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Abstract. In this paper it is shown that the number of induced subgraphs (the set of
edges is induced by the set of nodes) of trees of size nsatisfy a central limit theorem and
that multivariate asymptotic expansions can be obtained. In the case of planted plane
trees, N -ary trees, and non-planar rooted labelled trees explicit formulzae can be given.
Furthermore the average size of the largest component of induced subgraphs in trees of
size nis evaluated asymptotically.

1. Introduction

Let G = (V(Q), E(G)) be a graph with nodes V(G) and edges E(G). A
subgraph H = (V(H), E(H)) is called induced subgraph if (z,y) € E(H)
ifand only if z,y € V(H) and (z,y) € E(G). We will discuss distribution
properties (such as the average size, the average number of components in general
and of given size, the average size of the largest component) in simply generated
Jamilies of trees. These kind of families of trees has been introduced and widely
discussed by A. Meir and J.W. Moon. We will follow the description of [MM]:

Let F denote a family of rooted planar trees and F, C F the subset of F of

trees of size [V(T)| = n (i.e. with n nodes). Such a family is called simply
generated family of trees if the generating function

Y(2) = ) vaz" (1.1
n>1

of the sequence y, = |F,| satisfies a functional equation of the type
Y =zp(Y), (1.2)
where
o(t) = 1+ prt+ ot + .- 1.3)

is a power series with non-negative integral coefficients. In order to describe a
more general situation it is also possible to use an arbitrary power series (1)
with non-negative coefficients and use the coefficients of () to define weights
w(T) of rooted planar trees T such that w(T) > O ifandonly if T € F. Let
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D;(T) denote the number of nodes of T with (out-)degree 1, then the weight w(T)
can be defined by (o = 1)

w(T) = [ " . (14)
0

Now it is easy to see that

E( » w(T)) 2

2l \|V(T}]=n

is the solution of (1.2) analytic around z = 0. Thus

=, w(l). (1.5)
VTl

Furthermore by Lagrange’s inversion formula y, can be evaluated by

Yo = %lu""]so(u)“. (1.6)

where [u”] f(u) denotes the coefficient of u™ of the power series expansion of
f(u).

Note that a simply generated family of trees can also be described by a com-
binatorial structure F (see [FI]) with a size function that counts the number of
nodes. The structure satisfies the formal rule

F={n}x ({e}+ 1 F+pFt+..), Qamn

where n denotes a node, € the empty structure and + the disjoint union.
In the sequel we will mainly discuss three types of families of trees, planted
plane trees, N -ary trees, and non-planar rooted labelled trees.
Ifp;=1,thenp(t) =1/(1 —1t) and

Yo = 1(2"—2), (1.8)

n\n-—-1

the Catalan number, is the number of general planted plane trees of size n.

The generating function of N-ary trees with x internal nodes (the out-degree
is always N and leaves are not counted) satisfies the functional equation ¥ =
1+z¥V. WithY =Y — 1, we get Y = z(1+ Y) V. So we can describe N-ary
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trees (only counting internal nodes) with p(t) = (1+ t)¥. The number of trees
with n internal nodes is given by

¢m=l(N") (19)

n\n-—1

If p(t) = et the solution of Y = ze¥ can be interpreted as the exponentially
generating function of the numbers of non-planar rooted labelled trees of size n.
We have . ot

n
“=%=7T' (1.10)

These three families are not only of special interest but have formally an in some
sense simple structure so that it is possilbe to get explicit formulae by Lagrange’s
inversion formula for many interesting parameters related to trees. The notion of
simply generated families of trees also includes other interesting structures (such
as Motzkin trees: p(t) = 1+ t + t> or N-ary trees, where all nodes are counted:
©(t) = 1+ tV) but they are much more difficult to handle and it is not possible
to get simple explicit expressions. Nevertheless the asymptotic properties can be
derived for a wide class of power series p(t) by the same method.

In section 2 we will prove functional equations for the generating functions of
the numbers of induced subgraphs with components of given size. In section 3
we will use these functional equations to get explicit formulae for planted plane
trees, for N-ary trees with n internal nodes, and for non-planar rooted labelled
trees. In section 4 we will prove that those numbers satisfy a central limit theorem
and give multivariate asymptotic expansions. The last section is devoted to the
average size of the largest component of induced subgraphs.

