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Abstract. We construct all four-chromatic triangle-free graphs on twelve vertices, and
a triangle-free, uniquely three-colourable graph.

Our terminology and notation is consistent with that of Bondy and Murty (2].

In [4] Chvital proved that the Grotzsch graph (see Figure 1 (a)) is the unique
four-chromatic, triangle-free graph on at most eleven vertices (the reasoning be-
hind the unusual drawings of the graphs in Figure 1 will become apparent later,
¢f. Figure 2). Avis [1] used the uniqueness of the Grdtzsch graph to prove that
the minimum number of vertices in a five-chromatic triangle-free graph is at least
19. Recently, Jensen and Royle [private communication] have used an exhaustive
computer search to determine that there exist five-chromatic triangle-free graphs
on 22 vertices, but none smaller. For an interesting look at this and similar prob-
lems, the reader is directed to Toft’s book Graph Colouring Problems, [11, chapter
6] (see also [10]).

In [3] Chvital exhibits a four-chromatic, four-regular graph of girth four on 12
vertices (see Figure 1 (b)). A careful consideration of such graphs implies that, in
fact, this graph is the unique four-chromatic, four-regular, triangle-free graph of
diameter two on 12 vertices.

We constructively identify all four-chromatic, triangle-free graphs on twelve
vertices (¢f. Theorem 1). We also point out how a slight extension of Avis’ method
can be used to give a direct proof that a five-chromatic triangle-free graph must
have at least 20 vertices.

At least three different erroneous examples of uniquely three-colourable, triangle-
free graphs on 12 vertices have appeared in the literature [7, both the first and third
printing], [8]. We exhibit a uniquely three-colourable, triangle-free graph on 12
vertices.

Define a graph to be 3-saturated (in context, simply saturated) if it does not
contain a complete subgraph on 3 vertices but does so upon the addition of any
new edge (a diameter two condition). The four-chromatic, triangle-free graphs
on 12 vertices are subgraphs of four-chromatic, saturated graphs (saturating the
graph will not increase the chromatic number since we know that a five chromatic
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(a) Gristzsch graph;  (b) Chvatal graph; (c) The graph G».
Figure 1
(The labels in this figure are used only in Corollary 1 and following.)

triangle-free graph must have at least 22 vertices). Our first problem is then, what
are the possible 12 vertex graphs which are both four-chromatic and saturated?

Let G be a subgraph of H,u € V(G),v € V(H), and uv ¢ E(G). We say
that v is G-duplicated if Ny(u) D Ng(v). We say that u G-duplicates v. If the
graphs G and H are clear from the context, we drop the “G”, and say that v is
duplicated or that u duplicates v, respectively. Put H = @ in the above definition,
and suppose that v duplicates v. Then x(G — v) = x(G). Thus, a critical graph
admits no duplicated vertices.

Theorem 1. The four-chromatic, saturated graphs on 12 vertices are (up {0 iso-
morphism):

@) Gy = {G\:G\ is the Grotzsch graph, G, with an extra vertex that duplicates
a vertex of G};

() Ga, the Grbtzsch graph, G, with an extra vertex, p, whose neighbourhood
is a maximal independent set of vertices and N(p) # N(q) for any vertex
g of G (see Figure 1(c));

(¢) Gs, the Chvatal graph (see Figure 1(b)).

Proof: Let H be a four-chromatic saturated graph with 12 vertices.

We first suppose that the maximum degree, A , is at least seven. Pick a vertex, £,
of degree A. Since x(H) = 4, R= H — {t} — N(t) has an odd cycle, implying
that H is not triangle-free. (If R is two-colourable, then a third colour can be used
to colour N'(t) and one of the two colours used for R is available for t.)

In a similar manner, in the following cases we take ¢ to have degree A and
neighbours ny,m,... ,ma; welet R = H — {t} — N(t), and, in those cases
where R has a five-cycle, Cs, we denote its vertices by ¢1,¢2,... ,¢5. Suppose
H is not four-vertex critical. Then H has a vertex, p, whose removal leaves the
Grotzsch graph, G. Hence, either H belongs to G or, using the saturated property,
that p is adjacent to an independent set of vertices that dominate G. This latter case
leads to H = G». Thus, we assume in the following that H is four-vertex critical.
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Casel A =6.

