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1. Introduction.

Our purpose here is to obtain some simple properties of tables constructed by the

method of ‘truncation’ of the familiar Pascal triangle. The tables are intimately
related to the symmetric-chain partitions of a power set. As is well known, the
existence of a symmetric-chain partition provides one of the simplest and most
transparent proofs of Spemer’s theorem; and it was a two-part Sperner theorem
of Kleitman [3] and Katona [2] (see Section 3) which particularly motivated the
investigation of the weighted-product theorems for these tables which we present
in Section 2 below.

Throughout, all sets considered are finite.

We refer the reader to page 27 of [1] for the definitions of a symmetric chain
and a symmetric-chain partition in an arbitrary ranked poset. Let Sp = 0, Sy, =
{1,...,m},m=1,2,.... The well-known inductive procedure for a symmetric-
chain partition of the power set P(Sn) depends upon the construction, for each
symmetric chain C in such a partition of P(Sy_1), of two symmetric chains
C1,C;, of a partition of P(Sy,), where |Ci| = |C] + 1, |C2|=|C| -1 (Ca =@
if |C| = 1). Thus, symmetric-chain partitions of P(S,,) are constructed by what
may be described as a ‘+1-procedure’, and the number of non-empty chains of
cardinality = is evidently given by the entry in row m and column = of the table

m\n1234

0] 1

1] - 1

2] 1 . 1

3] - 2 .« 1

41 2 - 3 .. 1
5] - 5 - 4 . 1
6| 5 - 9 - §5 .1
71 - 14 - 14 . 6 -1

Here each entry is equal to the sum of those (one or two) entrics immediately
diagonally above it.

Since the total number of non-empty chains in a symmetric-chain partition of
P(Sw) is equal to the number of subsets of Sy, of cardinality 2], Sperner’s
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theorem [7] (see also [1] page 2) follows at once from the existence of a symmetric-
chain partition.

Let us abstract the idea of a 3-1-procedure and call any partition of a set of 2™
elements admissible if it is constructed inductively by a +1-procedure, where we
start with a single block of size 1 in the case m = 0. As so often, the abstract
approach is fruitful. A mention of just two applications will suffice to illustrate
this. In [4] (see also [1] page 183) Kleitman gave an elegant proof of a generalized
form of the Littlewood-Offord theorem, viz

Theorem 1.1. Let H be a Hilbert space and a, ,. . . .0, members of H with each

llaisll > 1, and consider all formal sums Y., €; a;, where eache; is O or 1. At
most ([ g]) of these have sum-vectors which lie inside a hypersphere of diameter
1 unit.

Kleitman established this by proving the existence of an admissible partition of
the set {} i &iai: & € {0,1}} with the additional property that, in any block,
every two members are distant at least 1 unit apart.

The second application is to the problem of dominant sequences. We shall say
that an m-sequence (£1,... ,&,), Where each g; = +1, is dominant if every par-
tial sum Zf,l & (1 < k < m) isnon-negative. Itis well known! that the number
of dominant m-sequences is equal to ( (3] ). Perhaps an argument depending upon
admissible partitions is not so well known. It is, however, simple to prove induc-
tively the existence of an admissible partition of the set {(&1,... ,en): & = £1}
having the additional properties (i) each block of the partition contains just one
dominant sequence, and (ii) if the dominant sequence in a block of cardinality s
is(e1,... ,Em), then Y"1 €; = s — 1. The result then follows at once.

2. Truncations of the Pascal triangle.

In the Pascal triangle a typical entry is equal to the sum of the two entries im-
mediately diagonally above it. If the rows are labelled 0,1, 2,... from the apex,
then the m-th row sum is equal to 2™ and, as a consequence, the p-th row sum
multiplied by the g-th row sum is equal to the (p+ g) -th row sum. The analogue of
this simple multiplicative property of row sums for our truncated tables is stated
in the weighted-product theorems below.

Let us, then, consider the Pascal triangle blocked or ‘truncated’ on the left-hand
side, in such a way that the blocking line is to the left of the apex and has just r
1’s immediately to the right including the apex. We write out the case r = 4 10

1See Amer. Math. Monthly 70 page 1005, 71 page 797.
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clarify this and to indicate that the table is

m\n 1 2 3 4 5

0 1

1 1 - 1

2 1 -2 - 1

3 1 - 3 - 3 - 1

4 - 4 - 6 - 4 - 1

5 4 - 0 - 10 - 5 -1

6 - 14 - 20 - 15 - 6 - 1
7 14 - 34 .- 35 - 21 -7 -1
blocking line

constructed in a similar way to the Pascal triangle itself: specifically, each entry
is the sum of those (one or two) entries immediately diagonally above it. In the
case r = 1, the table constructed is the one given in Section 1 above. Blocking
lines to right of the apex (with the truncation as before on the /eft ) only reproduce
the » = 1 table and will, therefore, not concem us further. For convenience, we
define the table » = 0 to have every entry equal to zero.