2. Functional Equations

For any planar rooted tree T let agym j(T) (k,!,m;,j > 0,m = (m1, mz,...))
be the number of induced subgraphs H of T of size k, with [ edges , and with
m; components of size { (i > 1) such that the root » = r(T') is contained in a
component of H of size j (j = 0 means that r ¢ V( H)) and set

tutimi = 9 W(Teumsi(T). @1
V(D)=n

The aim of this section is 10 establish functional equations for the generating func-
tions

AT, 9,2,0) = Y Gukimjz"y 20" (22)
nklm
(v=(v,v2,...),v™ = vMvy" ...) and for
C(z,v,2,9) = Y Aj(Z,9,2,v) 23)
‘ j20
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that is the generating function for the total numbers cuy, of induced subgraphs
with k nodes, { edges, and m; components of size 1 ({ > 1) in trees of size n.
Note that aukim; OF Cukim Can only be different from zero if

Simij=k and Y (G-Dm;=1 (24)

j21 J21

and that k — [ = )" m; is the number of components.
j2l1
Lemma 1. If a simply generated family of trees is characterized by o(t), then
we have for A; = Aj(z,y,2,v) .

Ao = zp (E A,-) (2.5)

j20
> L= Ao+zy 1y 2.6
2 Ai=Typ | Aot z) A, (2.6)
2 21
A= @) ys e+ (2D, @)
Proof: In order to prove (2.5)—(2.7) remember that a simply generated family of
trees can be interpreted as a combinatorial structure and satisfies the formal rule

(1.7). So the combinatorial structure A¢ of induced subgraphs not containing the
root can be described as

Ao ={n} x ({e} + piC+ P22 + .. ), 2.8

where C denotes the combinatorial structure of all induced subgraphs. This gives
(2.5). ‘

Now let B be the combinatorial structure of induced subgraphs H of trees T
where the root +(T') is contained in V( H) and the size function does not count
the component that contains the root. Then we have

B= {n} x {m} x ({e} + 1 (Ao + {en} x B) +
p2 (Ao + {en} x B)” + ---),

where ndenotes anode in T, ny a node in H, and ey an edge in H. Furthermore
the generating function corresponding to B is given by

2.9)

B(z,5,%9) = 3 3-Ai(5,9,5,9). 2.10)
2t
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This gives (2.6).

In order to prove (2.7) consider the combinatorial structure D of induced sub-
graphs H that contain the root of T and where the size function measures the size
of the component that contains the root and counts the number of nodes in T not
contained in this component, the number of nodes in A not contained in this com-
ponent, the number of edges of H not contained in this component and so on.
Then we have

D= {ng} x ({e} + p1 (Ao + D) + p2 (Ao + D)% + -}, (2.11)

(where ng denotes a node in the component containing the root) and the generating
function corresponding to D can be written as

D(u,z,y,2,v) = E Aj(z,y,2,v)(zy) T2 o (2.12)
i21

Since (2.11) implies D = up( A + D) we get by (2.12) and Lagrange’s inversion
formula

Aj(zy) Tzl = l,[tf-l]p(Ao +1). (2.13)
] gl J;

Thus the proof of Lemma 1 is finished.
Remark 1: If we set v; = 1 ({ > 1) we only count the total number of induced
subgraphs with & nodes and [ edges as it has been done in [Ba). Using the notation
of [Ba] we have

A(z,y,2) = Ao(z,9,2,1)

B(z,y,2) = ) Aj(z,y,2,1) @.14)
j21

and therefore by (2.5) and (2.6) the functional equations

A= A+
zp(4 + B) (2.15)
B = zyp(A+ zB)
which are used in [Ba] to get explicit formulae for the total numbers of induced
subgraphs with k nodes and [ edges in trees of size n, where p(t) = 1/(1 —t),
p(t) = (1+ )V, and p(¢) = ¢'.