Since x = 4, R must be a five-cycle, Cs . If every vertex of Cs is Cs -duplicated
by an element of N(t), then H can be constructed from the Grotzsch graph by
joining a new vertex to the vertex of degree five. This implies that H belongs to
Gi. Thus, we may assume without loss of generality that cs is not Cs-duplicated
(we call such vertices non-duplicated when the context is clear). Colour vertex
¢s with colour 3 and properly colour the rest of Cs with colours 1 and 2. Now the
n;’s may all be coloured with either colour 1 or 2, leaving colour 3 available for
t, a contradiction.

Case2 A =35.

Again, if every vertex of Cs is Cs-duplicated by an element of N(¢) then H
contains the Grétzsch graph, and is either G; or belongs to G,. Thus, we may
assume that Cs contains non-duplicated vertices (such as the vertex cs in Case 1).
The remaining vertex, p, must be adjacent to all non-duplicated vertices of Cs.
(Otherwise, giving such a vertex colour 3, the rest of Cs colours 1 and 2, we may
colour N(t) with 1 and 2 and assign colour 3 to p and to ¢. Thus, x(H) < 3,a
contradiction.)

(i) Suppose that cs is the only such non-duplicated vertex and that the neighbours
of ¢y,... ,c4 on Cs are Cs-duplicated by ny, ... , na, respectively. The fact that
H is saturated, and that »s does not Cs-duplicate ¢s implies that p is adjacent to
ns (otherwise ns is H-duplicated by some other »;, whence, H — ns would be
four-chromatic, but H is four-vertex critical). The saturated property now restricts
the possibilities for other edges. In particular, consider the neighbourhood of p.
Clearly, §( H) > 3 and, therefore, we have at least one of the edges pn; and pn3.

If both pr; and pns are edges, consider N(ns); ns must be adjacent to vertices
of the five-cycle but each and every choice remaining either creates a triangle,
Cs-duplicates cs or leaves H — ns four-chromatic. Since this contradicts our
assumption that H is critical, both pn; and pns can not be present.

_ If prng is an edge, but not pny , then the saturated property implies that either
pcs is an edge, or ns c3 is an edge. In the first case, there is a problem with N(ns),
as above. In the second case, the saturated property implies that nsc; is an edge,
but then H — n; is four-chromatic, again a contradiction.

The case of pmy but not pn; is symmetrical to the above case.

(ii) Suppose there are two vertices which are not Cs-duplicated. Since H is
triangle-free these vertices cannot be adjacent. Thus, we may assume that c; and
cs are the non-duplicated vertices and that ¢;,c; and cq4 are Cs-duplicated by
m ,m and nq, respectively. Then pcs and pcs are edges of H, and the presence
of any of the edges pmi,pm Or pny creates a triangle. Hence, we may assume
pns is an edge. Again consider N(ns) as above; the edge nscs must exist, and
so must one of nsc; or nscy. In either case a non-duplicated vertex becomes
duplicated.
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It is impossible to have three non-duplicated vertices on Cs because each is
required to be adjacent to p, and such a configuration contains a triangle.

Case 3 A = 4. Since H is saturated, the neighbourhood of each vertex is a
dominating set. Suppose there is a vertex s such thatd(s) = 3. Letthe neighbours
of s be n;, m and n3, and their neighbourhoods in H — s be A;, A2 and A;,
respectively. Exactly two of these sets, say A2 and A3, may intersect, and there
can be only one vertex in the intersection. Note that a non-empty intersection
implies that d(n;) = d(ny) = 4. Colour the set A, the vertices n, and n3 with
colour 1; colour A; and n; with colour 2; colour the remainder of A; and s with
colour 3. Hence, x(H) = 3. We may, therefore, assume that H is four-regular,
four-chromatic, and, since the (4, 5)-cage has 19 vertices, of girth four. Then H
is exactly the Chvétal graph, G3. (As we have stated earlier, the uniqueness of G'3
may be established in a straight-forward manner by considering N(t), R and the
appropriate adjacencies as in the case A = 5. The details are not informative, and
we suppress them.) 1

It is apparent from Figure 1 that all of the graphs in Theorem 1, and also the
Grotzsch graph, contain a particular 10 vertex subgraph, which we call the 10-
graph. Any three-colouring of the 10-graph always colours a particular chordless
six-cycle in cyclical order, that is, the vertices are coloured 1,2,3,1,2,3 (mod-
ulo permutation of the colours). The 10-graph and its special six-cycle are shown
in Figure 2.

