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Abstract. In this paper we will consider the Ramsey numbers for paths and cycles in
graphs with unordered as well as ordered vertex set.

Introduction.

LetGo,Gl, ... , Gr_1 be finite graphs. The generalized Ramsey number (Go, G,
... ,Gr_1) denotes the least positive integer n such that for every coloring A: E( K,)
— {0,1,... ,r — 1} of the edges of the complete graph on n vertices with r col-
ors there exists a nonnegative integer i < r and a subgraph G of K, which is
isomorphic to G; such that A (e) = i for all edges e € E(G). Clearly, for any
finite graphs G; the numbers r(Go, G1, ... ,Gy—1) exist by Ramsey’s theorem.

In this paper, we will consider the Ramsey numbers for paths and cycles in
the ordered and unordered case and compare their growth. The study of these
monotone graphs are done in connection with results of Paris and Harrington [PH
77] on independence statements in Peano Arithmetic. It turns out that, although the
Ramsey numbers for monotone cycles on k vertices are small compared to those
for complete graphs with the same number of vertices, the corresponding Paris-
Harrington functions for monotone paths grow fast, in particular, do not belong to
the class of primitive recursive functions.

Unordered graphs.

Throughout this paragraph the vertex sets of the graphs under consideration are
not endowed with an ordering. A path P, = (V, E) of length £ is a graph on £
vertices, such that there exists an enumeration of the vertices of V, V = {vo, v1,
<e., Vg1 }, Where {v;_1,v;} € E forall integers 1 < ¢ < £— 1 and there are no
other elements in E. If one adds the edge e = {vo, vg_; } to the set of edges E of
P, then one obtains for E' = EU {e} acycle C, = (V, E) of length £.

For colorings of the edges of complete graphs with two colors the Ramsey num-
ber r( Pi, Py) for paths was determined by Gerencsér and Gy4rfas:
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Theorem 1 [GG 67). Let k, £ be positive integers with 2 < k < £. Then
k
(P, P)=£—-1+ ljJ .

Thus, for two-colorings the path Ramsey numbers r( Py, P,) grow linearily in
k and £. In general, for colorings with more than two colors the growth rate of the
path Ramsey numbers is similar, but until now these numbers are not completely
determined for all possible arguments. A lower bound has been given by Faudree
and Schelp:

Lemma [FS75). Let £,4y,... 41 > 2 be positive integers. Then

r—1
TPty Payees P 280 = (r=1 + 3 [%J .

Faudree and Schelp have shown that for certain arguments (4o, £, ... ,4,_1)
this lower bound gives the exact value of the corresponding path Ramsey numbers:
Theorem 22 [FS 75). Let £&,4,,...,2,_, be positive integers with £y > 6
. ( "‘2.-) .Thenfor §=0 or § =1 itis:

=1

r-1

™(Py, Preyes, Poty, oo, Pag ) = 1 =74 ) 4.
=0

On the other hand, equality in the Lemma does not always hold, as Irving proved
for the constant arguments (3,3,...,3):
Theorem 3 [Ir 74). For colorings with v colors it is valid:

r+ 1if r iseven

(s, B, Po) = { r+2 ifrisodd

Now we will consider cycle Ramsey numbers v(Cq,, Cy, ... ,Cq,_,), where
£;>3fori=0,1,...,r — 1. For colorings of edges of complete graphs with
two colors these were completely determined by Rosta and Faudree and Schelp:

Theorem 4 [Ro 73), [FS 74). For all integers k, £ with k, £ > 3 it is valid:

2k-1 if¢isoddand (k,£) #(3,3)

k+ £-1 if k£ are evenand (k,£) # (4,4)
(G, Co) = max{£— 1,k — 1+ £} ifk is odd and ¢ is even

6 if (k,£) is (3,3) or (4,4).
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In any case, for two-colorings the cycle Ramsey numbers r(C, Cy) grow lin-
earily. For colorings with more than two colors the situation is different from
that for paths. While r(Cs,Cs,... ,Cs) grows exponentially in the number r
of colors, the number r(Cjs, Cs,... ,Ca) grows only quadratically in r, ¢f. [CG
75]. The reason for this difference is that every graph on = vertices and with
[0.5%'5 + 0.25n] edges contains a C as a subgraph, while a graph on n ver-
tices can have |0.2572 | edges without containing a C;.