The main properties of our tables may be established by a consideration of set-
theoretic interpretations (see Section 3). Instead, so that this section shall be self-
contained, we indicate simple ad hoc proofs.

Lemma 2.1. In table r, r > 0, the only possibly non-zero entries occur in the
m+r—2k positions inrowm, where0 < k < ;—(m-i- r),andthe(m, m+r—2k)

entry is equal to
m m )
k k—-r/

The proof is by straightforward induction with respect to m. (The usual con-
ventions for binomial coefficients with negative entries are adopted.)

In table r we shall denote by a{7), the entry in row m and columnn(m > 0,n >
1) and by R{? the m-th row sum.

Lemma 2.2. Forr >2

-1 -2,
(1) = glr=D) _ ;(r-2) @.1)

Cmn = am+l,ﬂ.

(and consequently
RY) = RUY - RGP, @2

The proof depends upon Lemma 2.1 and proceeds by induction with respect to
r.
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Repeated application of the relations (2.2) leads to equations (for r > 1)

RO =c"RY, _ + 7R, 5+ ...
, [ GHER (road @3
LR (reven)

with similar ones for the a{7). In the table below ci') appears in column k of row
r;andforr > 3,k>2, ci') = cgr—l) (,__12,’

r\k 1 2 3

1 1

2 1

311 -1

4 1 -2

511 =3 1

6 1 —4 3

711 -5 6 -1

8 1 -6 10 -4

911 -7 15 -10 1 24)

and from this we obtain inductively
Lemma 2.3. The(r, k) entryc, A" in the table (2.4) is equal to

k=1 k
(i)

providedr > 2k — 1 and is zero otherwise.

We turn now to a consideration of the weighted-product theorems.
Definition: The weighted product (WP) of row p of table r and row g of table s

is equal to
Ea(r) (2) min(i, ).

Theorem 2.1. (The first WP theorem) For table r = 1, the WP of rows p, g is
equal to the (p + q) -th row sum (and so depends only uponp + q).

Proof: Without loss of generality we may assume that p > g. We give the details
only for the case when p, g are both even. (It is fairly typical.) So, from Lemma
2.1,
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E“S) S) min(s, j)

_:2\22222«) <k 1)
(1)

20,

k=0 £=0

Btg
2

SE(C)-(2))- ()

k=0

= (p * q) (by Vandermonde convolution), and the (p+ g) -th row sum

Theorem 2.2. (The second WP theorem) The WP of rowp of table r and row
g of table 1 is equal to the (p + q) -th row sum of the table r (and so depends only

uponp+ q).

Proof: Forr = 0 the result ia trivially true and for » = 1 it follows from Theorem
2.1. We shall suppose r > 2 and assume the result for » — 1, r — 2. Then, from

Lemma 2.2,

Ea") M min(4, 5)
=Ea('—l) O min(4, j) - Ea"‘z’ 9 min(4, /)

p+1 Bof

(r—l) ( —2) = RN
RP""”I " Rw
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Theorem 2.3. (The third WP theorem) The WP of rowp of table r and row q of
table s is equal to

(5]
E( l)k- ( )R;?q-uﬂ-u (2-5)

k=1

(dependent only uponp + q).

Proof: To cover the case s = 0 we assume that a vacuous sum is zero. For s # 0,
we have

Eam () min (i, )

. . C
- Eam ( ald i+ el 5+ ) min (3, j)

+ cl‘) Rg)q-#a— c;) R(r prq+s-3 +.

which, by Lemma 2.3, is equal to (2.5).

Since this sum is dependent only upon p + ¢, evidently r and s may be inter-
changed in (2.5).

3. Interpretations of the tables.

'We have already seen what is the connection between table r = 1 and the symmet-
ric-chain partitions of P(S,,). The entry in the m-th row and the n-th column is
equal to the number of chains of size n in a symmetric-chain partition of P(S,,).
We turn now to Kleitman and Katona’s two-part Sperner theorem [3, 2] (see also
[1] page 179) and view it in the light of the first WP theorem.

Theorem 3.1. (Two-part Sperner theorem) Let P, Q be disjoint subsets of S,
with |P| = p, |Q| = g, p+ g = m. A collection F of subsets of Sy, containing
no two distinct members F, G with F C G and G\F C P orG\F C Q has
cardinality at most equal to
m
()

This is a somewhat surprising result since the defining property of F is in gen-
eral weaker than the antichain property. The upper bound of the theorem is of
course attained. The nub of the argument is the claim that, if IT, I1’ are symmetric-
chain partitions of P( P), P(Q) resp., then

E min(|C|,[C']) = ([m]) 3.1

cell
C’elnt’
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established by counting occurrences of [ 5] -subsets. But

E min(|C], IC'D - Ea(l) (n min (i, )

- () - ()
by Theorem 2.1.

There appears to be no obvious WP of three rows, p, g,t (say), of table 1 (or
table r) which depends only upon the sum p + ¢ + ¢; and so we would not expect
a 3-part Sperner theorem of similar form to be valid.

