(IR™) or
T € R(IR®). If |V(T)| > 4, by using (c), it can be seen that there exists
B C V(T) such that T[B] is SE to some T},3 < 7 < 6 and therefore first
possibility holds. Otherwise T' € R(Dy) or a subgraph of T is SE to Tj.
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This completes the proof.

Remark 3.5 If the first part of the conclusion holds and A is a subset of
V(G) such that p € A, G[4] is isomorphic to Ty or T; and (b) is satisfied,
then H can be chosen such that A C V(H).

Lemma 3.8 Let S be a sigraph and T, a subgraph of S, SE to T} or T2
and for all z,y € X, S[V(T) U {z,y}] € R*(IR*°) and d(z,T) < 1. Then
S € R(IR™) or a subgraph of S containing T is in Ro(IR*).

Proof: By hypothesis,

(a) for all ¢,y € X and z € V(T), Sz, y,2] is not SE to Ts.

Let p € V(T) such that degp = 3; we can assume that for any z in
X - p, ¢(p,z) = %1 for otherwise it suffices to prove the conclusion for
S(g : =) where ¢ € V(T') such that ¢(g,z) = +1 (note that S(q : z) exists
by (a).) and also that ¢(p,z) > 0, for all z € X. Then by (a), for all
z,y € X,¢(z,y) > 0; i.e. S is a graph. Now the conclusion follows from
the above remark.

One more preparatory lemma for proving Theorem 1.2:

Lemma 3.7 Let S be a connected sigraph of order < 8, having an LDR
¢ such that for some a € X,S — a is connected and has an LIR and a
subgraph of S — a is SE to T} or T,. Then £(a) € Z({(X — a)).

Proof: It is enough to show that both S and S — a generate the same root
system. Let |X| = n+ 1. When n < 5, they generate D,,, for a subgraph
of S—a is SE to T} or T». Suppose n > 6. If S — a generates E,,, obviously
S also does so. Therefore assume that § — a generates D,. Then S —a is
AE to @, by Theorem 1.5 and therefore by (2.11.2), S — a ¢ R(Ey) for
Qn & R(Ey). Therefore S ¢ R(E,). Hence S also generates Dy,

4 Characterization of The Sigraphs in R(Q)

In this section we shall prove Theorems 1.2, 1.3, 1.8, 1.9 and 1.10. We
start with a lemma which gives a sufficient condition for a sigraph to have
a RPN in Dg,.
Lemma 4.1 If S is a sigraph such that no subgraph is SE to any of the
sigraphs T;,1 = 1,2,3, then § € R(D).
Proof: By Van Rooij and Wilf’s characterization of line graphs in [RW], S,
is a line graph. Let R be a root graph of S, (i.e. S, is the line graph of
R.). We assume that V(R) C B (an orthonormal basis for IR*).

Let ¢ € V(R) and E; be the set of edges incident with ¢. Define a
function o : By — {—1,1} such that

(*+) for all distinct f,g € E, ov(f)oi(g) = #(f,9)-
Such a function o, can be constructcd as follows: for some e € E, set
oi(e) = 1; for any f € E, —e, let a,(f) = ¢(e, f). Now for any two distinct

184



f,9 € Ey — e, ¢(e, f)¢(f,9)¢(g,€) = 1 for no subgraph of S is SE to T,
and (*#) follows.

Now define a map 9 : X — D, as follows: for any e € X, if @ and b are
ends of e in R, then y(e) = o,(e)a + op(e)b. It is easy to verify by using
(**), that ¥ is a RPN of S in Dq.

Lemma 4.2 Suppose S is a sigraph and A C X such that the following
hold:

(1) S[A] is isomorphic to Ti.

(2) Forsome a € A, S—a € R(Dy)-

(3) For some b € A —a, N(a) = N(b).

(4) For all z € X, no subgraph of S[4Uz] is in Ro(IR*).