Luckily it is possible to simplify the infinite system of functional equations for
the formal power series A; to one functional equation for C. We will use both
representations, the infinite system to get explicit formulae and the single equation
for the asymptotic analysis.
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Theorem 1. Ifasimply generated family of trees is characterized by p(t), then
the generating function C = C(z,y, 2,v) satisfies the functional equation

C=1zp(0) + zyp(20+ (1 -2)zp(C)

+y(1- v;)(xyz)"-]l:[tf"lqo(w(c) + t)") 2.16)

21
= 30 - (e 1 (9(0) + 1)
4 J
j21
Proof: Set 1
D=Ao+ zz -v—jA,-. @.17)
21
Then )
D=zC+(l—z)Ao+zZ(;—l)Aj (2.18)
2t M7
and we have by (2.6) that
Z lA, = D - Ao
i Y z
1
=C— A+ (-- I)A-
; vy 7 (2.19)
= zyp (zC-i- (1-2)Ap+z)y, (;1- -~ 1) A,-) .
izt N

Inserting the expressions (2.7) for A; and zp(C) for Ao we immediately get
(2.16).
Remark 2: If we set v; = 1 (i > 1) we get a reduced functional equation for
C=C(z,y,2,1) = A(z,y,2) + B(z,9,2):

C = zp(C) + zyp (2C + (1 — 2)zp(0O)) . (2.20)
3. Explicit Formulae
To determine explicit formulae we use the methods explained in [Ba] where it is
proved that the tricks only work for the binomial family p(t) = 1 (t) = (1+at)¥
and for the exponential family p(t) = p2(t) = e° of functions. We are interested
inp(t) = e, p(t) = (1+t)¥ (the N-ary trees), and p(t) = (1-1) -1 (the planted
plane trees). The formulae for the last ones can be deduced from the N-ary case
by substituting —1 for N and multiplying by (—1)". So we have to discuss the
functions p(t) = e* and p(t) = (1 + t)¥ and will prove the following explicit
formulae for the numbers cqy, defined in (2.3).
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Theorem 2, If p(t) = 1/(1 —t) then we have

1 (2n-2\[n-1-2\(k=1\_n
“*‘"‘k—z(n-k)(k-z-l)(m)}”

3.0

where (*-%) denotes the multinomial coefficient (k—1)!/ jl;[l m;!, P™ = j];[l P,

and 1/25=-2
=),
J\j-1
the Catalan numbers. For p(t) = (1+ t)¥ we have
1 (Nn—k+1\(N(n=k)\[k=1\pm
“""‘"“k-z( n—k )(k—l—l)(m)P’

1/ Nj
Pj-—j ._1),

where

and for p(t) = e* we get

T W i € O L 4 T8 A W,
Sk = = = T k= I=DI\ m J©

with ot
=1
Bi=r

3.2)

(3.3)

(34)

3.5)

3.6)

Proof: We have p(v + w) = p(v)p (,,;'—,) with h(v) = 1 for p(t) = ' and
h(v) = 1+ v for p(t) = (1+t)¥. So we will consider both cases as one as long

as possible.
(2.6) now reads as
A; = (zy) 27 vjp(A )i[ti-l]l t !
j = tanra et 72 \nA0)
p(Ao)
YAy T
With A; = yv;Bj and B = Y, B; we get from (2.4) - (2.6) the system
izl

= (a2

Ao = zp (Ao + Eu,yaj) = zp(Ao)p (%%’)
izl
B = zp( 4o + y2B) = zp(Ad)p ({é—jﬁ—))
w(Ao)’

_ i1
B] - T’(yl)) h(Ao)j-l J-
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Using the tricks in [Ba] i.e. expanding C(z,y,z,v) = C*(u1,u2,us,v) with
u; = T, u3 = IY, u3 = Tyz and determining the total number cyy,, as the
coefficient of u?* uf~'ul v™ we substitute g = B/h(Ao), r = yg, and s = yzq.
So we get from (3.9)

B = zp(Ao)p(s) (3.11)
and from (3.10)
(B W P o,
B = (so(s)) R(ATH = oyt B 3.12)

With §; = vy Pjs'~ [p(s)/,U; = jS;,8 = ¥ Sj,and U = ¥ Uj we get from
j21

it
(3.8)

Ao = zp(Ao) p(r8). (3.13)
(3.13) divided by (3.11) implies Ao /h(Ao) = gR = p with

R=p(r8)[p(3).
Preparing for later use we remark that for given m = (m,;, my,...) we have

Q4),ieY jmi=k (- Dm; =1, m;=k—1,and

- !
(™84 = ("m l)Pma"&7 (.14)
[vMUstHt = ’i ;o185 (3.15)

For application of Lagrange’s inversion formula we have to calculate deriva-
tives with respect to ¢ by remembering that ¢ appears in r and s, too: 7'q = 7,
s'qg=s.

