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Abstract

The Hitting Set problem is investigated in relation to restrictions
imposed on the cardinality of subsets and the frequency of element
occurences in the subsets. It is shown that the Hitting Set subproblem
where each subset has cardinality Cfor fixed C > 2 and the frequency
of each element is exactly f for fixed f > 3 remains NP-complete,
but the problem becomes polynomial when f < 2. The restriction
of the Vertex Cover problem to f-regular graphs for f > 3 remains
NP-complete.

1 Introduction

The Hitting Set problem is defined as follows:

Hitting Set (HS)

Instance: Collection D of subsets of a finite set S, positive integer K.
Question: Does S contain a hitting set for D of size K or less, that is, a
subset $' C S with |S’] < K such that S’ contains at least one element from
each subset in D?

It has been proved in [3] that HS is NP-complete even if |d| < 2 for all d
in D. Now, for each s; € S, we define the frequency of s; to be f; = f(s;) =
the count of those subsets in D which contain s;. This leads to the following
definition of (C, f)-Hitting Set which is a subproblem of HS.

(C.f)-Hitting Set
Instance: Collection D of subsets of a set S such that each subset in D has
cardinality C and each element of S has frequency f (i.e. each element of S
is contained in exactly f subsets in D).
Question: Does S contain a hitting set for D of size K or less?

We begin to develop results on the (C, f)-HS problem by considering
Vertex Cover which is defined as follows:
Vertez Cover (VC)
Instance: A graph G = (V, E) and a positive integer K < |V/].
Question: Is there a vertex cover of size K or less for G, that is, a subset
V! C V such that |V'| < K and, for each edg. (u,v) € E, at least one of u
and v belongs to V'?
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It is clear that VC is a subproblem of HS where the cardinality of each
subset in HS is exactly 2. Let Max(f)-VC be the subproblem of VC which
contains only those instances with the graph having maximum degree less
than or equal to f. Let {-VC be the subproblem of VC which contains only
those instances with the graphs being f-regular. The formal definitions follow:
Maz(f)-Vertez Cover
Instance: A graph G = (V, E) with maximum degree less than or equal to f
and a positive integer K < [V|.
Question: Is there a vertex cover of size K or less for G?
f-Vertez Cover (f-VC)
Instance: An f-regular graph G = (V, E) and a positive integer K < |V|.
Question: Is there a vertex cover of size K or less for G?

In section 4 we also reference the Edge Cover problem.
Edge Cover (EC)
Instance: A graph G = (V, E) and a positive integer K < |V].
Question: Is there an edge cover of size K or less for G, that is, a subset
E' C E with |E'] £ K such that each vertex v € V belongs to at least one
e€ E?

2 Complexity Results on Vertex Cover
It is known, see [1] and [7], that the CLIQUE problem for graphs (determining

whether graph G contains a complete subgraph with at least K vertices) is
polynomially equivalent to VC. Also, it is shown in [6} that CLIQUE remains
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y
Wa

w3
z

Figure 2: Graph H, for Theorem 1
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NP-complete for regular graphs, hence VC remains NP-complete for regular
graphs. Here we establish the stronger result, that {-VC is NP-complete for
all f > 3. It is already known, see [1] and [7], that the problem we call
Max(f)-VC is NP-complete for f > 3.

Theorem 1 3-VC is NP-Complete.

Proof: It is easy to see that 3-VC is in NP. To see that 3-VC is NP-complete
we show that Max(3)-VC may be polynomially transformed into 3-VC.

For any instance I of Max(3)-VC, G = (V,E) and K € Z*, suppose
there are a vertices of degree 1 and b vertices of degree 2. The corresponding
instance of 3-VC is I' : G' = (V',E’) and K’ = K + 5a + 3b, where G’ is
obtained from G by attaching one copy of the graph H; shown in Figure 1
to each vertex v of degree 1 and one copy of the graph H; shown in Figure
2 to each vertex w of degree 2.