Then S € R(Doo)-

Proof: Let A = {p,a,b,c}, where a,b,c € N(p). By (2), S — a has a RPN
£ in Dy,. Assume £(b) = e; — ez and £(p) = €; + e3. If for any z in X — a,
&(z) is £(e1 + e2), then z is ¢ for otherwise by (3), S[4 U z] would be SE
to T5 and (4) would not hold. Again by (3), N(a) = N(b) = N(c). By (4),
S[A] is a component of S and the conclusion follows from (2). Therefore
suppose t(e1 +e2) ¢ £(X — a); then it can be verified by using (3) and (4),
that the function 9 : X — D, defined by

wo={gge e

isa RPN of S in D.

Lemma 4.3 If S is a sigraph in M(Dy) such that no subgraph of order
< 5 is in Ro(IR*), then |X| = 6.

Proof: By Lemma 4.1 and hypothesis, there exists A C X such that S[A]
is SE to T or Ty; we can assume by Remark 2.7, S[A] is isomorphic to T}
or Ty.

Case (1) S[A] = T}. Since minimality of S = for alla € 4,5 —a € R(Dw)
and hypothesis = (4.2.4), it follows from Lemma 4.2 that, for any two
distinct a,b € A, N(a) # N(b). Therefore there exist z,y in X such that
in T = S[AU {z, y}], vertices of A have mutually different neighbourhoods
and T ¢ R(Ds), by Remark 2.8.

Case (2) S[A4] = T>. Let A = {p, z1,%2,z3} where ¢(z2,z3) = 0. Since no
subgraph of S is SE to T3, R = S(p : 1) exists. Now by minimality of S,
S —z; € R(Dw),t = 1,2,3; therefore, R — z;,i = 2,3 and R — (p — z1)
are in R(Do), by (2.11.2). Also for any z € V(R), no subgraph T of
R[p,p — z1, 2, z3, 7] is in Ro(IR*) for otherwise p € V(T') and a subgraph
of S[p, z1,z2,z3,2] would be in Ro(IR™) by (2.11.3), contradicting the
hypothesis. Since R ¢ R(Do) by (2.11.2), as in the first case, there exist
z,y € V(R) such that R[p,p — z1,%2,23,2,y] ¢ R(Dw) and again by
(2.11.2), S[AU {z,3}] & R(Deo)-
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Hence in both cases |X| = 6. This completes the proof.

Now we are in a position to prove Theorem 1.2: It is enough to prove
this for any sigraph S in M(IR*).
Case (1) |X| < 9. By Lemma 4.1, A subgraph T of S is SE to Tj, for some

1 < 3. Let
o(S)= Z d(z, T).
zeX
We can assume that
(a) for any sigraph S’ in M(IR®) such that |V(S’)| < |X| the conclusion
holds and

(b) among the sigraphs in M(IR*) for which the conclusion does not hold,
S has been chosen such that ¢(S) is as minimum as possible.

Then by (b)
(c) No subgraph of S is SE to T;,3 < i < 6.
Let rréaja{cd(z, T) = n+1. By Lemma 3.6 and (b), n > 0. Let a1,62 € X such

that d(a1,T) + 1 = d(az,T) = n+1 and ¢(a1,az) = +1. Let us prove that
the conclusion does not hold for R = S(a; : a3). Suppose A C V(R) such
that R[A] € Ro(IR*). Assume that ¢(a1,az) = 1. Then a3 = a; — ay € A.
a1 ¢ A for otherwise S[(A — a3) U a2] € Ro(IR*). Now it follows that
A = V(R) — a; and R[A] is connected for otherwise the conclusion would
hold for S.

If R—{ay, a3} is disconnected, then there is a vertex a € V(R) adjacent
to a3 but not to any one of {z € (X —a;)|d(z, T) < n}. Therefore it follows
that ¢(a1,a) = £1 and ¢(az,a) = 0. Let P be a shortest path joining a; to
T. By using (c), it can be verified that S[V(T)UV(P)U {a,a2}] € Ro(Doo)
either directly or by showing that this subgraph is AE to the first graph in
Figure 3.1; i.e. the conclusion holds for S. A contradiction. Therefore
(d) R — {a1,a3} is connected.