For the general situation of colorings with » colors and cycles of odd length
Erdts and Graham cbtained the following lower and upper bounds:

Theorem 5 [EG 75). Let £ be a positive integer. Then for colorings with r
colors it is valid:

2.2" < 1(Cos1,Cota1, -+ -, Cota1) L (r+ 2128

Ordered graphs.

While until now we considered graphs with the vertex set being unordered, in this
section we will investigate the ordered case, in particular, we will give lower and
upper bounds for the ordered Ramsey numbers for monotone paths and cycles.
That is, the set V of vertices is endowed with a total order, say V is a subset of
the set w of nonnegative integers, and the subgraphs under consideration, namely,
paths and cycles induce a monotone sequence in the following sense:

A monotone path P* = (V, E) of length £ is a subgraph of G on £ vertices
vo < v < ... < vg; such that {v;,v;.1} € E foralli < £~ 1 and there are
no other edges in E. If one adds the edge {vo,ve—1} to the set of edges of the
monotone path P, then we obtain a monotone cycle C7* of length £. Moreover,
let K, denote the complete graph on £ vertices.

We will consider at first the ordered Ramsey numbers for complete graphs ver-
sus monotone paths:

Theorem 6. Let £,2,,... ,£4,_, be positive integers. Then it is valid

r-1

r(Kio, PR, PR ) =1+ [J(& - D).
i=0

For coloring with two colors, that is, » = 2, this was proved by Erdds in [Er
47).
Proof of Theorem 6: Letn= ]'[,Y:o' (4—1) andletn* = H{;Z‘(& —1). We will
show first by induction on r the lower bound 7( K¢, , ", ... , Pi" ) > 1+ n For
r = 1 this is trivial, thus, let us assume that r(Kg,, Py}, ... ,F".) > 1+ n*.
Partition the set {0, 1,... ,n— 1} into subintervals I; = {jn*— 1, jn*,... ,(j+
I)n* — 1)} for j < £,y — 1. For each j there exists by assumption a coloring
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Aj: [;)? - {0,1,...,7 — 2} such that there exists neither a monochromatic
K,, in color 0 nor a monotone path of length £; in color ¢ for some i > 1. Then,
considering the coloring A: [{0,1,...,n—1}]2 = {0,1,...,r — 1} defined
by

A if
A({z,y} <) = { rf_({lz'-'/}<) elsze,y €l;

gives the desired lower bound.

In order to prove the upper bound, consider at first the case » = 2. We use
induction on £;. Put Iy = {0,1,...,(% — 1)(& — 1)} and let A: [[p]? —
{0,1,... ,7—1} beacoloring. By the induction hypothesis there exist in the set
Ip a monochromatic K, in color 0, or a monotone path P™(0) of length £, — 1,
which is monochromatic in color 1. In the first case we are ready, thus, let us
assume that there exists a monotone path P™(0) of length £; — 1 in color 1. Put
I} = Ip \ {min P™(0)}, where the minimum is taken over the set of vertices
of P™(0). In I we find by induction hypothesis w.1.0.g. also such a monotone
path P™(1) of length £, — 1, which is monochromatic in color 1. Iterating this
argument, we find finally £, many monotone paths P™( j) of length £; — 1, which
are monochromatic in color 1 and have pairwise distinct minima. Then either there
exists some pair (1, 7) such that A (min P™({), min P™(j)) = 1, and we have a
monotone path of length £; in color 1 or the complete graph of order £ given by
the minima of the paths P™( ;) is monochromatic in color 0.

If the number r of colors is at least three, we will use a double induction on
r and on £,_,. By induction assumption for r and £,_; — 1 we find as before
in the set {0, 1,... ,n;;;(e,- —1)}atleast 1+ ]'[{:12 (4; — 1) many monotone
paths P™(j), ; < n*, w.l.o.g. of length £,_, — 1 and color r — 1, which have
pairwise distinct minima. Consider the restriction of the coloring A to the set
[X]2, where X = {min P™(j) | ; < n*}. If for two elements z,y € X,
z < y,itisA({z,y}) = r— 1,then z, P™(j) with y = min P™(;) determines a
monochromatic monotone path of length £,_, in color » — 1. Therefore, assume
that this set [ X ]2 is colored with r — 1 colors. Then the induction hypothesis for
r — 1 colors gives the desired result. 1

As an immediate consequence we obtain the following Theorem of Rado [Ra
7

Corollary [Ra 77). Let £,4),...,8._) be positive integers. Then it is valid
r-1
(P, PPy PR =14+ (G- 1).
i=0

Rado also investigated the corresponding Ramsey numbers for hypergraphs.
For monotone paths in 3-uniform monotone paths he gives the exact value of these
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Ramsey numbers for two-colorings, compare (ES 35), [Ra 77] and [Le 89] for
related results.

