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Abstract. This paper gives two sufficient conditions for a 2-connected graph to be
pancyclic. The first one is that the degree sum of every pair of nonadjacent vertices
should not be less than n/2 + §. The second is that the degree sum of every triple of
independent vertices should not be less than n + §, where n is the number of vertices
and § is the minimum degree of the graph.

1. Introduction

All graphs considered in this paper are simple. The terminology and notation
used here are standard except as indicated. A good reference for any undefined
term is Bondy and Murty’s book [4], and the sets of vertices and edges of a graph
G are denoted by V(G) and E(G), respectively, and the degree of a vertex v of
G is denoted by dg(v), or d(v) for simplicity. For D C V(G), G[ D] denotes
the subgraph of G induced by set D. The neighbourhood of the vertex v in G is
Ne(v), Ng(v) = Ng(v) U {v}, and Ng(D) = |J,¢p Ne(v). The minimum
degree, the independence number and the connectivity of G are denoted by §G,
a(G) and x(G), respectively. Following Bauer et al [1], define

k
o = min {E d(v)|{v1,v2,...,vt} isanindependent set of vertices in G} ,
is1 .

where 1 <€ k& < a(G). Obviously o1 = 8(G). If C is a directed cycle in G and
v € V(C), v* and v~ denote, respectively, the successor and predecessor of the
vertex v along C. The closure of a graph G, denoted by G, is the graph obtained
from G by recursively joining pairs of nonadjacent vertices whose degree sum is
at least » until no such pair remains, where n is the number of vertices of G.

Bondy [2] has conjectured that all sufficient degree conditions for a graph to be
Hamiltonian ensure the graph to be pancyclic. Examples are Ore’s condition [2],
Chvétal’s degree sequence condition [7] and Fan’s condition [8]. In this paper, two
sufficient conditions ensuring graphs to be pancyclic are given. These conditions
can be regarded as generalizations of Ore’s condition. The first one is that the
degree sum of every pair of nonadjacent vertices should be at least n/2 + §(G);
the second is that the degree sum of every triple of independent vertices should
be at least n+ 6(@G), where n is the number of vertices of the graph G, which is
assumed 2-connected.

The following known results will be needed.
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Theorem A [3). A graph G is Hamiltonian if and only if G is Hamiltonian.
Theorem B [S]. If G is x-connected and o G) < x, then G is Hamiltonian.

Theorem C [1). Let G be a simple graph with n vertices and connectivity
&(G) > 2. If 03 2 n+ &(QG), then G is Hamiltonian.

Theorem D (2). Let G be a simple graph with n vertices. If oo > n, then G is
either a pancyclic graph or a balanced complete bipartite graph.

Theorem E[6]). Let C = (vy,v2,...,vys, v1) be a Hamilton cycle. If the consec-
utive vertices v, and vy on C satisfy d(vy) + d(v,) > n with d(v)) < d(v,),
then G is either

(i) pancyclic,

(ii) bipartite, or
(iii) misses only cycles of length n— 1.

Moreover, if (iii) holds, then d(va-2),d(va—1),d(v2), c(v3) all are less than
n/2, and G has one of two possible adjacency structures near v, and v,: The
first structure is that {vy-32 , Va-1,vn,v1,v2,v3} is an independent set of vertices
inG - E(C), and (vy,v3), (v5,v4-4), (v1,v4), (v1,vs) € E(G). The second
structure which can occuronly if d(v1) < d(v,) is identical to the first one except
that (v,,v3) € E(G) and (n1,v5) ¢ E(G).

LemmaF. Let G be a simple graph on n vertices, and C = (vy,v2,...,Vp-1)
be acycle of G. If d(v,) > n/2, then G is pancyclic.

Lemma G. If G is a simple graph on n vertices with n > 28(G), then G
conlains either a path of length at least 286(G) or two vertex-disjoint paths of
length at least 6(G).

The proofs of these two lemmas are very easy, so they will be omitted.

Lemma H. Let C = (uo,u1,u2,...,u,-1) be a Hamiltonian cycle of a graph
G. Ifthere is an index 1 such that, d(u;) + d(u;+1) > n then G is pancyclic.