The 10-graph and its special six-cycle (emphasized)
Figure 2

Corollary 1. The twelve-vertex, four-chromatic, triangle-free graphs are (up to
isomorphism) G2 ,G2 —1y,G2 —uv—2y,G3,G3 —2y,G3 —uv—zy (u,v, 7,y
are the vertices indicated in Figure 1), and Gf = {GY: GY is the Grotzsch graph,
G, with an extra vertex that is duplicated by a vertex of G}.

Note that the graphs in G} are those subgraphs of the graphs in G (see Theorem
1) that contain the Grétzsch graph.

It can be directly verified that each graph in Corollary 1 is four-chromatic. There
are edges other than the ones mentioned in Corollary 1 whose deletion from the
graphs in Theorem 1 leave a four-chromatic graph. In each instance it is straight-
forward, although tedious, to check that the resultant graph belongs to our list.
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The only triangle-free, four-critical graphs are G2 —uv—zy, and G3 —uv—zy.
These are shown in Figure 3 (a) and (b), respectively.

The 12-vertex, triangle-free, four-critical graphs
Figure 3

We exhibit a triangle-free, uniquely three-colourable graph, U, with 12 vertices
(see Figure 4). The 10-graph plays an important role in the proof that U is uniquely
three-colourable. Observe that U is the Chvétal graph (see Figure 1(b)) with the
edge zz deleted. We know of no smaller such graph.

The graph U, a triangle-free, uniquely three-colourable graph
Figure 4

Proposition 1. The graph U shown in Figure 4 is uniquely three-colourable and
triangle-free.

Proof: The graph U is obviously triangle-free. It remains to show that it is uniquely
three-colourable.

Note that U contains a copy T' of the 10-graph with vertex-set {vy, v2,... ,v10}.
Any three-colouring of U induces a three-colouring of . We have previously
noted that the six-cycle vy, vz, ... , vg must be coloured in cyclic order, and that
this order is unique up to renaming the colours.

Without loss of generality vy, v2,... ,vs are coloured 1,2,3,1,2, 3, respec-
tively. This forces v;; to have colour 1. Similarly, vertices vy2, v10, v9, v, v7 are
each in turn forced to have colours 2, 3, 1,2, 3, respectively. Thus, U is uniquely
three-colourable. [}
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It is not difficult to use the 10-graph to construct other, different, triangle-free,
uniquely three-colourable graphs.

Let n(k) denote the minimum number of vertices in a k-chromatic triangle-
free graph. A well known construction of Mycielski [6] gives a sequence of k-
critical triangle-free graphs. This construction implies an upper bound on xn( k)
of 3-2%-2 _ 1, In particular, it leads to n(4) < 11 (the Grotzsch graph, see [2])
and n(5) < 23. Chvital [4] has shown that n(4) = 11, and Jensen and Royle
[private communication] have reported that a computer search yields n(5) = 22.
It is known by probabilistic arguments, Erdos [5], that n( k) is bounded above
by c(klog(k))? for some constant c. T. Jensen has obtained the lower bound
ck? log( k). His proof is given in [11].

In [1], Avis shows that n(4) > 19. His approach relies heavily on the unique-
ness of the the Grbtzsch graph. We outline a similar direct proof that »(4) > 20.

Proposition 2. Any five-chromatic, triangle-free graph, H, has at least 20 ver-
tices.

Outline of proof: We follow the threads of Avis proof in [1). Note, first of all, that
every four-chromatic, triangle-free graph on twelve vertices has a four-colouring
with colours 1,2, 3,4 such that exactly one vertex, v, is coloured 4, d(v) > 4,
and no independent set intersects all four colour classes. (We note in passing
that the Grotzsch graph also has the above property.) Secondly, as in Avis proof,
observe that since the Ramsey number r(3,6) = 18 and H is triangle-free,
a(T) > 6. One then considers cases. In each case a special subset of vertices
is deleted, leaving an 11 or 12 vertex, four-chromatic graph, then, using the first
property noted above in place of the uniqueness of the Grétzsch graph, this four-
colouring is extended to H. Thecasesarea > 8, = A = 6,and « = 6 and
A = 5. The proofs are similar to [1], Lemma 1, Lemma 2, and Theorem 1, re-
spectively, except that in the case a = 7 the proof is similar to Lemma 2 if A = 7.
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