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Abstract. Supposethat R = (V, A) is a diregular bipartite toumnament of orderp > 8.
Denote a cycle of length k by Cy. Then forany e € A(R), w € V(R) \ V(e), there
exists a pair of vertex-disjoint cycles Cs and Cp 4 in R with e € Cy and w € Cp_4,
except R is isomorphic to a special digraph Fq.

1. Introduction.

A bipartite tournament is an oriented complete bipartite graph. Just as ordinary
tournaments may be used to represent a competition, so may bipartite tournaments.
In the former case, each player competes against everyone else; while in the latter
case, there are two teams and each player competes against everyone on the oppos-
ing team. Tournaments and bipartite tournaments are perhaps the most interesting
two classes of oriented graphs. However, much less is known about the latter than
the former. Properties of cycles in bipartite tournaments were investigated in [1,
3-10]. These include:

Theorem 1 [9]. Suppose that R is a diregular bipartite toumament of order

p(p > 4), and u, v are two distinct vertices in R. Then there exists a pair of
vertex-disjoint cycles Cs and Cp_4 in R with u € Cs and v € Cp_a, except
when R is a special 8-digraph.

Theorem 2 [10). Suppose that R is a diregular bipartite tounament of order
p(p > 4) and e is any arc in R. Then there exists a pair of vertex-disjoint cycles
Ca4 and Cp—4 in R with e € C;.

In this paper, we shall prove a stronger result from which Theorem 1 and The-
orem 2 follow as corollaries.
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2. Notation and some known results.

Let R = (X,Y; A) be a bipartite tournament of order p, where (X,Y) is the
bipartition of the vertex set V = X UY of R, and A is the set of arcs of R. For
anyv € Vandany S C V, we define:

Iv)={u€V]|uweAd}, Ov)={seV|vueA},
I(8) = UvesI(v) and  0(S) = UyesO(v).

R is said to be k-diregular if |I(v)| = |0(v)| = &, forall v € V. A factor of
R is a spanning 1-diregular subgraph of R. Thus, a factor is a union of vertex
disjoint cycles. For any subsets S, T of V, § = T denotes that forall sin SN X
andtinTNY,stisinAandforallsinSNY andtinT N X, st is in A.
For any integer k, Fax = (V, A) is defined as follows: V = {v;,v2,...,vax},
viv; €E A 4 j—1 =1 (mod 4). F}, is obtained from Fj; by reversing all
arcs of a 4-cycle uyzvu in Fy, (see Figure 1). And F; is obtained from Fy, by
reversing all arcs of some 4-cycles: vy (4) va (1) v3(d) zv;(4),i=1,2,...,m,
where v (1) € V1 \ {v}, v2(i) € V2 \ {u}, v3(i) € V3 \ {y} and when { # j,
vi(d) # v1(5), v3()) # va(j). Clearly, when m = 0, Fasi = Ff,. Denote
a cycle of length k by C;. We call C; and C,— (4 < k < p — 4) a pair of
complementary cycles in R if Cy and C,—; are two vertex-disjoint cycles in R.
Other terms and symbols are found in [2].
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Figure 1. Fj},

In order to prove the main result, we will need the following Theorems.

Theorem 3 [5). A bipartite tournament R is hamiltonian if and only if both of
the following conditions hold: (a) R is strong; (b) there is a factor in R.
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Theorem 4 [5). Let R be a bipartite tournament containing a factor. Then
R is not strong if and only if there exists a factor F in R consisting of cycles
C\,Ct,...,C™ m>2,suchthat C' = C’ ifi < j.

Let R = (X,Y; A) be abipartite tounament. Andlet A; = {ab€ A|a € X,
beY}, Az = A\ A1, R(1) = R[ A1) and R(2) = R[Az]. By the definition of
factor, we have:

Theorem 5. There exists a factor in R if and only if both of the following con-
ditions hold: (a) |X| = |Y|, (b) there is a perfect matching in R(1) and R(2)
respectively.

3. Main result.

Theorem. Suppose that R = (X,Y; A) is a k-diregular bipartite tournament
(k > 2). Then forany e = uv € A(R) and w € V(R) \ V(e), there exists a
pair of vertex-disjoint cycles Cs and Cax-4 in R such that e € Cs, w € Cag-4,
unless R is isomorphic to F.

Proof: Clearly, |X UY|= |V|=2|X|= 2|Y| = 4k. Without loss of generality,
suppose u € X. We establish three claims.
Claim 1. R contains a cycle Cs such that uv € Cs and w ¢ Cs.

If w € X, we may pick an = € 0(v) and z # w since k > 2. By k-diregularity
of R, there exists y € I(u) with zy € A(R). Thus, there is a Cs = uvzyu in R.
Similarly, forw € Y.

Claim 2. If R is not isomorphic to F4, then there exists a cycle Cs through e
such that R; = R — Cy has a factor containing w.

Suppose there is acycle Cs containing e such that R; has no factor. By Theorem
5 and Konig-Hall’s theorem on matching, it follows that there exists a subset S
either of X \ {u,z} or of Y \ {v,y} such that |S| > |0(S)]. Without loss of
generality, we assume that S = X is in X \ {u,z}. Let O(X;) = 11, X =
X\ (X1 U{u,z}) and ¥z =Y \ (Y U{v,y}). Thus, Yz = X. Since Ris k-
diregular, k > | X)| > |0(X1)| = [Y1] > k — 2. We will consider three subcases
as follows:

@) |Xi| = kand [Yj| = k — 2. By the k-diregularity of R, we have that
X; = Y7 U {v,y}. Hence, |I(v)| = | X1| + 1 = k + 1, a contradiction.