The classical result of Erdos and Szekeres on monotone subsequences, which
has applications in sorting problems in theoretical computer science, ¢f. [HHS
89], follows easily from Theorem 6:

Corollary [ES 35). Let m,n be positive integers. Then for every one-to-one
mapping f:{0,1,...,mn} — w there exists in f
either an ascending subsequence with (m + 1) terms
or adescending subsequence with (n+ 1) terms.

For the proof of this Corollary consider the coloring A: [{0,1,... ,mn}]? —
{0,1} defined by A({i, 5} <) = O if f() < f(j) and A({i,j} <) = 1if
7)) > £(5).

Moreover, by Theorem 6 the result of Erdds and Szekeres can be extended to
arbitrary partial orders in the following way:

Corollary. Let k,£,m,n be positive integers and let (X,<) be a partially or-
dered set. Then for every mapping f:{0,1,... ,kémn} — X there exists in
f

either an antichain with (k + 1) terms
or a strongly ascending subsequence with (£ + 1) terms
or a strongly descending subsequene with (m + 1) terms
or aconstant subsequence with (n+ 1) terms.

Next, we will consider the Ramsey numbers for monotone cycles.

Theorem 7. Let k,2 with k,£ > 3 be positive integers. Then
1+(k—1)(2-1) < r(CP,C*) <2k —3k—-3£+6.

Proof of Theorem 7: As the graph P is a subgraph of the graph C" it follows
that+(CP*,C) > r(P, P{®),and, thus, we get the lower bound by Theorem 6.

For proving the upper bound, put n = »(P,,C) + r(CP*, P2,) and let
A[{0,1,...,n—1})2 — {0, 1} be acoloring. Then at the element O the number
of incident edges is at least either r( P, , C7") in color 0 or r(C*, P2, ) in color
1. By Theorem 6, as CJ" is a subgraph of K we have r( Ky, Pi*) > r(C7*, Pg").
Therefore, we conclude:

T(Cl':naotm) ST(PI:'th?) +T(PI?:C£1)
=(k-=2)(L—-1+1+(k-1)(£-2)+1
=2k0-3k—-32+6.
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It is not clear whether the lower or the upper bound is the better approximation
of the numbers r(C*, C7*) . Inparticular, fork = £ = 3 we have r(CI*,CJ*) = 6,
which is just the upper bound in Theorem 7.

In order to obtain upper bounds for the general numbers r(C, C7), ... cr)
we will look at the numbers r( K, C7*). By a similar argument as in the proof of
Theorem 7 we obtain

(K, C7") < 7(Ki-1,Cf) + (K, Pp2y)

and evaluating this recursion gives

k-1
r(Ki,CF) <2+ Y (i(£=2) +1)
=2
- k(k—-1(4-1) +1
2
2 —
< k (£2 l).

Moreover, using a color mixing argument, that is, for a given coloring A: [{0, 1,
...,n—1}12 5 {0,1,... ,r—1} defineanewcoloringA*: [ {0, 1,... ,n—1}])?

— {0, 1} in the following way: A*({z,y}) = 0 ifand onlyif A ({z,y}) = r—1.
Thus, we conclude

(Cy, Cgs- -+, C7) < r(Kwepcp.-cp.0:Cry

and, therefore, by induction we obtain with this recurrence relation the following

Fact8. Let &,4y,... 4,1 bepositiveintegers with3 < 8o < 8 £... < L.

Then .
r— 2r-2 r—1 por-1-i
T g2
1+ ; — 1) <r(CP,...,CP <e° 1Ly & .
g(& ) < (Cq ) <
A fast growing function.