A proof of this lemma can be read out directly from the proof of Theorem E
given in [6].

2. Result 1
In this section we shall prove two theorems concerning graphs with large o, .

Theorem 1. Let G be a 2-connected graph on n > 3 vertices. G satisfies a; >
nf2+ 8(G), then G is Hamiltonian.

Proof: Letz € V(G) withd(z) = 6(G). PutS = V(G)— N*(z). By Theorem
D, we may assume that §(G) < n/2,and hence |S| = n—8(G) -1 > (n—1)/2
and d(v) > n/2 for all v € S. Therefore G[S] is a complete subgraph of
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G. By the connectivity of G there exist vi,v2 € N(z), u1,uz € § such that
(vi,u;) € E(G),i=1,2.Put

R={v e N(z)lde(v) 26(G) +1}, r=|R|

Three cases will be considered:
Case 1: r > 2. In this case dg(u;) > n—8(G),i=1,2,and dz(z) = n— 1.
Furthermore, forall u € S, dg(u) > n— 8(G), thus G is complete. By Theorem
A, the graph G is Hamiltonian.
Case2: r =1, Letvp € R, d(vw) = 8(G) + 1. Then d(v) = 6(@) for all
v € N*(z) — {vo}. Therefore GIN*(z) — {vo}] is complete, since otherwise
5G) > n/2. By the connectivity of G and the fact that G{ N*(z) — {vo}] and
GI 8] are complete, we conclude that the graph G is Hamiltonian, and so is G by
Theorem A.
Case 3: = 0. From the assumption that 5(G) < n/2, it can be seen that
G[N*(z)] is complete. Since G[N*(z)] and G[S] are complete, the graph G
is hamiltonian by the connectivity of G. Thus G is Hamiltonian.

The proof of Theorem 1 is complete.

Theorem 2. Let G be a 2-connected graph on n > 3 vertices. If G satisfies
a2 2 nf2+ 86(G), then either G is pancyclicor G = Ky w2 -

Proof: By Theorem D we may assume that §(G) < n/2. From Theorem 1 the
graph G is Hamiltonian. Let C = (v;,v2,...,v,,v;) be a Hamilton cycle of G.
The proof of the theorem will be divided into two steps.

Claim 1: There exist consecutive vertices v; and v;4; on C such that d(v;) +
d(vis1) 2 n

Assume Claim 1 does not hold. Then |S| = n— §(G) — 1 < n/2 by the
fact that d(v) > n/2 for any v € S and thus §(G) > n/2 — 1. Without loss
of generality, assume that v; € S, so that d(v1) > n/2. If (v2,v,) € EB(G),
then G is pancyclic by Lemma F. So we may assume that (v2,v,) ¢ E(G).
Since d(v2) + d(v,) > n/2+ 8(G) and d(v3),d(v,) < nf2, we have d(v;) >
§(G)+1,i=2,n Hencen/2 > d(v;) > 6(G) + 1,1 =2, n This implies that
8(G) < n/2 — 1, acontradiction, and hence Claim 1 does hold.

Without loss of generality, we may assume that d(v1) + d(vs) > n with
d(v;1) < d(vy,). It is sufficient, by Theorem E, to prove the following.

Claim 2: The graph G contains a cycle of length n— 1.

Assume G does not contain a cycle of length n — 1. Then by Theorem E,
we have d(v;)) < n/2,i=2,3,n—1,n—2,and {v2,v3,Vp1,Vp-2} iSan
independent set in G — E(C). By the assumption that o2 > n/2+ §(G), we can
conclude that d(v;) > 8(G) + 1,1 =2,3,n—1,n— 2. Hence r > 4, where
r=|R|= {v € N*(z)|d(v) > §(G) + 1}, d(z) = §(G).
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Next we prove that G = G — z is Hamiltonian, and this will be a contradiction.
Indeed, since §(G) > 8(G) — 1 and r > 4, the graph G; contains a K., where
m > n— 8(G) + 3, that s, G, has at least n — §(G) + 3 vertices with degree
at least n— 5(G) + 2, therefore G is complete, and hence &) is Hamiltonian by
Theorem A.