If we fix N = 1 for p(t) = ¢! we can work with 22 = N,,ﬂ(% in both cases.
Using this we get

Sig="U; (1 - %3) -5 (3.16)
and therefore
S+ Sg= (l - —N—s) U 3.17)
h(s)
P =(qR)' =R+ RYq
=R (l - h_x;s) (l + h(I:'r_S)TU') (3.18)

Since 1+ t4{2 = h(t) we get from Ao = ph(Ao)
Ay = p'h(Ao)?. (3.19)
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Using (3.13) and Ao = ph(Ao) = gRh(A0) = ¢ £ £ Ag) we get

so(c)

P(A0)p(s) 320

q .
= = with =
=y 9= Th(4n

The wanted number cpiy iS NOW
1 - — m ! n
;[q kpk-lgh,m] (qA{, +7 (E va,-) ) g". (3.21)
Since Y v;B; = Y S;B = SB = Sqh(Ao) with (3.16)
! dh
(Z u,B,-) = h(Ao)(5+ ¢S") + Sq (o) b (322

and therefore with (3.18) and (3.19)

gAp+ 1 (Eu,-B,-)' = h(Ao)TU (1 - %—3)

(3.23)
+ qRh(Ap)? (1 - ms) (h(r8) + N7U).
So we have to determine
n—-k k—l l n

[q 1= ( 0] )so(s) Q 3.29)

with (Ao)" (A0)"

_ p(Ao p(Ao

Q= rU—-——h o)™ + qR(h(rS) +NrU)——h( yRL=E (3.25)

where Ao /h(Ao) = ¢qR.
Now we have to split the two cases. For p(t) = e we have h(t) = 1, N = 1,
p(Ag) =eP=eR,andR= e"Se~*. Hence (3.23), (3.25) read
[g"* rk=tgly™) —l ; se"“ (rUe“"R +qRe™R(1+ rU)) (3.26)

leading to [ g™ *] equals

n—k—2
T (1~ 9 (U 20— k) + (n=ReO) 62D

and therefore [r*~!] equals

nfu—k—z (n _ k) k-1-1
(n=Kk)!(k-1)

(1 - 3s)e® ((2n— k) (k— DUSE! + (n—k)28%) .
(3.28)

201



Determining now [v™] using (3.14), (3.15) we get

n"“k(n_ k)k—l—l k-1 "
(n—R)I(k—D)! ( m )P (3.29)

times the coefficient [s]s!(1 — s)e**. Hence (3.5) with P; = ji=1/j! gives the
wanted coefficient cpiig, -
For p(t) = (1+ )" wehave h(t) = 1+ ¢, 72 = p, 1+ Ag = 1/(1 —p),

* 1+ Ao
and 42) = (1 — p)~(N-1_ The function in (3.24) reads
11—(N-1)s N U R(1+ 7S+ NrU)
n 1+s (1+3) u((l_p)(N—l)n-H +q (1 = p)(N=-Dn2
(3.30)
Therefore the coefficient [g"*] equals
lw(l + g) Nk Nn—k rU(1 + rS) N8
n l+s n—k
+ (nN"k"_kl ) (1+7(S+ NU)) (1+7S)NH |,
(3.31)
From this we get that [ +*~!] equals
11—(N—1)s Vi
e T O ) (3.32)

with
= _ (Nn—k\ /N(n—k) k—l-1 Nn—k \/N(n—-k)\ i
Q'(n-k)(k—z—l)US +<n—k—l)( k-1 )S

Nn—-k N(n-k) k=1 k—=1—1
N (n_k_l)(k_l_l) (S + NUSH-).

(3.33)
Using (3.14), (3.15) we get after simplification (3.3) and from this the numbers
for planted plane trees (3.1).
Remark 3: Note that it is also possible but rather technical to get explicit expres-
sions for the numbers ¢y, defined in (4.16). Explicit formulae for ¢y (I = @)
are given in [Ba).