Then G’ is 3-regular. We now show that G has a vertex cover S; with
[Si] £ K if and only if G has a vertex cover $} with |S{| < K'. Suppose G
has a vertex cover S; with |S;| < K, then we can obtain a vertex cover S| of
G' by adding to S, the five vertices which correspond to u,,...,us in Figure
1 for each attached subgraph isomorphic to H; and the three vertices which
correspond to wy, wy, ws in Figure 2 for each attached subgraph isomorphic
to H,. Since S]] = |S1| +5a+3b < K + 5a + 3b = K’, we get a desired
vertex cover of G'.

On the other hand, suppose 5} is a vertex cover of G’ with |S{| < K'. In
H,, even if v and its incident edges are removed, the remaining graph can be
partitioned into two triangles, (u1,us,¥), (u4,us,2) and an edge (z,u3), all
vertex disjoint, therefore any vertex cover of Ay — {v} must contain at least
5 vertices. Similarly, in H,, even if w and its incident edges are removed, the
remaining graph can be partitioned into a triangle, (y, w2, w;) and an edge
(wn, z), which are vertex disjoint, therefore any vertex cover of H, — {w})
must contain at least 3 vertices. This establishes that any vertex cover of
H, must contain at least 5 vertices of H; — {v} and any vertex cover of H,
must contain at least 3 vertices of Hy — {w}. Let $; = 5] N V(G), then
[Si| € K’ — (5a + 3b) = K and S, is a vertex cover of G. Thus we obtain a
desired vertex cover of G.

The above transformation can be computed in polynomial time so we

have Max(3)-VC « 3-VC. (]
Theorem 2 k-VC is NP-complete for each k > 3.

Proof: The proof is by induction on k > 3. For k = 3, the result follows from
Theorem 1. Assume the result is true for r-VC, where 3 < r < k—-1. We
now show that k-VC must be NP-complete, where k > 4. Clearly k-VC is in
NP. We show that (k-1)-VC may be polynomially transformed into k-VC in
two cases, depending on whether k is even or odd.

Case I: k is odd.
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For any instance I of (k-1)-VC: a (k-1)-regular graph G = (V,E) and a
positive integer K < |V}, where n = |V|, the corresponding instance of k-VC
is I'' G' = (V', E’) and positive integer K’ = K +n -k, where G’ is obtained
from G by attaching to each vertex v a graph isomorphic to H as shown in
Figure 3.

Then G’ is k-regular. We now show that G has a vertex cover S; with
§S1] £ K if and only if G’ bas a vertex cover S} with |Sj| < K. Suppose that
G has a vertex cover S) with |S;| < K, then we can form a vertex cover S} of

Figure 3: Graph H for odd values of k

G’ by adding to S, the k vertices corresponding to wy,ws,...,ws in Figure 3
for each attached subgraph. Since |S}| = |Si|+n-k < K+n-k = K'and Sy is
a vertex cover of G’, we have a desired vertex cover for G'. On the other hand,
suppose that G’ has a vertex cover S} with |5]| < K'. Note that H has the
property that each vertex cover of H contains at least k vertices of H — {v},
in fact the only set of k vertices that will suffice is the set {wy,w;,...,wi}.
Let $; = S{NV(G), then || < |Sj| —n-k < K'=n-k= K. S, then, is a
vertex cover of G of the desired form.

Case II: k is even.

For any instance I of (k-1)-VC: a (k-1)-regular graph G = (V,E) and a
positive integer K < |V/|, where n = |V/|, since k-1 is odd n must be even.
Let n =2-m, and V(G) = {v,vs,...,V2m}. The corresponding instance of
k-VCis I G' = (V', E') and positive integer K’ = K + n - k, where G’ is
obtained from G by attaching to each pair of vertices of G, vqi- and vy, a
graph isomorphic to H as shown in Figure 4.

Then G’ is k-regular. Note that H has the property that each vertex
cover of H contains at least 2k vertices of H — {v2i—1,v2:}, in fact the only
set of order 2k that will suffice is {wy,ws,...,wk, U1,Us,...,u;}. Then we
can show in a manner similar to Case I that G has a vertex cover of size K
or less if and only if G' has a vertex cover of size K’ or less.