(b) |X1| = kand |¥i| = k — 1. By the k-diregularity of R, X2 U{u,z} = Y2,
and since |I(v)| = k, there exists a vertex z; € X suchthatvzy,z1y € A.
LetC} = uvz yu and R} = R—Cj.

If z; # w, we have to prove that there is no subset 8’ of X \ {u,z;} (or of
Y \ {v,y} resp.) such that |S'| > [Og(S")|. In fact, if |S’| = k, then both
S'N(Xi\{z:}) #4and S'N(X2U{z}) # ¢ (S'NY1 #dand S'NY; # ¢
resp.) hold. Hence, |Og; (8)| > |S'| = k. If|S’| = k — 1, once more, we may
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easily verify that |S’| < [0p;(S")| unless S’ = Yj or §' = X; \ {z1}. When
S' = Y1, note that z; = Y;. By k-diregularity of R, Og (Y1)| > k— 1. When
8" = X1\ {z1} and |S'| > |05 (S")], there exists a vertex y; € Y; such that
y1 = X1 \ {z:1}. Hence, X; \ {z1} = y. Note that 2, y, zy € A, thus, we have
[I(y)| > &, a contradiction.

If 7; = wand X; \ {z1} = v, we will prove that R & Fs, with V; \ {v} in
Figure 1, corresponding to X \ {z1 = w}, V2 \ {u} oY1, V3 \ {y} o X2 U{z},
Va\{z} 0Y; and uvzyu to vz (= w) yuv. Clearly, X2 U{z} = Y2 = X;\{w},
Vi = {u,z} 22 = w= Y, X \{w}=>v= XU{z}. Suppose
X3y € A, where 13, € X3, y) €Y;. By k-diregularity of R, then yx, € A, and
there exists a vertex z} € X \ {w} such that yj =} € A, thus, 2}y € A. Hence,
Ty lies on a 4-cycle zhy; z yz) in R. Suppose yzj € A, where z € X;.
Note that vz{ € A. By k-diregularity of R, there exist vertices i € Y; and
z] € X1 \ {w} such that z5y{ € A and y{z{ € A. And then z{y € A. Hence,
yzy lies on a 4-cycle yz} ¢ zjy in R. Using a similar argument, we can show
thatif y1z} € Aorziy € A, where ) € Y3, 2} € X \ {w}, then y1z} or z|y
also lies on a4-cycle, respectively, as above in R. Finally, if there are two 4-cycles
n () z1()yz2(d) y1(4), ¢ = 1,2 in R where y1(4) € Y1, 71(4) € Xy \{w},
z2(1) € X2, then, once more, by the k-diregularity of R, we have 7, (1) # 1(2)
and 7, (1) # 22(2). Therefore, R & Fa;.

© Xil=k—1land[V1]|=k—2. Wehave Yz = X = Y) U {v,y},and
{v,y} = X,. Since |0(u)| = k, there exists a veriex y, in Y3 such that
Y24, Y2 € A. Let G} = wvzyruand R{ = R—CJ.

Suppose y» # w. If R} has no factor, then, as above, there exists a subset S”
either of X \ {u,z} orof Y\ {v, 32} such thatk > [S"| > |0gr (§")| > k — 2.
If |S”| = k, then case (a) or (b) applies. So we assume that |S"| = k — 1. Note
that in this case, it is enough to consider that S = X, orY; U{y}. Sincev = X,
and R is k-diregular, |0gr (X2)| > k — 1= |Xz|. Since |0g; (y)| > k=1, [Ogr
Mu{ghl2k-1=[riu{y}l

Ify, = w, we may assume u = Y2 \{y2}. Hence,Y1U{y} = vand X; = w.
Using a similar argument to that in (b), we can prove that R & 7y, with V3 \ {v}
inFigure 1, corresponding to Y1 U{y}, V2 \ {u} to X5, V3 \ {y} o Y2 \ {y = w},
Va \ {z} to X, and uvzyu 10 uvzys u.

Claim 3. For k > 4 and R and Cy as in Claim 2, R; = R — Cj is strong.

Suppose R, is not strong. Let C',C?,...,C™, m > 2, be cycles of R, as
they are described in Theorem 4. If [V(C*)| < [V(C*) U...U V(C™)|, then
there exists a vertex z € C' such that k = [0(2)| > [V(C1)|/4+ [V(C?) U...U
V(C™| /2 2 (IV(CH| +[V(C?)| + ...+ [V(C™ /4 +(|V(C?)| + ...+
[V(C™ ) /4 > (p—4) /4+ (p—4)/8. Since p = 4 k, this is a contradiction for
k > 4. On the other hand, if |V(C")| > [V(C*) U...U V(C™)|, then using a
similar argument, we obtain a contradiction by considering | I(z) |, where z € C™.
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We can now settle the Theorem. Suppose R is not isomorphic to 4, and Ry
has a factor containing w as in Claim 2. If k # 3, then R, is hamiltonian by Claim
3 and Theorem 3. Hence, Theorem is true. If k = 3, then either R, is hamiltonian
or, by Theorem 4, R; consists of two 4-cycles C' = 12341 and C" = 56785
such that C' = C". By the 3-diregularity of R, we have C" = C4 => C'. Thus,
there exist two pairs of complementary cycles as follows: uv18 u and y3456 27y
which satisfy the Theorem if w # 1, 8; or uv36 u and y1278 245y which satisfy
the Theorem if w = 1 or 8. This completes the proof of Theorem. |
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