Let £ be a RPN of § — {a),82} = R — {a;,a3}. Since § —a;,i = 1,2
and R — a; € R(IR*™), by Proposition 2.2 there exist vectors v;,3 = 1,2, 3
of norm /2 such that for all z € X — {a1,a2}, < v;,€(z) >= ¢(ai, z).
Then for all z € X — {a1,082}, < v1 — v2,€(z) >=< v3,£(z) > . Since
v3 € L(&(X — {a1,02})), we get
(e) < v1 —v2,v3 >=< v3,v3 >= 2.

By (d) and Lemma 3.7, v3 € Z(£(X — {a1,@2})). Therefore < vy,v3 >
is in Z. < v1,v3 ># *2 for otherwise v; € L(£(X — {a1,a2})) and the
conclusion would hold for S. Further, since R ¢ R(IR*), it follows that
< v1,v3 >= 0 or —1. Now by (e), < v2,v3 >= —2 or —3. Therefore
vz = —v3 and vz € L(§(X — {a1,a2})). A contradiction. Therefore the
conclusion does not hold for R.
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Now by (a), R € M(IR*®); but a(R) = o(S) — 1, contradicting the
choice of S in (b). Therefore the conclusion holds in this case.
Case (2) |X| > 10. We can assume, by Lemma 4.3, that there exists A C X
such that |[A| = 6 and S[4] € M(D). Let B C X suchthat A C B,|B| =9
and S[B] is connected. By minimality of S,S[B] € R(IR*®) and it follows
from Theorem 1.1, that S[B] has an LDR in Eg for S[B] ¢ R(D) and
dimEg = 8. This completes the proof.

Theorem 1.3 is a consequence of the following two propositions and
Theorem 1.2.
Proposition 4.4 S € R(IR®) = ¢" is linear.
Proof: Let £ be a RPN of S. Suppose A C X and there are scalars o,z € A
such that for all ¢ € A4,

> ezg*(zt) =0

€A
Then 9
|2 act@| = X asoy <tl@)e@) >
TEA z,yEA
= Z aza,d*(z,y)
z,yEA
= Z azz oy¢*(z,y)
TEA yEA
= 0.
Therefore Za,ﬁ (z)=0.
z€EA
Hence for all ¢ € X, Za, < &(z),&(t) >=0;

€A

ie.

Ztaﬁ'(z,t) =0.

€A
Therefore ¢* is linear.
Proposition 4.5 If S € M(IR*) and A C X such that S[4] € Ry(IR™),
then ¢* is not linear and |X| = |4| + 1.
Proof: Let £ be a RPN of S[A4)]. By hypothesis, there are scalars az, z € A,
such that ap # 0 for some p € A and

(a) Za,E(.’c) =0.
zEA
Therefore
() Za,qi*(a:,a) =0, for all @ € A.
z€A
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By Proposition 2.2, S — p has a RPN 7 such that 5 and £ coincide on A —p.
Since S g R(IR*), for some g € (X — p),

(c) <&(p)in(g) ># ¢(p, 9)-

Now by (a), E&, <é&(z),n(q) >=0
zZEA

ie. Ea,¢‘(z,q)+ap < &(p),n(g) >= 0 (since £ and 75 coincide on A —p.).
z#p
Since oy # 0, by (c) we get Za,:ﬁ'(z,q) #0.
z€EA
Therefore by (b), linearity does not hold for S[AUg] and by the last propo-
sition and minimality of S, |X| = |4| + 1. This completes the proof.

Now we describe M(IR®). Let F be the collection of all sigraphs S
satisfying the following:
(a) |X] < 10.
(b) ¢* is not linear.
(c) For some a € X, S — a € Ro(IR™).

Then by the above proposition and Theorem 1.2, clearly M(IR™) is the
subcollection of sigraphs S in F such that no proper subgraph of S is in
F.

Now we prove Theorem 1.8: By Remark 2.8, Rg ¢ R(Do). Therefore
for any sigraph § in R(D), by (2.11.2), (1) holds and (2) follows from
Theorem 1.3.