Note that the above transformations can be carried out in polynomial
time. Thus we obtain a polynomial transformation from (k-1)-VC to k-VC
for all values of k which are greater or equal to 4. Since (k-1)-VC is NP-
complete, k-VC is also NP-complete. o
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Figure 4: Graph H for even values of k

3 Complexity Results for (C, f)-Hitting Set

Since f-VC is equivalent to (2, f)-HS we know from the results in the previous
section that (2, f)-HS is NP-complete for all f > 3. In this section we show
that (C, f)-HS is NP-complete for all values of C > 2 and f > 3.

Let S = {sy,52,...,8} and D = {dy,d,,...,d,} C P(S) such that each
element of S appears in exactly three subsets in D and |d;| =2for1 <i < r.
Then 3-1=2-r, thatis [ = (2-r)/3. It follows that r = 0 mod 3. For
r = 3 -t we obtain the following Lemma.

Lemma 1 Let S, D, r and t be as described above. Then the elements of D
may be reordered as dy, dy,. . ., da-1, dat, day1, .. ., dae such that dyi_1Ndy; #
¢ fori=1,2,... 1.

Proof: First we form a bipartite graph G = (V, E) as follows. V = VU V,,
where V; = {s1,5,...,5} and V; = {d;,d,...,d.}. s;is adjacent to d; if
and only if s; € d;. Then deg(s;) = 3 for 1 < i < [ and deg(d;) = 2 for
1 < j < r. Furthermore it is easy to see that it suffices to prove that G has
t vertex-disjoint subgraphs of the form H = ({s;,d;,dx}, {(s:,d;), (si,dk)})
to establish the desired result. Suppose, to the contrary, that G has at most
h vertex-disjoint subgraphs By, B;...., By of the form H, where b < t. Let
V; =V,nV(B)and V3 =V, — V;, where

.3
B=J 8,
Jj=1
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Then G, the induced subgraph on G with vertex set V — V}, is a bipartite
graph with partites V] and V;" and each vertex in V; has degree 2 in G'.
By the assumption for G, each vertex of Vj has degree at most 1 in G’ for
otherwise there exists an s; € V; — V(B) such that deggr(s;) = 2, which then
implies G has another subgraph By, of the form H with V(B,4,)NV(B) =
¢. Thus

zl:dega:(s;) < = (27‘)/3 =2t

i=1

Since h < ¢, |V3'] 2 3t —2h > ¢ + 1. It follows that

Z dege(v) 22-(t+1)>2t2> i dege:(si),

vevy i=1

a contradiction. Therefore G has at least t vertex disjoint subgraphs of the
form H, and the lemma follows. ]

The reordering of elements in D may be carried out by an algorithm which
arbitrarily selects the new d,, then with a linear search finds d,. A linear
search (of remaining elements) can find a d;, then another linear search can
find a d4 etc. This must be done t times. An appropriate data structure to
maintain, for each item in S, the number of times the item has been “used”
in a new d; will be necessary. The overall reordering of elements of D can
thus be carried out with O(r?) time complexity.

Theorem 3 (8,8)-HS is NP-complete.

Proof: Clearly (3,3)-HS is in NP. The proof is completed by a polynomial
transformation from (2,3)-HS.

Let I = (S = {s1,82,...,8},D = {d,d3,...,d.},K) be an arbitrary
instance of (2,3)-HS. Note that r = 0 mod 3 since r = (3 - {)/2. Therefore
t =r/3 is an integer.

To form the corresponding instance of (3,3)-HS we first reorder the ele-
ments of D using the result of Lemma 1 so that dy;_3 Nd3i_y # ¢ for i =
1,2,...,t. For each three consecutive subsets in D of the form dj;_,,d3;_1,d3;
for ¢t = 1,2,...,t we introduce the following 13 new elements of S’: z3;_,,
Z3i-1, T3ir b1, b2, b3, @, ¢, €, f, 9, ¥, 2. In addition to these 13 new elements for
each 3 consecutive subsets in D of the above form, S’ will also contain all the
original elements of S. For each 3 consecutive subsets in D of the above form,
we include the following 15 new subsets in D": da;—2U{z3i—2}, dziciU{z3i-1},
d3i U {z3}, {z3i-2,9, 2}, {Zai-1, 9, 2}, {23ir, 2}, {Z3i-2,0, b1}, {2301, 0, b2},
{xSiv a, bJ}, {bhct e}v {va ) f}1 {b:hcr g}a {bhfvg}a {bg,e,g}, {blh ¢, f} Then
each variable in S’ occurs in exactly 3 subsets in D’ and the order of each
subset in D’ is exactly 3.