3. Result 2
In this section, the following theorem will be proved.

Theorem 3. Let Fo be the class of complete balanced bipartite graphs, Fy be
the class of complete balanced bipartite graphs missing one edge, and Cs be a
cycle of length 5. Then if G is a 2-connected graph on w vertices satisfying
o3 2> nt+8(G), theneither G is pancyclicor G € Fy, where F = FyUF,U{Cs}.

To prove the theorem the following results will be needed.

Theorem 4. Let G be a 2-connected graph on n vertices. If G satisfies a3 >
n+8(G), and §(G) > 3, then there exists a vertex x € V(G) such that d(z) =
8(G) and G' = G — z is 2-connected.

Proof: Let z € V(G) with d(x) = 6(G). If G’ = G — z is not 2-connected,
there exists z; € V(G') such that G’ — z, is not connected. Let Gy,Gs, ..., Gk,
k > 2, be the components of G' — z;. Let § = V(G) — N*(z). If there
existiand j, 1 < i < j < k, such that there exist u; in V(G;) N S and u; in
V(G;) N S, then {u;, u;, 2} is a triple of independent vertices, and hence by the
assumption on G, we have d(u;) + d(u;) > n. Therefore [V(G)) |+ |V(G))| >
n > |V(Gy)| + |V(Gj)| + 2, a contradiction. Hence S — z; is contained in the
vertex set of one component of G' — 1, say G. From the connectivity of G, it
canbe seen that N(z) N'V(G1) # 0, N(z1) NV(G1) # Band V(G;) C N(z),
i # 1. Putt = |[N(z) N V(Gy)|, then we have [V(G))| = n— 6(G) — 1+ ¢, if
z1 ¢ 8,|V(G1)| =n—-8(G) —2+ tifz; € S, and for other components G},
[V(G:)| > 6(G) — 1. Therefore

n= V(G| 2 |[V(G)|+ |[V(G2)|+ [{z,;1}| > n+t—-1>n

Thust=1,z) € §,|V(G2)|+86(G) —1,and |V(G1)| = n— 86(G) — 1, which
implies that G is a complete graph, and that every vertex in G, is adjacent to z,
and has degree 6(G) in G. By the fact that §(G) >3 and [V(G2)| > 2,G - u
is 2-connected for any u € V(G2). The proof is complete.

Theorem 5. Let G be a 2-connected graph on w vertices with §(G) > 3. If G
satisfies o3 > n+ 6(G) and G ¢ F», then G contains a cycle of length n— 1.

Proof: By Theorem D, we may assume that 5(G) < n/2. Suppose the graph G
contains no cycle of length n— 1.
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By Theorem 4, there is a vertex £ € V(G) with d(z) = 6(G) such that G’ =
G - z is 2-connected. By the assumption on G, the graph G’ is not Hamiltonian,

and so neither is -G", the closure of G', by Theorem A. By Theorem B there exists a
triple {u1, u2, u3 } of independent vertices in G . Let S = V(G) — N*(z), since
GIS]is complete, we have |[{u1,u2,u3} NS < 1.

Case 1 |{u1,u2,u3}NS|=1.
Letu3 € S, then u;,u; € N(z). To prove the theorem in this case we will
prove a series of claims.

Claim 1.1: d(u;) = d(u2) = §(G) + 1,and 6(G) < n/2 — 1. Indeed, from
the condition that o3 > n+ 8§( G), we have thatda( u) + dﬁr(uz) + da(u.s) >
d(w) — 1+ d(uz) — 1+ d(u3) > n+ 8(G) — 2. If d(uy) = 8(G), then

(u2) + dg(us) > n— 1, which implies that uu3 € E(@), a contradiction.

us d(u) > 8(G) + 1.

Ifd(u1) > 8(G)+2,thendg (1) +dg(u3) > d(u1) —1+dz(u3) > 6(G)+
1+ n—8(G) — 2= n— 1, which implies that u,u3 € E(@'), a contradiction.
Hence d(u;) = 8(G) + 1. By symmetry, d(u;) = 6(G) + 1.

Since uyuz ¢ E(G), we have n— 1 > dg(u1) + dgg(u2) > 8(G) + 8(G)
and thus §(GQ) < (n—1)/2,0r§(G) < nf2 — 1.

