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ABSTRACT

In this paper we examine the existence problem for cyclic Mendelsohn
quadruple systems (briefly CMQS) and we prove that a CMQS of order v
exists if and only if v = 1 (mod 4). Further we study the maximum number
my(v) of pairwise disjoint (on the same set) CMQS’s of order v each having
the same v-cycle as an automorphism. We prove that, for every v = 1
(mod 4), 2v — 8 < my(v) < v? — 1lv + z, where z = 32 if v = L'or
5 (mod 12) and z = 30 if v = 9 (mod 12), and that m4(5) = 2, m4(9) = 12,
50 < my(13) < 58.

1. INTRODUCTION

Let V be a finite set and let 2y, x3,...,z, k > 3, be distinct elements
of V. The set
[zl! Ta,... 9xk] = {(31,1.'2), ey (zk—l)xk)1 (xkv zl)}

will be called Mendelsohn k-tuple on V.
Obviously:

[xl,:rz,...,:ck] = [.l‘z,...,.’rk,.rl]= cee = [:t)c,.‘cl,...,l'k_ll.

A 2 — (v,k,)) Mendelsohn design is a pair (V, B), where | V |= v and B
is a collection of Mendelsohn k-tuples on V|, called blocks, such that every
ordered pair of distinct elements of V' belongs to exactly A blocks of B.

Mendelsohn designs have been objects of considerable interest in recent
years (see references).

A 2 — (v, k,1) Mendelsohn design will be denoted by M(k,v).

It is easy to see that if (V, B) is a M(k,v), then

_v(v—1)
1B1= 2D

It follows that e necessary condition for the exzistence of M(k,v)'s is
v(v — 1) =0 (mod k).

A M(3,v)is called Mendelsohn triple system of orderv, briefly MTS(v).
N.S.MENDELSOHN proved in [12] that the spectrum of M(3,v)’s is the
set of all v =0 or 1 (mod 3), except v = 6.
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A M(4,v) will be called Mendelsohn quadruple sysiem of order v and
will be denoted by MQS(v). In [2] NNBRAND and W.C.HUFFMAN have
shown that a MQS(v) exists if and only if v = 0 or 1 (mod 4), v > 4.

A M(k,v) is called cyclic if it has an automorphism consisting of a
single cycle of length v. By mg(v) we will denote the maximum number of
pairwise disjoint (on the same set) cyclic M(k,v)’s each having the same
v-cycle as an automorphism.

In [4] C.J.COLBOURN and M.J.COLBOURN proved that a cyclic
MTS(v) exists if and only if v = 1 or 3 (mod 6), v # 9. Further, they showed
that ma(v) < v—5 and m3(13) = 8, 12 < m3(19) < 14, 17 < m3(25) < 20.

One purpose of this paper is to study the existence problem of cyclic
MQS(v)’s. In what follows a cyclic MQS(v) will be denoted by CMQS. We
prove that a CMQS(v) exists if and only if » =1 (mod 4).

Another purpose is to study the number m4(v). We show that for
every v =1 (mod 4), 2v—8 < my(v) < v?2 —11v+2z, where z = 32ifv =1
or 5 (mod 12) and 2 = 30 if v = 9 (mod 12), and that m4(5) = 2, m4(9) =
12, 50 < m4(13) < 58.

2. EXISTENCE AND CONSTRUCTION OF CMQS(v)'s.
If (V, B) is a CMQS(v), then we may assume that V = Z, and that if
b = [b1, b2, b3, bs] € B, then also every block

b+n=1[bi+n,bs+n,bs+n,bs+n],
n € Z,, belongs to B. We call orbit of b the set
oB)y={db+n:nec2z,}.

Given an ordered pair (a,b) of distinct elements of Z,, the number
b — a, belonging to Z, — {0}, will be called the difference of (a,b). With
each block b = [by, b, b3,bs] € B one can associate a (cyclically ordered)
quadruple of differences:

d(b) = (b2 — b1,b3 — by, by — b3, by — by),

which will be called the difference quadruple (briefly d-quadruple) of b.
Observe that for b,4’ € B we have d(b’) = d(b) if and only if & € 0(b).
The set of d-quadruples

B ={d(b): b€ B}

will be called the difference family of (Z,, B).

THEOREM 1. A CMQS(v) ezists if and only if there exists a set D of
cyclically ordered quadruples of elements belonging to Z, — {0} such that:
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(1) every a € Z, — {0} is contained in exactly one quadruple of D;
(2) for every (a1, a2,as,a4) € D:

m
Za,-=0 and Za;#O forevery m=1,2,3.

i=1 i=1

Proof. Let (Z,, B) be a CMQS(v) and let B be its difference family.

