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Abstract. Let K be a maximal block of a graph G and let x and y be two nonadjacent
vertices of G. If [V(K)| < i- {n+ 3) and z and y are not cut vertices, we show that z
is not adjacent to g in the closure ¢(G) of G. We also show that, if z, y € V(K), then
z is not adjacent to y in «( G).

1. Introduction.

Let G = (V, E) be a simple graph and n = |V|. The closure of G is the graph
obtained from G by recursively joining pairs of nonadjacent vertices whose degree
sum is at least » until no such pair remains. We denote the closure of G by ¢(G).
By (1, p. 56, Lemma 4.4.2], ¢(G) is well defined.

A vertex z of G is called a cut vertex if E can be partitioned into two nonempty
subsets E; and E, such that the subgraphs G[ E] and G[ E,] induced by E; and
E,, repectively, have just the vertex z in common. A connected graph that has no
cut vertices is called a block. A block of a graph is a subgraph that is a block and
is maximal with respect to this property. Every graph is the union of its blocks.

The largest possible closure of a graph G can be the complete graph containing
G (for example, see [1, p. 56, Figure 4.6]). Let z be a cut vertex which separates
E into two nonempty subsets E; and E; and let G; be the subgraph of G' with
E(G;) = E; (i=1,2). Suppose thatz € V(G1),y € V(Ga),z # zandy # z.
We show that z is not adjacent to y in ¢(G) . We also show that, if K is a maximal
block of a graph G, z,y ¢ V( K) and z is not adjacent to y, then z is not adjacent
1o y in ¢(G). Therefore, if a graph G consists of many large blocks, only edges
(u,v) (where either u or v is a cut vertex of G) can be added to its closure ¢c(G)
of G and so ¢(G) cannot be a very large graph.

2. Graphs with cut vertices.
For each z in V, let d(z) denote the degree of z in G.

Theorem 2.1. Let z be acut vertex which separates E into two nonempty subsets
E) and E, and let G; be the subgraph of G with E(G;) = E; (i = 1,2).
Suppose that € V(G1),y € V(G2), T 7 z and y # z. Then z is not adjacent
toy in ¢(QG).

Proof: Since z is a cut vertex, it follows that z is not adjacent to any vertex w €
V(G,) with w # z in G and y is not adjacent to any vertex w' € V(G)) with
w' # z in G. In particular,  is not adjacent to y in G. We use contradiction.
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Suppose that z is adjacent to y in c(G). Also we may assume, without loss of
generality, that z and y are the first such pair of vertices adjacent in ¢(G). Let
n = [V(Gy)| (i=1,2). Itisclearthatd(z) < m —1 andd(y) < m — 1. Since
V(G1)NV(G2) = {z},wehaven= m+n—1 andsod(z) +d(y) < m+m—2
= n—1inG. But z is adjacent to y in ¢(G). This means either z is adjacent to
some u € V(G2) (with u ¥ 2) before z is adjacent to y in o( G) or y is adjacent to
some u’ € V(G,) (with u’ # 2) before y is adjacent to z in ¢(G). But z and y are
assumed to be the first such pair of vertices, which is a contradiction. Therefore,
z is not adjacent to y in ¢(G). This completes the proof. |
The following corollary follows immediately from Theorem 2.1.

Corollary 2.2. Let Ky and K, be two blocks of G. Suppose that x € V(K,),
z € V(K2),y€ V(K2),and y ¢ V(K1). Then z is not adjacent to y in c(G).

A block K of G is called a maximal block, if |V(K)| > |V(K")| for each
block K' of G.

Remark 1: Let K be a block of G. If |[V(K)| > 2, then it is clear that K
is the only maximal block of G. If G has more than one maximal block, then
2|IV(K)|<n+ landso |[V(K)| < £ (n+ 1) (< $(n+3)).
Theorem 2.3. Let K be a maximal block and let x and y be two nonadjacent
vertices of G.

@) IF|V(K)| £ % (n+ 3) and z and y are not cut vertices, then = is not

adjacent to y in ¢(G).
(b) If z,y ¢ V(K), then z is not adjacent to y in c(G).