The complete instance, I, of (3,3)-HS consists of S, D' and K’ = K +4t.
Now we show that / has a hitting set of order less than or equal to K if and
only if I' has a hitting set of order less than or equal to K'.

Assume I has a hitting set S; with |S;| < K. Then set S, together with
{y,b1, b2, b3} for each triple d3;_,d3;_1,d5;, will hit each subset in D' so I
has a hitting set of order less than or equal to K.
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Assume I’ has a hitting set S} C &’ with |Si| < K + 4t. We claim that
I’ must then have a hitting set S* such that |[S*| < K + 4t and no z; is in
S* for 1 <1 < 3t. Let S* be a hitting set of I’ such that |S*| < K + 4t and
S* contains a minimum number of elements from {z;|1 < i < 3t}. Suppose,
to the contrary, that the claim is not true and S* does contain an z;. Then
there will be an 7 such that at least one of z3;,-2, Z3i,-1, Z3;, is in S*. Con-
sider those subsets in D’ corresponding to the 3 subsets in D: d3;,_2, daio-1,
d3i,. It is easy to verify that at least 3 elements from {by, b5, b3, ¢, ¢, f, g} are
required to hit the subsets {4,,¢, e}, {b,¢, f}, {bs,c,9}, {b1,f, 9}, {B2,¢, 9},
{bs, e, f}. Whatever 3 of these elements are included in S*, we replace them
and instead include {b;, b, b3}. Then the remaining subsets that must be hit
are daig-2U{Zaip-2}, daig-1U{z3i0-1}, d3ioU{z35, }, {Z300-2, ¥, 2}, {Z300-1, ¥, 2},
{33.‘0,!/, Z}.

If there are at most two elements of {z3;;_2, T3i—1, Z3,} in S*, then
either y or z must also be in S*. In this case, we can replace each z; of S*
by an arbitrary element of d;, where 3ip — 2 < j < 3iy, to obtain a hitting
set for I’ which has at most K + 4¢ elements and contains fewer elements
from {zi]1 < i < 3t} than S, contradicting the choice of S°. If all three
of Z3i,—2, Zaig-1, Tai; are in S*, then we may replace them by the following

three elements:

)y

2) an arbitrary element of ds,

3) an element s such that s € dyj;—2 N day—,
to obtain a hitting set for /' which has at most X + 4 elements and contains
fewer elements from {z;|1 < ¢ < 3t} than S*, again contradicting the choice
of §*. Therefore, the claim is true.

Now let $° be a hitting set of /’ such that |S*| < K +4t and S* contains
no element from {z;|1 < i < 3t}. Note that each hitting set of I’ contains
at least four of the 13 new elements for each triple d3i_,d3i_y,d3. Let
51 =8NS, then |8 < K and 8, is a hitting set of I. o

A generalized technique similar to that used in the above proof can be
used to polynomially transform an arbitrary instance of (C, f)-HS to (C+
1,f)-HS for all C > 2 and f > 3. To apply the technique to / = (s =
{s1,82,...,9},D = {dy,d3,...,d.}, K) we must have r =0 mod f so that
t = r/f will be an integer. If this is not the case an intermediate (C, f)-HS
problem consisting of f copies of the entire original problem where K’ = f. K
will be required.

We now have complete results on (C, f)-HS for f > 3. In the next section
we develop results for f € {1,2} and establish the equivalence of HS to the
Decision form of the Query Optimization Problem.
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4 Relationship of the Query Optimization
problem to Hitting Set

The problem of Query Optimization using prime keys was introduced in [2].
The formal description of the problem is: Let Y = {k;,ks,...,k,} be the set
of keys and let A = {(ki,};,a;),1 < i < n} be the directory, where k; is a
key in Y, /; indicates the number of records in the file which contains k; and
a; points to the first record of the list for k;. For each key k;, all records in
the file containing k; are linked. Let

Q = (kl’, Akl‘zl\. . ~Akl,n| )V(’Cz_[ /\kg'zl\. . .Akgmz )V. . .V(km'] Akm.2/\~ . 'Akm.nm)

be a query over Y, where each k;; € Y andlet Q; = {ki1,...,kip,} for
1 € i < m. A record always contains some subset of Y. A file, F,,over Y
is a subset of P(Y), i.e. a set of records over Y. Record R is said to satisfy
Q if there exists some 1, such that @; C R.