For every a € Z, — {0} there exists in B a block [0, ¢, z,y] and, there-
fore, there exists in B the d-quadruple (a,z — a,y — 2, —y). Further, if
there exist in B two d-quadruples having a difference in common, d =
(a1,as,a3,a4) and d’ = (a1, ab, a},a}), then b = [0, ey, a1 + a2,a; + a2 + a3)
and ¥ = [0, a1, a; + @, a; + a% + a}] belong to B; since b and ¥ have a pair
in common, b = b’ and therefore d = d’. Hence (1) holds.

Now, let b = (a1, as, as, as) be any d-quadruple of B and let

(all asz, a3$a4) = d([bI) va b3v b4])-

For every j = 1,2,3,4, a; = bj41 — b;, where the indices are taken
modulo 4, hence

m
Zaj =bms1 — by, forevery m=1,234.
j=1

From this it follows that (2) holds.

Suppose now that there exists a set D of cyclically ordered quadruples
of elements belonging to Z, — {0} such that (1) and (2) hold.

For every d = (a, az, a3, as) € D we consider the Mendelsohn quadru-
ples

b(n) = [n,a1 + n,a1 +az+n,a1+az+as+n], n€Z,.

From (2) it follows that the elements contained in 6(n) are pairwise distinct.

Let B be the set of all blocks (n),n € Z,, obtained when d varies in
D. In order to verify that (Z,, B) is a CMQS(v) it suffices to prove that
every ordered pair (b;, b2) of distinct elements of Z,, belongs to exactly one
block of B.

From (1) there exist a3, a3, a4 such that (b — b1, a9, @3,a4) € D and,
therefore, (b3,52) € [bl, by,as+ bg,a2 +az + bz] € B.

Further, if there exist in B two blocks having a pair in common, b =
[b1,b2,b3,b4] and b’ = [by, b3, b, b)), then d = (b — b1, b3 — b2, b4 — b3, b1 —
—b4) € D and &' = (by — by, b —ba, by — b5, by — b)) € D. From (1) it follows
d = d’ and, therefore, b3 = b}, by = b4, and b=V =
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Before determining the spectrum of CMQS(v)’s we prove the following
lemmas.

LEMMA 1. If B is the difference family of a CMQS(v), (Z,, B), then

every d € B is one of the following forms:

- (as a,a, a);

- (a,d',a,a’), witha # a' ;

— (a1, a2,a3,a4), with a; # a; fori,j =1,2,3,4 and i # .

Proof. Let d = (@1,a2,a3,a4) € B. We prove that if a; = a3, then
a3 = az = a4, and if a; = a3, then as = a4.

Consider b = [0,a1,a; + az,a1 + a2 + a3] € B. If a; = a3, then b+
(a2 + a3 + a4) = [0,a1,a1 + a3, a1 + a3 + a4] = b, hence a2 = a3z = a4. If
a; = agz, then b+ (a3 + a4) =[0,¢1,a1 + a4,2a; + ag) =bandaz =a4. »

LEMMA 2. If B is the difference family of a CMQS(v), (Zy, B), with
v = 1 (mod 4), then every d-quadruple of B is made up of pairwise distinct
elements.

Proof. If (a,a,a,a) € B, then every block belonging to 0(b), with b =
[0, @, 2a, 3a], contains exactly four pairs having a as difference. Since there
are exactly v (ordered) pairs of elements of Z, having a as difference and
since a is not contained in another d-quadruple of B, we have | 0(b) |= &,
and v = 0 (mod 4).

If (a,a’,a,a') €B, a # a’, then every block belonging to 0(b), where
b=[0,a,a+ a’,2a + a'], contains exactly two pairs having e as difference.
It follows that | 0(b) |= % and therefore v # 1 (mod 4). »

THEOREM 2. A CMQS(v) ezists if and only if v =1 (mod 4).

Proof. Suppose that (Z,, B) is a CMQS(v) and let B be its difference
family.

In relation to the classification of the d-quadruples of B determined by
Lemma 1, for every d €B we set

a if d=(a,a,aq,a)
Pd)={ a+d if d=(a,d,a,a’)
a3 +az+az+as if d= (a1, a2 a3,a4)

where + is the usual addition between integers.
From (2) of Theorem 1 it follows that

v v .