Our more abstract derivation of (3.1) at once suggests other two-part general-
izations not involving power sets; for example, the two-part version of Theorem
1.1, the formulation of which we leave to the reader.

It is quite simple to give a set-theoretic interpretation of table r. To this end, let
us denote by P,(S,,) the direct product of the totally ordered set {0, 1,... ,7—1}
and P(Sy,) (under inclusion), r > 1. The poset P,(Sy,) is, of course, isomor-
phic to the poset of (m + 1)-sequences (&o,€1,... ,Em) under componentwise
order, where 0 < g9 < r—1,0 < & < 1forl < i < m; and in partic-
ular P, (Sy,) is isomorphic to P(Sy,) and P2 (S,,) is isomorphic t0 P(Sp+1).
Since {0, 1,...,r — 1} and P(S,,) possess symmetric-chain partitions so does
P;(Sm). When m = O this consists of a single chain of length r; and it is readily
seen that a symmetric-chain partition of P,(Sy,) is constructed inductively by a
=+1-procedure but starting from a single block of size r. Therefore, the entry in the
m-th row and the n-th column of table r is equal to the number of chains of size n
in a symmetric-chain partition of P,( Sy,). This interpretation will obviously lead
to alternative proofs of the results of Section 2 as already remarked upon. Also,
the generalization of Theorem 3.1 to multisets, which may be proved in a similar
way to Theorem 3.1 itself (the nub of the argument by counting occurrences of
multisets of middle rank), implies more general WP theorems than the ones we
have presented here for the truncated Pascal triangle. However, within its limits,
our ad hoc approach provides an abstract framework and may suggest applications
in other directions.

4. Some identities.

The tables in Section 2"allow us to establish some identities involving binomial
coefficients. Some are well known, others perhaps less so. We restrict ourselves
to a brief mention of two related types.

From Lemma 2.1 we may evidently write down a simple formula for the m-th
row sum in table r. The use of Lemma 2.3, together with equation (2.3), leads to

221



a different expression. We consider this, and give details only when m + r is odd.
When r is odd, this expression for the m-th row is

Z( 1)"'( llc)Rf.:lm-zk

k=1
_§(_l)k_l(r—k)( merel—2k )
= k—1)\3(m+r+1-2k))"
In terms of s,p, wherem + r=2s+ 1,r=2p+ 1 (s > p), this becomes
§(_l)k_l(2p+l—k)(23+2—2k)
~ k—1 s+1—k
or, slightly more conveniently,

2 k\ [2s-2k
S0 (IR
k=0
When 7 is even, the formula for the m-th row sum is

E( 1yk-1 k m+r+1-2k

e -2-(m+r+l—2k)
In terms of 3,p, where m+ r=23+ 1,r=2p+ 2 (s > p), this becomes

k1 2p+2 k\ /2s+2 -2k
2( - ( )( s-l-l—k)

k=1
P
_ E(_l)k(zp+;: Ic) (28- k2)k)
k=0 8
Since the m-th row sum in table r is equal to 2™ if m < r, we have
E( l) (2p k) (23 —2k> = 22‘,_2?
=~ s—k

forp< s < 2p,and
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i(_l)k(2p+kl - k) (23—-21:) = p2e-2p-1
8 -

k=0
forp+ 1 < s < 2p+ 1. These combine to give the identity

(8]
By w

k=0

for [ ] < s < n. For the case s = n, see, for example, page 37 and page 66 of
(6].
The companion to (4.1), corresponding to the case when m + r is even, is

(2]
3 -1 (n k) (234;1; 2k) T “2)

k=0

for[2] <s<n
Next, we turn to some identities derivable from the third WP theorem. We recall
that the WP of row p of table r and row g of table s is equal to

(5]
E( 1)k-! ( )Rgmn-zk

k=1

Since, given r, s, this depends only on p + g, therefore, with p + ¢ = m it is equal
to the WP of row m of table r and row O of table s, which in turn is equal to

[ $(mer-n]

20: [(T) - (,TT)] min(m + r — 21, )

(from Lemma 2.1). We substitute for the row sums in table r (from (2.3)) and look
at the special cases when m = 0, 1. First, then, when m = 0 we have

(%] (%]
S (=n+! ( )E( n’- '(J )Rv+o+2—2(i+k)

k=1 J=1

[ $(r-D]
= [((:)—(igr)]min(r—ﬁ,s)
1=0

= min(r, s).
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Simple changes of notation yield the identity in the slightly more convenient
form

(r/2] [5/2) Y
Y3 1)’”‘( ) ( k) (H-[i,_zjg(;!; ]k)) = min(r+1,s+1).

j=0 k=0

It is not difficult to deal with the case m = 1 similarly and obtain

(r/2) (/2] _ | —20i+k
Eo ,‘Zo( _1)i*k (r ]) (s k) <r+.[s:”l (J'i' )) =2 min(r, s+
j=0 ke 3

There are evident connections with well-known identities associated with Cheby-
shev polynomials. Page 6 and page 59 of [6], and Problem 39 of [5] are relevant.
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