Claim 1.2: d(u) = §(G) + 1 forall u € N(z).

Since uju3 ¢ E(G), by Theorem A we have dr(11) + dg(u3) < n— 1,
which implies that da(u3) =n—6(G) — 2, and thus Né.(ug) = § by the fact
that G [ 8] is a complete graph with n— 8(G) — 1 vertices.

Since uus ¢ E(G) forany u € N(z), we have d(u) + dg(u3) < n—1,
thatis, d(u) < n—1—dz(u3) = n— 1-n+8(G)+2=56(G)+1. Therefore
d(u) - 1< d—c-:(u) < 86(G),ie. d(u) <(G)+1 andd(—.',a(u) < 8G).

On the other hand, by the connectivity of G’, there exist vy , v, € Sandy,,y, €
N(z), such that y;v; € E(G"), i = 1,2. Thus da.'(u;) 2|8=n-80G) -1
and by Theorem A we have y;v; € E(G), for 1 < 1,7 £ 2. This shows that
dgr(vy) > n—8(G), which implies that uv; € E(G) forany u € N(z) and j =
1,2. Since da(u) < 8(G),uv; € E'(a') and |[N(z)| = 8(G), there is a vertex
u' € N(z) suchthatuy’ ¢ E(G'). Replacing u; and uz by u and u', respectively,
we get d(u) = d(u') = §(G) + 1 by the same argument. Hence d(u) = §(G) +1
forall u« € N(z). Moreover, since §(G) > dﬁ(“) > d(u) —1=8(G), wehave
dg(u) = §(G) forall & € N(z), that s, dz (u) = de(u) forall u € N(z)).

Let 8 = Ng(N(z)), then it is easy to see that uv € E(G) forall u € N(z)
and v € §'. Clearly |S'] < 8(G), and G'[ N(z)] is a k-regular graph, where
k=8G) -8
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Claim 1.3: k£ #0.
If k£ = 0, then N(2) is an independent set of vertices in G'. Let

N(z) = {u1,u2,...,u5}, &' ={v1,v2,...,9.},
where g = §(G). By the assumption of the theorem we have
n+ 6(G) < d(u1) + d(uz) + d(u3) = 386(G) + 3,

thus 6(G) > (n— 1)/2 — 1. From Claim 1.1, we have n/2 — 1 > §(G) >

(n—1)/2 — 1. Forevery vertex v € S — &', {u1, ua, v} is an independent triple
of G,s0d(v) > n+ 8(G) —d(u1) —d(uz) = n—8(G) — 2. Therefore for any

v,v' € S, if one of them is in § — &', then vv' € E(G). Itis easy to check the
theorem is true for this case. Hence k& # 0.

Since k > 0, the graph G'[ N(z)] is a k-regular graph. Let N(z) = {u;, uz,
...,ug},S’ = {vl,vz, ...,vg_k}, andS—-8§' = {vg_k+1,vg_k+z,... s Un—g—1 }

Ifk > (8(G) — 1) /2, then G’'[ N(z)] contains a Hamilton path, and thus G
is Hamiltonian by the fact that GIS] is complete. Hence G’ is Hamiltonian by
Theorem A, a contradiction.

Ifl1 <k<8G)/2—1andG'[V(x)] does not contain a Hamilton path, then
G'[N(z)] contains either a path P of length at least 2 k or two vertex-disjoint
paths, P, and P,, each of them having length at least £ by Lemma G.

In the first case, without loss of generality, let P = (u),u2,...,4p),2k+1 <

p < 8(G) — 1. The following is a Hamiltonian cycle of G :

C=(v1,u1,U2,...,Up, V2, Ups1,V3,...,
ug,vg_wz,vg_?{-3,--- ,vg_k,vg_k+1,o-.,vn_g_l).

In the second case, without loss of generality, let

Pl = (ul)uZ,‘”)ut))

P = (“t+l)ut+2)"°lu't+g)r
t+ g < 6(G) andt,g > k+ 1. The following is a Hamiltonian cycle of G-

C=(v1,ul,uz,...,ug,vz,u“l,u,¢+2,...,utﬂ,,v;;,ut.,qﬂ,v4,ut+q+2,v5,...,

Ug, Vgt43—q, Ug—t—qsd s+« Vg—ky Ug—k—1, -+, Un—g—1).