4. Asymptotic Results

Letcu (k= (ki,...,ku)) be non-negative numbers such that ¢, = 3, cu <
oo. Then we say that ¢, satisfy a limit theorem if discrete random vectors X,, =
(Xa1,...,Xn) with

P[X, =kl = @.1)

Cn
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have a special limit distribution. For example, if these random vectors X, are
asymptotically normal with mean u,, = EX,, ~ ny and covariance matrix X, =
CovX, ~ nZ (for some fixed s, £ ) we say that ¢ satisfy a central limit theorem.
The following theorems show that such a situation is quite natural in combinatorial
enumeration problems where functional equations of the type C = G(C, z, 2) are
involved.
We will use the following notation. Let ¢ = f1(z), z = f2(z) be a solution of

the system of equations

c=G(c,z,2)

1=Gdc, z,2),
where z = (z1,... ,2y) is interpreted as a parameter. Then we define a vector
p(2) = (pi(2))i=1,.., M bY

“4.2)

- ’;gj(fl(z),fz(z),z) @3)

and a matrix X (2) = (0ij)ije1,... M bY
0:i(2) = I‘o( 3)2 + pi(2)
— o [GY(GeGun — GL) —2GoC CeeGizn ~ GexGle)

ZGS Gx
+ G4(GeGaz — GB)| (£1(2), f2(2), 2)
“4.4)
and by
a;j(2) = pi(2)p;(2)
_Z._L [Gz ( Gccan; - Gc:; cz,)
“.5
- Gsz;(GccGzz; = GexGes)) — GG GeeGrr; — GaGer,) )
+ G4G1y (GG — G| (Hi(2), £2(2), )
fori # j.
In many situations it will be more convenient to solve
c=G(c,z,2)
1=Gdc,z,2) 4.6)
_ ziGy(c,z,2)

pi= 2G.(c, T, 2) (1<i< M)

instead of (4.2). Let (c,, T,,2,) be the solution of (4.6) with parameter p =
(p1,-.- ,0m)- Then u(z,) = pand of course f1(2,) = c,and f2(2p) = z,.
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If we set Ya(2) = ¥ cu 2%, then let
%

d=ged{n—1>0: Po(2) £0}, @7

where | = mm{m >0: Yu(2) Z0}.
If Z C (0,00)™, then define a set R(Z, €) by

R(Z,e) = {z €C¥: 2| = (la],-.. ,|2u]) € 2, lrg.zgtuarg(zs) < e}.
h @.3)
Theorem 3. Let C(z,z) = zc,*:x: zF (2% = 2 ... 28) be the generating

function of numbers ¢y, > 0 that satisfies a functional equation of the form

C=G(C,z,2) = Y gijmC'z/ 2™ 4.9)

1J.m

such that
Y cime™ 20 (5,720 (4.10)
m

for z in some (real) neighbourhood of (1,... ,1). Suppose that there are positive
solutions co = f1(1), zo = f2(1) of system (4.2) (xo must be chosen to be
minimal), that (co, o, 1) is a regular point of the series expansion of G(c, z, z),
that

Gcc(CO’ZOal)Gz(c(hzOsl) >0) (4'11)

and that detZ (1) # 0. Then the numbers ¢ (n=1 mod d) satisfy a central
limit theorem with

=nu(1) + O(1) (n=1! mod d) 4.12)

and
Z,=nZ(1) + O(1) (n=1 mod d). “.13)

Theorem 4. Suppose in addition to the assumptions of Theorem 3 that there is a
compact connected set Z C (0,00)™ such that
(1) G f1(2), f2(2),2) Gz(f1(2), f2(2),2) >0 forz € Z,
(ii) detZ(z) #0 forz€ 2, and
(iii.a) giym > O and that there are ky,ky, k3 with cu, Cuycey, > 0 and
ged{ky i, k2 4, k3 3} = 1 forsome i > 1 or
(iii.b) c(z,2) is regular for z € R(Z,¢), |z| € Z, and |z| < (1+ 8) f2(|z]) for
someg,§ > 0.
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Then c (n=1 mod d) can be determined asymptotically by

= 2pG=(Cp, Tpy 2p) d . — -3
Cak = d [ZﬂGx(cp,zp,zp)n3(2ﬂn)MdetZ(zp) ] o % (“ o (" ’))
@4.14)

uniformly for z, € Z, where p = k/n and c,,z,, 2, are defined in (4.6), and
locally by

Cok = Cry z;'/'n" (e—,';u—i)z(s,,.)-‘(k-f)' +0 (,,--‘,)) @.15)

uniformly for all k and zj), € Z.