In this chapter we will indicate for monotone paths and cycles some applications
related to logic. In [PH 77] Paris and Harrington gave the first concrete example
for Gdels Second Incompleteness Theorem, namely, they proved that the fol-
lowing variant of Ramsey’s Theorem is true, but not provable in first order Peano
Arithmetic:

Theorem 9 [PH 77). For all positive integers a,k,r, there exists a positive
integer n such that the following is valid:
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(*) Forevery colomg A:[{a,a+ 1,...,n})¥ = {0,1,...,r — 1} of the k-
element subsets of {a,a + 1,... ,n} with v colors there exists a subset X C
{a,a + 1,... ,n} which is relatively large, that is, | X| > min X, k + 1, and
which is monochromatic, that is, the restriction A |[ X] k' is a constant coloring.

One can prove this theorem by applying the infinite version of Ramsey’s The-
orem. Notice, that this is not a proof within first order Peano Arithmetic.

For given positive integers a, k, r let P H(a, k, ) denote the least positive inte-
ger nsuch that the sentence (*) in Theorem 9 is true. While Paris and Harrington
used model theoretic arguments to prove their result, later Ketonen and Solovay
[KS 81) showed by purely combinatorial arguments, that the diagonal function
PH(k + 1,k, k) grows more rapidly than every function f:w — w for which
first order Peano Arithmetic can prove totality. This gives another proof of the
Theorem of Paris and Harrington.

The above mentioned results deal essentially with complete graphs and hyper-
graphs as the monochromatic subgraphs. We are interested whether also sub-
graphs with a small number of edges, in particular, monotone paths and cycles,
imply that the corresponding Paris-Harrington functions grow fast.

Define the number PH(C™)(a,r) as the least positive integer » such that
for every coloring A*:[{a,a + 1,...,n}]2 — {0,1,...,r — 1} there exists
a monochromatic monotone cycle C™ = (V, E), which is relatively large, that is,
V| > min V, 3. We will show that the function PH(C™)(0, r) is not primitive
recursive. In order to do so, we define a sequence ( f;)i<, of functions fi:w — w
by

Jo(n) =n+1

and, if the functions f; are defined for all § < j, let

fi(m = f21)

where for integers n and functions f the n’th iteration of f is f*(z)=f(f ( ...
(f(k)) ...)). Finally, diagonalize and define an Ackermann function g: w — w
by

g(n) = fa(n).
Such a function g does not belong to the class of primitive recursive functions, see
[Pe 67), for example.

Theorem 10. The function PH(C™)(0,r) is not primitive recursive,

Proof of Theorem 10: We will show that n = PH(C™)(0,27 + 3) > g(r) for
all» > 3. As polynomial substitution in the argument does not affect the property
of a function beeing not primitive recursive, this will show the desired result.
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Consider the following coloring A: [{0,1,...,s})2 — {0,1,...,27+ 2}
defined by
1 ifi<r+1

i} O ={ 1 L ek A=) <2}

Suppose thatthe set X = {zo, 71, ... , Tjx}-1 } determines a relatively large monochro-
matic monotone cycle. Then it follows A ({z;, Z;+1}<) = r+2+y forsomey < r,
in particular, zo > r + 2. Moreover, as f,(z; — 2) < T — 2, this implies

Zixj-1 — 2 2 f{FITD (20 - 2)

> fi= (20 - 2) as |X| > zo
2 fi= (D
= fyr1(Zo — 2).
By our assumption the set X = {zo,z1,...,Zjx}-1} determines a monotone

monochromatic cycle and, therefore, A ({zo,Z|x|-1}<) = r+ 2 + y, that is,
fy(zo = 2) < z)x}-2 — 2. By the maximality of y it follows y = r. This implies

9(r) = fr(r) < fi(z0 — 2) aszo D> 7T+2
< fr(zl “'2)
=1z —2

< PH(C™ (0,27 +3),

and finally proves the theorem. |

Concerning upper bounds, by color mixing arguments one can prove that these
are also of Ackermann type; we omit the details.

It would be interesting to know whether the diagonal Paris-Harrington numbers
for monotone cycles in uniform hypergraphs (defined analogously — cyclically —
as in the case of graphs) has a similar growth rate as the function PH(k+ 1, k, k)
for complete hypergraphs does have.
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