In both cases G' is Hamiltonian by Theorem A. Hence G contains a cycle of length
n— 1, which contradicts the hypothesis on G. The proof of the theorem for Case
1 is complete.
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Case 2: |{u2,uz2,u3} N S| =0 for any independent vertex set {v1, u2,u3}.
First we show that in this case uv € E(a) forany u € N(z) andv € S.
Since {u,u3,u3} NS = P for any triple of independent vertices in (@),

there are u; and u; in {uy,u2,u3} for any v € S, such that u;v,u;v € E(G')

and thus dx(v) 2 IS| = 1+ 2 = n— 8(G). Therefore dz(u) + dg(v) 2

8(G) — 1+ n— 8(G) = n— 1 forany u € N(z). Hence uv € E(G) for any

u € N(z) and v € S by the definition of closure G of G'.

Since uiuz ¢ E(G), we have that n— 2 > dg(w) + dg(u2) > 2|8| =
2(n - §(G) — 1). Hence §(G) > n/2, which contradicts the hypothesis that
5(G) < n/2. The proof of the theorem is complete.

Letnbeoddand F = F, = (V, E) be the graph with vertex set V = {z}UNU
S'U{z1, 1.} andedgeset E = E|UE,UB3 UE,, where [N| = |§'| = (n-3)/2,
Bi={zu:ueN}LBy={uv:u€eN,veS}LE C{nn:v,nell
and B4 = {vz; : v € §',i = 1,2} U {z122}. The following corollary can be
derived from the proof of Theorem 5.

Corollary. Let G be 2-connected graph on n vertices with §(G) > 3. If G
satisfies o3 > n+ 8§(Q) and G ¢ F,, then either there exists a vertex x with
d(z) = & such that G' = G — x is Hamillonian, or n is odd and G is the graph
F,.

Now we proceed to prove Theorem 3. It is clear that G is Hamiltonian by
Theorem C. As usual we assume that §(G) < n/2, since otherwise the theorem
holds for G by Theorem D. Also, the theorem holds if n < 6. Obviously, F is
pancyclic. Two cases will be considered.

Case (A): 6(G) >3 andG ¢ F, U{F}.

By the corollary above there is x € V(G) with d(z) = §(G) such that G’ =
G — z is Hamiltonian, Let C be a Hamiltonian cycle of G’ with a fixed orientation,
S=V(G) — N*(z) and N*(z) = N(z) U{z}.

Subcase A.1: There exists y € S such that d(y) > n/2.
(1) Ify* € S(ory- € S)andd(y*) + d(y) > n(ord(y~) + d(y) > ), then
G’ is pancyclic by Lemma H, and hence so is G.
@) Ify*,y~ € S,d(y*) < nf2,and d(y~) < n/2,then y*y~ € E(Q).
Therefore G’ is pancyclic by Lemma F, and hence so is G.
() Ify*,y~ € N(z), then G is pancyclic by Lemma F.
(4) Thus we may assume that y~ € N(z),y* € Sandd(y*) < n/2.

Let vg € N(z) be the first vertex of C after y*, and let vg 63" and vg ‘ay'
denote two segments of C determined by vo and y—, where v 6y‘ follows the
orientation of C and vg (53/‘ does not.

Subcase (4.1): There exists sg in vo Z’y' such that sp € S.
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Let sp € S be the first vertex from vy to y~ along C.

Ifsoy* € E(G) thenC' = zy“(_Jso y* ?fs;,‘z is a Hamilton cycle of the graph
G — y. Therefore G is pancyclic by Lemma F.

Ifsoy* ¢ E(G),thend(so) > n/2,andthus sj € Sby (3)and d(s*) < n/2
by (1). Hence s*y* € E(G) and C' = my‘535 y* ?;"saz is a Hamilton cycle of
the graph G — {s0,y0}. Since d(s9) > n/2, G — y is pancyclic by Lemma F,
and hence so is G.

Subecase (4.2): . All vertices of vg 6y" arein N(z).