A proof of both theorems can easily be given by a combination of the ideas of
[Be), [BR], and [Dr]. (Note that (iii.a) implies (iii.b).)
Now it is easy to apply these theorems to the case of induced subgraphs of trees:

Theorem 5. Let a simply generated family of trees be characterized by a power
series p(t) with positive radius of convergence R such that there are positive real
solutions up < R, vo < R — uo /2 of the equations

u U
uop'(uo) = p(uo), vop (?0 + vo) = (70 + vo) . 4.15)
Fix some finite set I of positive integers with cardinality M. Then the numbers
Crkim; = E Crklm 4.16)
m;i¢1

satisfy a central limit theorem and multivariate asymplotic expansion can be ob-
tained as formulated in Theorem 4. The average number of nodes of induced
subsets in trees of size m is given by nf2 + O(1), the average number of edges
by nf4+ O(1), and the average number of components of size j by mu; + 0;(1)

with ;
1 -1 U,
by = e (3 +9)
) 2"*190'(“0)"'1!9(110) .
Furthermore the covariance matrix related to the number of nodes and edges in
induced subgraphs is given by nZ + O(1), where

L 1
}:=(4 s .8 e )). T @418
% TG“"% :;’uo

So we have in general (I = @)

@.17)

Okt _ 2m? : (e-z':("—.’t.'-%)z"U‘-H-*” +0 (,,—%))
Yn ™ (l + %’-) i

4.19)
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where y, is defined in (1.5).

Remark 4: It is remarkable that the average number of nodes and edges is almost
independent of p(t). (A similar statement holds for the covariance matrix.) Only
if p; € {0, 1} it is easy to see that the expected number of nodes is exactly n/2.
Since the number of components equals k — [, the average number of components
is given by n/4 + O(1), that is almost independent of (), too. Thus an average
component consists of 2 + O(1/n) nodes. These results correspond with the

identities
Sweg wa Fiu-
i21 j21

4.20)

O]

Namely, if we set p; = 4 u;, then a random variable Y with P[Y = j] = p; has
EY = 2. These identities can be proven by Lagrange’s inversion formula applied
toy = zp(uo/2 + y), where y(1/(2¢'(u0))) = uo/2. Furthermore one can
obtain an explicit expression for the variance

_ 2 p(u0)p"(uo)
VY = ,-22;(] -2)%p; =2 (1+ ST ) . @.21)

Remark 5: p; can be evaluated explicitely for p(2) = 1/(1 —¢):

1/25 -2\ 2/-2
w=3 (727 ) “2)

for p(t) = (1+t)V:

1/ Nj\(2N—1)(N-Dj*!
,,,:T(}_ ) 2G N 4.23)
and for p(t) = e*:
7!
4.24)

W= S

In general it is easy to get explicit expressions for u; for small values (e.g. for

7 <3
_e® (P e (R
B 20(u)’ 7 8p(u0) g/ (uo)’ @25
4y = £ () +3o () e ()
16 p(uo) ¢'(uo)?
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For large values we can use Darboux’s method to get an asymptotic expansion of
the Taylor coefficients of y(z) of the solution of
y = zp(uo /2 + y) to obtain

L i
_ 1 p (% + w) o (% + vo) -—3/2( <1))
= o ety [Smst] 7 (0 (5)):
4.26)

Proof of Theorem 5: First we use Theorem 4 for the generating function
Ao(z,y,z,v), where v; = 1 fori ¢ I. By (2.5) we have

Ao = ZP(AO + E(Iy)jzj—lvj-;:[tj'l]SO(Ao +1)7
el “.27)

+Y) (zy) ! l.[tf-‘1¢(Ao + t)f).
77 ]

It satisfies all assumptions for { = 1 andd = ged{m > 1: pn, # 0}. So

Ao(z,y, z,v) is analytic and bounded in a reagion (y,z,v) € R(Y x Z x V,¢),

(see (4.8)), |z| < (1+8) f2(|yl, |2l, lv]) for (lyl, 2], |v]) €Y x Z x V. Butnow

- 1 .