Next it is enough to show for a sigraph S in M(Do), (1) or (2) does not
hold. If there exists Y C X such that |Y'| < 5 and S[Y] € Ro(IR™®), then
by Corollary 3.2 and minimality of S, S € M(IR*®) and by Proposition 4.5,
|X|=1Y|+1 < 6. This bound holds, otherwise also by Lemma 4.3. Now
if § € R*(IR*), by Theorem 1.5, S is AE to Rg and (1) does not hold.
Otherwise S € M(IR™). Therefore by Theorem 1.3, linearity does not hold
for S; further by Lemma 4.1, a subgraph S[4] is SE to some T;,1 < i< 3
and (by Proposition 4.5, when i = 3) | X — A| < 2. Hence (2) does not hold.
This completes the proof.

Corollary 4.8 Any sigraph in M(D,) has at most 6 vertices.

Next we prove Theorem 1.9: Since Py, Q9 € R*(IR™) and dimEg = 8,
it follows that Py, Q9 & R(Es). Therefore for any sigraph in R(Esg), by
(2.11.2), (1) holds and (2) follows from Theorem 1.3.

Now suppose (1) and (2) hold for a sigraph S. We can assume that
S € R(De) by Theorems 1.1 and 1.3 and for all a € X, S — a € R(Ej).
Then S is connected. If S € R¢(IR*), then by Theorem 1.4 and Proposition
2.5, S € R(FEg). Otherwise, by Theorem 1.5 S is AE to P, or Qn,n = |X]|.
Further n < 8 for otherwise any connected subgraph of S of order 9 would

188



be AE to Py or Qq. Since Ps, Qg € R(Eg), by (2.11.2) S € R(Es). This
completes the proof.

Corollary 4.7 A sigraph is in M(E3) if and only if either it is in M(IR®)
and no subgraph is an AE of Py or Qg or it is an AE of Py or Q.

Note that any sigraph in M(IR®) of order < 10 is also in M(Eg).

Figure 4.8 A graph in M(IR™) N M(E3) of order 10

Finally we prove Theorem 1.10: Let S be a sigraph generating E, (n is
7 or 8). By Theorem 1.4, a subgraph S[Y] in R*(IR®) generates E,.
Clearly S[Y] ¢ R(D«) and by Lemma 4.3, there exists Z C Y such that
|Z| = 6 and S[Z] € M(D,). Since I(F,) is irreducible, S[Y] is connected
and therefore we can choose a set A suchthat Z C ACY,|4|+1=Y]|
and S[A] is connected. Then S[4] € R*(IR®) — R(Ds) and |4| =n—1;
therefore by Witt’s theorem, it generates EF,_;. This completes the proof.

Concluding Remarks

Motivation for formulating the central concept of this paper has come from
[V3] (its main result is that any sigraph in M(Eg) has at most 10 vertices.).
While the author has been writing that and developing related concepts and
notions, the problem of giving computer-free proof of the fact that a graph
G with least eigenvalue < —2 contains a subgraph of order < 9 with least
eigenvalue = —2 has been brought to his attention, by [BN] and led to the
formation of Theorems 1.2 and 1.3.

The notion of linearity is not new. It is a modified form of linear
relational property introduced in [V2]. Theorem 1.8 is an improvement of
the main theorem in [V2]. Propositions 4.4 and 4.5 have been proved there
in different forms.
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It has been observed in [CDS] that there is no minimal forbidden graph
having least eigenvalue —2 for the family of generalized line graphs. The
same result holds for R(A) also. Motivated by this fact, the reason for this
has been found: That is Theorem 1.4.

To see how closely the graphs of two hereditary families resemble in
structure, one approach is to determine whether the intersection of their
families of minimal forbidden graphs is sufficiently large or not. In this
sense, the significance of Corollary 4.7 is that to investigate the properties
of the family of graphs with all eigenvalues > —2, the natural candidates
are not generalized line graphs but the graphs represented by Eg (Because
of this reason, deriving Theorem 1.9 has been easier than proving Theorem
1.8.).
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