From the facts above we can see that there is no vertex v in y= Z'vg such that

d(v) > n/2 except vy. Therefore, G{V (y* ?v;")] is complete, and hence

GIV(y* Cug)] is complete if d(vy) < n/2, by Lemma H. Since n/2 >
d(y*) > |S|-2=n—8(G) -3 wehave §(G) > n/2-3,0r8(G) > n/2 -2 if
d(vg) < n/2. Therefore G contains cycles of lengths k, k = 3,..., max {§(G) +
1,|S|—2}and k= 7,8,...,n If G is not pancyclic, then G contains no cycle
of length 5 or 6 by (&) > 3.

If G does not contains a cycle of length 5, then §(G) = 3, S| < 6 and

yv5, v y™,vg v, yvo,yvg & E(G).

Hence |S| < n/2+ 1, where the equality holds only if yu;2 € E(G). However
we see that yug> ¢ E(G), since otherwise d(vg2) > |S| - 1 > n/2, whichisa
contradiction. Therefore |S| < n/2+ 2, which implies that d(vz2) > |S|—2 >
n/2, which is also a contradiction.

Similarly, it can be proved that G contains a cycle of length 6.

Subcase A.2: Forallv € S, d(v) < n/2.

In this case G[S] is complete. By the connectivity of G there exists v € S,
such that d(v) > |8| = n— 8(G) — 1. Since d(v) < 7/2 and §(G) < n/2,
we see that n/2 > 8(G) > (n/2) — 1. Therefore §(G) = (n— 1)/2. Since
n/2 > d(v) > 8§(G) forallv € S, we have that d(v) = (n— 1)/2 forallv € S.
Hence each vertex v of S is adjacent to exactly one vertex v of N(z), which
means that for every vertex u in S, d(u) = §(G). If G[ N(z)] is complete, then
G is pancyclic. IfG[ N(z)] is not complete, we take a vertex v of S instead of the
vertex x, and repeat the argument above.

Case (B): . 8(@) = 2.

Let N(z) = {z1,22}.
Subcase B.1: d(x;) > 3,d(z2) > 3.

If [INs(N*(2))| > 3 or z1z2 € E(G), then it is easy to prove that G — =
has a Hamilton cycle, and we proceed as in Case A. Therefore we may assume
thatd(z1) = d(z2) = 3 and 122 ¢ E(G). Let Ng(N*(z)) = {s1,s2}. Then
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for every s € S — {31,832}, {s,z1,z2} is an independent triple of G, and so
d(zy) + d(z3) + d(s) > n+ 2,0rd(s) > n— 4. Therefore G[S] is either
Kastcy)-1 or Ko g(gy—1 — s182. Hence G is pancyclic since n > 7.
Subcase B.2: d(z;)) = 2. Let N(z) = {z,z3} and C be a Hamilton cycle
of G. Putz™ = x3, 2" = z;, and £*2 = x;. If there exists s € V(G) —
{z1,z2,23,z} such that d(so) > n/2, then d(sy) + d(s§) > norsysy €
E(QG). Therefore G is pancyclic by Lemmas F and E.

Ifforall s € V(G) — {z1,z2,23} we have d(s) < n/2, then G[S — {z3}]
is a complete graph. In this case, it is easy to see that G is pancyclic sincen > 7.
Indeed, if d(z2) < n/2 then from d(z,) = 2 we know thatforallv € S—{z3},
vz2 € E(G). Therefore n/2 > d(z2) > |S| = n— 3, and so n < 6. Similarly,
from d(z3) < n/2 wecandeducen< 6. :

Therefore d(z2) > n/2,d(z3) > n/2 and there exists s € S — {z3} such
that x, 8,733 € E(G). Hencen—3 = |S| = d(s) < n/2,i.e.n< 6, whichisa
contradiction. This completes the proof of Theorem 3.

Remark: Theorem 2 and Theorem 3 are incomparable in the sense that one does
not imply the other.

\ =
‘K
e

Figure 1 Figure 2

The graph in Fig. 2 satisfies the hypothesis in Theorem 2, but not hypothesis in
Theorem 3. The graph in Fig. 1 satisfies the hypothesis in Theorem 3 but not the
hypothesis in Theorem 2.
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