C=A + E(zy)'z”lv,-]—,[tj_lllp(Ao +t)’

sel . (4.28)

+ 3 (zy) 2 <[ p( Ao + 1)

J
je1

and so C = C(z,y, z,v) is analytic and bounded in the same reagion. Thus we

get asymptotic normality and multivariate asymptotic expansions. It should be

noted that f1(1,1,1) = up and that f2(1,1,1) = 1/(2¢'(uo)), where uo is

the positive solution of upp'(10) = @(uo). So it is easy to derive (1,1, 1) and
X(1,1,1).

5. Expected Value of the Largest Component

Letay j(T) be the number of induced subgraphs H of T such that all components
of H are of size < L and that the root of T is contained in a component of size ;.
Set .

ey = Yy, w(TaLi(T) (5.1)
V(T)|=n
and .
ALy(z) =Y awyz®, Cu(z) =) Ani(a). (62)
n =0

As in section 2 we can prove
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Lemma 2. If a simply generated family of trees is characterized by (1), then

L
Apo(z) = zp (E Al..;(z)) (53)

J=1
Apy(z) = ;—.[ti-‘lsa(AL.ocz) +) 54
L
.1 s .,
C1(2) = 2p(Cy(2)) + ) o = [t ] (zp(zp(C(z)) + )7 .
=0 7 (5.5)
Let L
Hi(,9) = 3 o <1011 (3p(0) + )/ 56)
j=1
(1 <L £ 00) and yoy, = [2"]1CL(x), where C,(z) is the solution of
C1 = z(Cy) + Hi(z,Cy). 67
Then
Fo(z) = ;‘i (L<z<L+1) (5.8)

is the distribution function of the largest component of induced subgraphs in trees
of size n.

Remark 6: Note that y,., counts all subsets of trees of size n. So Coxo(z) satisfies
the functional equation C,, = 2zp(Cs). Therefore we have

Hool(2,Coc(2) = 3 57 -0 (20 Con()) + 1)
j21 7 59

= 2p(Cua(2)) = 3-C).

This relation can also be checked by using Lagrange’s inversion formula, for
Hoo(z,c) is the solution of Hy, = zp(zp(c) + Hy). Set c = Co(z). Then
by (5.7) Hwo(z, Coo(T)) = zp(Coo(2)) = %‘Coo( ).

Discussing the asymptotic expansion of y,;, we will prove the following theo-
rem:

Theorem 6. Let a simply generated family of trees be characterized by a power
series p(t) with positive radius of convergence R such that there are positive real
Solutions up < R,vo < R — ug/2 of the equations

up'(u) =p(uo),  wy (F+uw)=p(R+w). 610
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Then the expected size of the largest component of induced subgraphs of trees of
size n is given by

B o+ O(loglog n). (5.11)

¥'(v0/2+v0)
and the variance can be estimated by O(log nlog log n).

log

Theorem 6 is an easy consequence of

Lemma 3. The numbers y,, (n=1 mod d) can be expanded asymptotically
by

yu = Cuzp*n (1+ O(x7Y)) (5.12)
uniformly for L > Lo andn > ny, where
C = [-M)——] " 4 0(ab) (5.13)
27" (uo)
1 — aF
= eyt Oz (1+ O(L™H) (5.14)
with (21 )
_P¢(F+w
o= Sy (5.15)
and
~ [ eew ] o' (3 + ) g
¢ [21rp" (% + vo)] 4p(uo) (2¢'(u0) — ¢’ (L +w))’ (5.16)

Proof: Using Darboux’s method it is easy to see that
1

T
Ynl, = d L ((P(CL) + %HL(ZL’CL)) zZ"n"’z" (l + Ob(n-l))
2w (zw”(%) + %HL(IL,CL))

(5.17)
forn=1 mod d, where c,, z;, are the solutions of
c=zp(c) + Hy(z,c)
5.18
1=zp'(c) + %Hb(x,c). .18)