Proof: (a) If 2 and y are in different blocks, then it follows from Corollary 2.2
that z is not adjacent to y in ¢(G). If z and y are in the same block, say K', then
d(z) < |[V(K")| -2 andd(y) < |[V(K')| — 2. Hence,

d(z)+d(y) <2|V(K')|-4 <2|]V(K)|-4 < (n+3)-4=n—1.

Since z or y cannot be adjacent to another vertex u € V(K') in ¢(G) (Corollary
2.2), it follows that z and y are not adjacent in c(G). This proves (a).

®) Letk = [V(K)|.

Case 1. Suppose that z and y are not cut vertices. Then by Corollary 2.2, we can
assume that both z and y belong to the same block, say K. Since z,y ¢ V(K),
K # K,. If |K|| = |K|, then G has more than one maximal block and so by
Remark 1, [V(K)| < £ (n+ 3). Hence, by (a), z cannot be adjacent 10 y in
c(G). If |Ky| < |K|,then 2|K| < n+ 1. As in the proof of (a), we have

d(z)+d(y) <2|V(K1)|-4 < (n+1)—4=n-3 < n—1.

and z is not adjacent to y in ¢(G).
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Case 2. Suppose that z is a cut vertex. Let K, K3,..., Kp be the blocks con-
taining z and letn; = |[V(K;)| (i=1,2,...,p). If z and y are not in a common
block, then by Corollary 2.2, z is not adjacent to y. Hence, we can assume that
y € V(K1). Since z is not adjacent to y, we have

P
d(z) < (m=D+(m-D+...+ (== n—p-1. M
i=1

The subgraph G, of G consisting of K1, K3,..., Kp has (n; — 1) +(m — 1)
+o.ot(mp—1)+1=37%, n—p+ 1 verices. Let G, be the subgraph of
G consisting of K and G;. Then G, has at least (k — 1) + (X0, m —p+ 1)
= Y2, m + k — p vertices. Hence, there are at most n — (30, n + k — p)
vertices left, which can be adjacent to y. Since y is not adjacent to z in K, we
have

P
d(y) < (m —2) + (n—Zn.-—kw) : @

Therefore, by (1) and (2), we have

P P
d(z) + d(y) < E'n,-—p—l +n -2+ n-zn,-—k +p
i=1 i=1
=n+n — k—3.

Since K is a maximal block, ny < k. Therefore, d(z) + d(y) < n—3 andsox
cannot be adjacent to y in ¢(G). This completes the proof of the theorem. [ |
Remark 2: Ifd(z) = 1 in G, thend(z) = 1 in¢(G). In fact, let y be a vertex of
G which is not adjacent to z. Then d(y) < n— 2. Hence,d(z) + d(y) < n—1
andso d(z) = 1 inc(G).

In [5], Khuller gives an algorithm to find c¢(G). This algorithm can be imple-
mented in O(»*) time, which improves the O(#*) time bound given in [4). If
G has cut vertices, we show that the running time of Khuller’s algorithm can be
improved by the following observations. Use Hopcroft and Tarjan’s algorithm to
find all blocks and cut vertices of G (see [2, p. 57] or [3, p. 24]). This algorithm can
be implemented in O(|E]) time. Letz,y € V and N = {(z,9): (z,y) € E}.
If d(z) = 1, remove (z,y) from N (Remark 2). Let K be a maximal block of
G.If|[V(K)| < % (n+ 3) and z and y are not cut vertices, remove (z, y) from
N (Theorem 2.3(a)). If z, y € V(K), remove (z,y) from N (Theorem 2.3(b)).
If K, and K, are twoblocks of Gand z € V(K1),z & V(K2), ¥y € V(K3)
andy ¢ V(K,), remove (z,y) from N (Corollary 2.2). Finally, use Khuller’s
algorithm on N to find ¢(G). If G contains many cut vertices and large blocks,
the running time of Khuller’s algorithm can be improved. For example, suppose
that G has p(> 1) cut vertices and |V(K)| < § (n+ 3) for each block K of
G. Then, it follows from Theorem 2.3 that O(|N|) < O(pn). Hence, Khuller’s
algorithm now runs on O(pn?) time.
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