17T if d=(a,a,a,a)
P(d) = ; or _32_0 if d=(a,d,a,a)

vor2vor 3v if d=(aj,as a3 as).
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Since the elements contained in d belong to Z, — {0}, if v = 0 (mod

4), then
Y P@=7,
- 4
deB
with ¢ odd.
On the other hand, from (1) of Theorem 1 it follows that

_vv-1)

deB

therefore ¢ = 2(v — 1), and ¢ must be even.

Hence, if there exists a CMQS(v), then necessarily v =1 (mod 4).

Suppose now that v = 1 (mod 4) and let v = 4h + 1.

Let d; = (a1, a;2, ais, a,-4), i=12,...,h, where a;; =i, aj2 = h+
+i, aiz=4h—i+1, aja =3h—i+1andlet D= {d,' 1= 1,2,...,’1}.
We verify that (1) and (2) of Theorem 1 hold for D.

In fact, for every a € Z, — {0} we have: if 1 < a < h, then a € d,, if
h+1<a<2h thena€d,_p, if2h+1 < a < 3h, then a € dap—q41, if
3h+1 < a < 4h, then a € dgp_q41. From this it follows that (1) holds.

Further, for every i = 1,2, ..., A, we have:

4
D ai;=8h+2, h+2<an+ai <3k,
j=1

aiz+aiz=5h+1, 5h+2<ai;3+ais <7h, aia+ai1 =3h+1,

for that also (2) holds.
Hence, from Theorem 1, for every v = 1 (mod 4) there exists a
CMQS(v) and this complete the proof. =

3. DISJOINT CMQS(v)'s

Two MQS(v)’s (on the same set) are disjoint if they have no block in
common.

Let v = 1 (mod 4) and let m4(v) be the maximum number of pairwise
disjoint CMQS(v)’s having the same v-cycle as an automorphism.
v(v—1)(v-2)(v—

4
elements and since a MQS(v) contains exactly

that

Since there are 3) Mendelsohn quadruples on v

v(v-1)
4

blocks, it follows

ma(v) < (v —2)(v - 3).

In this section we intend to study my(v).
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It is easy to prove that:

THEOREM 3. If (V,B) and (V,B') are two CMQS(v)’s having the
same v-cycle as an automorphism and if B and B are the respective diffe-
rence families, then (V, B) and (V, B') are disjoint if and only ifﬁﬂ?’ =0.

THEOREM 4. For every v =1 (mod 4), mg(v) > 2v — 8.
Proof. Let v = 4h + 1. Consider the families

Di1 = {(ai1, aiz, ai3,ai4) 1= 1,2,...,h},

D12 = {(ailiax'47al'3iat'2) ti= 1)2v . "1h}1

where a;; =1, ap=h+14, az=4h—-i+1, a;is =3h—i+ 1.

The family D;; has been studied in Theorem 2, and Dy; and Do
determine two CMQS(v)’s.

Now, for every j = 1,2,...,h — 1, consider the families

Dgl = {(a{-.l,a,'z, a'z:3, 054) . i= 1,2, . ..,h},

D%-? = {(a‘zliai‘lya{:;yai'.’) 1= l 2 e h},

where afl =i®j and a3 =4h+1- (1@]) i @ j being a sum modulo A.

From Theorem 1 it follows that Dj, and Dj, determine CMQS(v)’s.

In fact, a,l + a2 + “':13 +a;jq = 8h + 2.

Further, if i 4+ j < h, then a{l =i+ jand a.3=4h—i—j+1. Hence
aly+ai2 <4h—1,4h+2 < aiz+aly < 5h, 4h+3 < aly+ais < Th—1and
a,4+a;l < 4h. If i+ j > h, then a;'l =z+]—handa’3—5h—z—_1+l
Hence ad+a,g <3h-1,5h+2< a.2+a’ < 6h,5h+3 < a’3+a,4 <8h-1
and a4 + af, < 3h. It follows that for D, and Dj, (1) and (2) hold.