Setcy = up + s, and z, = xo + 71, where zo = 1/(2¢'(ug)). Then it can be
shown that (5.14) and

s, = CabL~} (1+ O(L7)) (5.19)
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hold with

]
=_[2(+w) |7 ¢'(v0)¢' (% +w) 5.20)
2mp" (B + vo) | 4¢"(uo) (2¢'(uo) — ' (B + v)) )
The first equation of (5.18) can be rewritten as
° 8
ug + 5L = 30-+ -2—L+p(uo)rl,+0(r%+si) 5.21)
+ Hoo(zp,31) + (Hi(TL,5L) — Heo(ZL,5L)) .
But u s
Hoo(zi,81) = 5+ 55+ 3p(uo)r+ O (L +s})  (522)
and it is possible to prove the expansion
Hy(z1,1) — Hoo(zp,8) = =Crof ' LH (14 O(L7D), (523
where
ap, = o9 (zrp(cr) + v(zLe(er)), (5.24)
i)
T, = wo(zgp(cr)+v(zrpler 525
L= T auw (mne(en) + v (e’ ©-29)
and v(u) is defined by v(u)p'(u + v(u)) = p(u + v(u)).
Similarly the second equation of (5.18) can be simplified to
0 =4 (p'(uo) + vop"(u0)) v, + 4z0p"(uo) sy + O(r? + 5%) 5.26)

—230/(c)Cral L7 (1+ O(L™Y).

So it is easy to see that (5.14) and (5.19) are correct.

Now it must be shown that the Oy,-constants in (5.17) can be chosen uniformly
for L > Lo. By [FO] it sufficies to ensure that the solution of ¢ = zp(c) +
Hy(z,c) can be expanded as

c=Cy(2) = e — ez~ Dt — ez -9 + 0 ((m - n}) 6.27)

forz € AL = {z eC: |z| < (1+ &)z, arg(z — z1,) > 82} (81,82 > 0)
and that this O-constant can be chosen uniformly for L > Lo. Since ¢, and
z1, converge to up and zo it is not difficult to show that (5.27) holds in some
neighbourhood K(zy,e) = {z € C: |2 — z] < ¢, arg(z — z,) # 0}. You
only have to use Taylor’s theorem for ¢ = zp(c) + Hy(z,c). ButAy \ K(z,¢)
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is contained in a compact region for L > Lo, where Cp,(x) converges uniformly
to Coo( ). SO we are done.

Proof of Theorem 6: We split the sum

n
S UF(D - F(l-1)) (5.28)
I=1
into four parts:
S 1<« logn ilol n
e - ~loga g 2 g 708
5
S Toga (logn— Eloglogn) <l< —logalog"
Sy _logalogngl< —logalog"
St logn<l<n

—log a

Then we can estimate Sy, S3, S by

1 5 logn
S) K log nF, (E{& (log oy log log n) ) <
S <logn (1 ~F, (-_'—‘;ggl‘;)) < (logn)~t (5.29)
54 <n(l - Fy (3 '°g")) < n?
~log o
and expand S to
_ logn
Sy = — og o + O(loglog n). (5.30)
Simlilary we get
~ logn 2
El (Fa(D —Fo(l-1)) = (—log ot O(log log n)) +o(1). (5.31)
l=l

This proves the estimate for the variance.
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6. Appendix: An Interpretation for p(uo)p”(uo) /¢’ (uo)?

We will show that p(uo) ¢"(uo) /' (uo)?, aconstant that seems to be significant

for many asymptotic properties in tree enumeration problems, can be interpreted
as the variance of the outdegree of nodes in trees in a simply generated family of
trees.

et 1 if Dy(T) (i>0)
_ 1 i =p (12
(1) = {0 otherwise @D
(p= (Povpl;-“)),
= Y, w(Te(T), ©62)
[V(T)|=n
and
Clz,w) = Y crpz™w?. (6.3)
n,p
Then it is easy to see that
C=C(z,w) =17 Y, 0av.C", (6.4)
>0

so that the average number of nodes with out-degree ¢ equals nm; + O;( 1), where

N
™S (o) ©3)

Let Z be arandom variable with P[ Z = 1] = m;. Then it is easy to calculate that

EZ=1 and VZ= -‘0(—:'%(;‘—“). ©.6)
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