Assume that f; = the count of those Q; which contain k;for1 < i < n
and1 < j < m. Let W = { all retrieval processes associated with Q and
F}L,V={S|S C Rand SN Q; # ¢forl < j < m}, then thereis
a one-to-one correspondence between W and V. Let u € W and S be the
element of V that corresponds to u. We define cost(u) = &, + i, + ... + {;,
where S = { ki, kij, ..., ki, }.

Decision form of Query Optimization Problem (DQOP)

Instance: A set of keys, Y = {ki,ks,...,ks} ; a set of records over Y,
F = {Ry,Ry,...,R,} ; a directory set A = {(k;,l;,&;),1 < i < n}, for
F; a query

Q = (kyaAkiaA Ak oy )V (kg AR A Akgp, )V V(b Ak oA Ak )

over Y ; and a bound B € Z*.
Question: s there a retrieval process u € W with cost(u) < B which is
guaranteed to retrieve all records which satisfy Q ?

Let DQOPL be the subproblem of DQOP which contains only those in-
stanceswith y = =... =1, = L.

Let DQOP! be the subproblem of DQOPL which contains only those
instances with fy = fo = ... = f, = 3.

Let DQOP2 be the subproblem of DQOPL which contains only those
instances with f; < 2foralll € 7 € n.

It was shown in [4] that DQOP1 is an NP-complete problem while DQOP2
has a polynomial solution.

Recall that there is a one-to-one correspondence between W and V. This
implies the following equivalence between HS and DQOPL.

Theorem 4 HS is polynomially equivalent to DQOPL.

Theorem 4 is easily shown to be true for the following correspondence.
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For each instance I' = (Y, @, F, A, B) of DQOPL, the corresponding instance
of HSis I = (S,D,K), where S =Y, D = {Q1,Q2,...,Qmn}, and K = B/L.
Going in the other direction, for each instance I = (S, D, K) of HS, with |S| =
n and | D| = m, the corresponding instance of DQOPLis I' = (Y, Q, F, A, B),
whereY = 5,Q =C,VC,; V...V C, with each C; being the conjunction of

f
C

Figure 5: Table summarizing (C, f)-Hitting Set complexity results (X means
“meaningless”.)

the elements of d; € D, F C P(S) such that each element of S is present in
L subsets in F, A = {(si,L,a),] < i €< n},and B=K -L. o

As a consequence of Theorem 4 all the complexity results established for
HS are also true for the corresponding DQOPL problems. Also, the following
corollary follows directly from a result in [4).

Corollary 1 The subproblem of HS where each element belongs to at most
2 subsets is polynomial.

Alternatively, Corollary 1 can be established by a reduction of HS, where
each element belongs to at most 2 subsets, to EC. Except for the issue of
subsets containing only elements of frequency one, this restriction of HS
is exactly EC. It is well known (see [1] and [5]) that EC can be solved in
polynomial time. To reduce the restricted HS to EC, let D be an instance of
restricted HS. First remove from D any subset which contains only elements
of frequency one; for each such subset d removed, add any element of d to
the hitting set. View the remaining subsets as a graph where the vertices
are the subsets, and where d; and d; are connected by an edge if and only if
diNd; # 4. A minimum edge cover of this graph corresponds to a minimum
hitting set.
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5 Conclusions

Each (C, f)-HS problem, for C > 2 and f € {1,2}, is a special case of the
HS subproblem addressed in Corollary 1, therefore (C, f)-HS is polynomial
for all C > 2 and f € {1,2}.

The table shown in Figure 5 summarizes many of the results established
in this paper relating to the (C, f)-Hitting Set problem.
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