Finally, for every j=1,2,...,h — 1, we consider the families:

D.l;l = {(af:paiz,ais,af:,,) :i=1,2,...,h},
Dj, = {(dl,,ai2,al4,0i3) : i =1,2,...,h},
D%s = {(afl,afs, @iz, aly):i=1,2,...,h},
Diq— {(a} 1-as3, mazz) i=1,2,...,h},
Dis = {(aux i4:ai2‘0£3) :i=1,2,...,h},
Dis = {(a}),al,, ais,0i2) : i =1,2,...,h},

where a, = 3h+ 1 — (i ® j). Also the families Di.,j=1,2,...,h—1and
r=1,2,...,6, determine CMQS(v)’s.
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In fact, al, +a,2+a,3+a 1, =8h+2and (1’4+aJ = 3h+ 1. Further, if
i+j< h then a‘,’4= 3h—i—j+1, hence 4h+2 < al,+aiz <5h,3h+2<
a,2+a,4 < 4h and 4h + 3 < a,3+a,‘1 < 7h—1 if £+ 35 > h, then

al, =4h—i—j+1, hence 5k +2 < af; + a;3 < 6h,4h+2 < ajp +al, < 5k
and 5h+3 < aiz+al, <8h—1.

It is easy to verify that Dy;, Dig, D’2.1: D';z, D:’;,.,j =12,...,h—1and
r = 1,2,...,6, are pairwise disjoint. It follows that there exist at least
8h — 6 pairwise disjoint CMQS(v)’s, and

ma(v) > 2v—8.m

THEOREM 5. For every v =1 (mod 4), my(v) < v? — 11v + z, where
2=32ifv=1or5 (mod 12) and z = 30 ifv = 9 (mod 12).

Proof. Let (Z,,B) be a CMQS(v), with v = 1 (mod 4). If B is
the difference family of (Z,, B), then from Lemma 2 it follows that every
d-quadruple of B is made up of pairwise distinct elements.

Let D(v) be the set of all cyclically ordered quadruples of distinct
elements of Z, — {0}, for which (2) of Theorem 1 holds. Let D;(v) be the
set of all quadruples of D(v) which contain 1 and let M (v) =| Dy(v) |.

From (1) of Theorem 1 it follows immediately that

my(v) < M(v), for every v =1 (mod 4) .

We intend to compute M (v).

Let d € Di(v) and let 1,a,b,¢, with 1 < @ < b < ¢, be the elements
contained in d.

Observe that 1 +a+b+c=1tv, t =1 or 2. Let D'(v) be the set of all
quadruples of D;(v) for which 1+ a+ b+ ¢ = v and let D" (v) be the set of
all quadruples of D;(v) for which 1+ a + b+ ¢ = 2v; let M'(v) =| D{(v) |
and M’ (v) =| Dy(v) |. Clearly, for v < 9, M'(v) = 0.

If ¢ = v—1, then in D;(v) there are exactly two quadruples containing
L,a,b,c: (1,a,c¢,b)and (1,b,c,a); instead, if ¢ # v— 1, then in Dy (v) there
are exactly six quadruples containing 1, a, b, ¢c:

(1,a,b,¢),(1,a,c,b),(1,b,a,¢),(1,b,¢,a),(1,c,a,b),(1,¢c,b,a).

First, suppose that 1+ a+b+ ¢ = v, v > 13. Observe that b has the
maximum value when ¢ = b+ 1, hence @ = v — 26 — 2. Then b > 3 and
v—2b—-22>2 and

2 2

([z] denotes the largest integer not exceeding z).

For every b such that 3 < b < 232 we have 2 < a < b -1, ie.
2<v—=b—c~1<b—1. Hence, v—2b < ¢ < v—b—3 and, simultaneously,
c>b+1.

3<b<[v—4]_v—5
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It follows that

v—22<c<v—b-3 if 3<b< ";1]

b+l1<c<v—b-3 if [”;1]“565";5.
Hence, for every v > 13,
(=] i
(3) M@)=6[Y -2+ > (v-2-3)|,
=3 b_[v-l]+1

and M'(13) = 18.

Suppose now that 1 +a+b+ ¢ = 2v, v > 5. Observe that b has the
minimum value when @ = b — 1, hence ¢ = 2v — 2b. Then b < v — 2 and
2v-2b<v-1, and

v+1
2

Further, for every b we have b+1 < ¢ < v—1,i.e. b+1 < 2v—a—b—1 < v—1;
hence v — b < a < 2v — 2b — 2 and, simultaneously, a < b — 1.
It follows that

<b<v-2

v+1
2

2v -1

v—b<a<b-1 if

Sbs[?v—l]

3

v-b<a<20-2b-2 if [ ]+l$b5v—2

Since for every b there exists exactly one a such that a + b = v, in
D1 (v) there are exactly 252 quadruples for which ¢ = v — 1.
Hence, for every v > 9

[Zu-l]
(4) M (@)=6 Z(2b—v)+ Z (v—b-1)| —2(v-13),

b= [2v-l]+l

and M"(5) = 2.
Observe that

MGB)=M'(5)=2, MO =M (9)=12
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and
M(13) = M'(13) + M’ (13) = 18 + 40 = 58.

From (3) and (4) it follows that for every v > 13:

[252

i(b-—2)+

b=3

i (v—2b—3)+

b=

5) M(v)= 6(

[%] v=2
S @-v+ Y (v—b—-l))—2(v—3).
b=t b=[25t]+1

It is tedious but straightforward to compute M (v) from (5) and get at
the statement of the theorem. w
Collecting together Theorems 4 and 5 gives the following theorem

THEOREM 6. For everyv =1 (mod 4), v > 5:

(6) v—8< my(v) <viP-1lv+z
where z =32 ifv =1 or 5 (mod 12) and z = 30 if v =9 (mod 12).

From’ Theorem 6 it follows, irl_ particular, that m4(5) = 2; the difference
families By = {(1,2,4,3)} and B, = {(1,3,4,2)} determine two disjoint
CMQS(5)’s.

We examine the cases v = 9 and v = 13.
a)v=209.

From (6) we have 10 < m4(9) < 12. But it is possible to construct 12
pairwise disjoint CMQS(9)’s by the following difference families:

B1={(1,3,8,6),(2,4,7,5)}, B2=1{(1,6,8,3),(2,5,7,4)},

§4 {(1, 51 8’4): (2: 61 7: 3)}a
FG {(117v8s2)’(3)5r6)4)}’

_§3 {(1v4! 8r5)’(2a3)7!6)}:
FS {(1,2,8,7),(3,4,6,5)},

Br=1{(1,4,6,7),(2,3,5,8)},
—B—Q = {(1’6)4)7)1 (2: 5y3)8)}!
Fll = {(la 7a4:6)v(2a8’375)}'

Hence, m4(9) = 12.
b) v = 13.

FS = {(114a 7: 6)1 (2)318! 5)}7
_B—IO = {(1,6,7,4),(2,5,8,3)},
Fl? = {(1, 7,6, 4):(2v81 5, 3)}
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From (6) it follows that 18 < m4(13) < 58. However it is possible to
construct at least 50 pairwise disjoint CMQS(13)’s.
In fact, we consider the quadruples of D(13) (see proof of Theorem 5)

d1=(1,2,3,7),d2=(1,2,4,6),d3 = (1,3,4,5),ds = (1,4,10,11),
ds =(1,5,9,11),ds = (1,6,8,11),d7 = (1,6,9,10),ds = (1,7, 8, 10),
dy = (2,3,9,12),d10 = (2,4,8,12),d1; = (2,5,7,12),d12 = (2, 5,9,10),
d13 = (2s 6! 81 10): dl4 = (2s 7’8’ 9)’d15 = (3a 4) 7; 12)|d16 = (31 4) 87 11):
di7=(3,5,6,12),d1g = (3,5,7,11),d1s = (3,6,8,9),da = (4,5,6,11),
ds = (4,5,7,10),d2 = (6, 10,11, 12),d23 = (7,9, 11, 12),d2 = (8,9, 10, 12),
dl—(l 2,11,12), d =(1,3,10,12), da—(l 4,9,12), dy = (1,5,8,12),
d5—(1 6,7, 12)d5 (2,3,10,11), d7—(249 11),ds = (2,5,8,11),
dg_(2 6,7,11), dm_(3 4,9,10), di; = (3,5,8,10),d12 = (3,6,7,10),
dia =(4,5,8,9),d14 = (4,6,7,9),di5 = (5,6,7,8).

For every d; = (a,b,¢,d),1< i < 24, let d} = d;, d? = (a,b,d,¢),d? =
(acbd) d} _(acdb) d? —(adbc)andd6 (adcb) forevery

= (a, bcd)letd _(abdc)andd = (a,c,d,b).

By the following difference families we can construct 50 pairwise dis-
jOint CMQS(13) s {d d’éo’dju} {d31di41 2} {dedllhd{Q} {d%:dlar 15})
{dis’df)vdjzd {d-;, d{O’d'Z’ls}’ for j = 1,2,...,6; {dz'szax 11} {dSvdJmC_f}
idéz’dw 5} {d;,dio’dis} {3‘2,%,313} {d;,?;,d;z} {3’4,%—,5{4} for j =

Hence, 50 < m4(13) < 58.
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