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1. Introduction.

A book consists of a spine and a number of pages.

Let P = ( P, <) be a partially ordered set (simply, poset) and L( P) be the set
of all linear extensions of P. The Hasse diagram of P is denoted by H( P). Every
edge {z,y} in H(P) corresponds to the covering pair z < y (z # y) in P, and
we denote it by zy. The edge set of H( P) is denoted by E( P).

A book embedding of a poset P with respect to L € L(P) is the embedding
of H( P) with its elements placed on the spine in accordance with L and edges
assigned to pages in such a way that the edges assigned to one page do not cross.
The page number pn( P,L) of P with respect to L is the smallest number &
of pages such that H( P) has a book embedding on k pages. The page number
pr( P) of P is defined as follows

pn(P) = min {pn(P,L): L €L(P)}.

The page number was first defined for graphs by Bernhart and Kainen [1], where
the vertices of a graph can be put on the spine in arbitrary order. They conjectured
that planar graphs may require an arbitrary large number of pages. In a series of
attempts, it was finally established by Yannakakis [6], that pn(G) < 4 for every
planar graph G. He provided also a quite involved construction of a planar graph,
which need 4 pages.

The page number for posets has been introduced by R. Nowakowski and then
considered by Syslo [5]. It is unknown how the page number behaves for planar
posets (see Kelly [2] for some considerations on such posets, and it is conjectured
(Nowakowski [4]) that the page number may be rather unbounded for such posets.

The purpose of this note is to provide a family of quite simple planar posets
which require 4 pages and to show that the planar posets defined in [4] are of
bounded page number.
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Figure 1

2. The result.

Our planar poset that requires four pages will contain a poset P shown in Figure
1 which has the following property:

Theorem 1. If I, is a linear extension of P in which a < = < ¢1,¢3,¢3,¢4 <
y < ethen pn{P,L) > 4.

Proof: Let a linear extension L of P satisfy the assumptions of the theorem and
suppose, that pn( P, L) < 3. Without loss of generality, we can place edge ax on
page 1 and edge ye on page 2. We now show that in such an arrangement, elements
¢, €2, €3, C4, have to appear in L in a certain order. |

Lemma 1. Thereisno c € {c1,c2,c3, ¢4} Such that the relations ¢; < ¢ < ¢;1
orciy) <c<cgfori=1,2,3,holdin L.

Proof of Lemma 1: Let us suppose that for some ¢ € {c1,c2, ¢3, c4 } there exists
i suchthat ¢; < ¢ < ci+1.

If b; < a then b;c; and b;c;.1 have to be placed on page 3, and, hence, ac
must be assigned to page 1 and ce is on page 2. In this case there is no space for
c;d;. Therefore, a < b;. By symmetry, we also have d; < e. Thus, we have
a < b; < d; < e. Edges b;c;vy and c;d; must be assigned to different pages
and, hence, ac and ce have to be drawn on one page, which could be only page
3. Hence, it follows also that we can have only ¢’ < ¢; or ciy; < ¢ in L for the
element which left ¢ € {c1,¢c2,¢3,c4} \{ci, ci+1,c}. We show that there is no
space to insert ¢’ in L.

Let us assume that ¢’ < ¢; (see Figure 2). Then e and c;e are on page 2, aci+1
and b;c;+1 are on page 1, ac; is on page 3. If there exists edge /v such that ¢;41 < v
in L then ¢'v must be drawn on page 4. If there exist edges uc and ¢'v such that
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u < d and ¢ < v < cj+1 in L then either uc intersects dv on page 1 or uc is
on page 3, hence, u < c and edge uc”, where ¢ = ¢ or ¢’ = ¢;, must be drawn
on page 4. Therefore, ¢/ = ¢;_;. Edges b;_1 ¢; and ¢;—1d;.; have to be placed on
distinct pages, then ac;_; must be on page 1. In this case ¢;_; d;_; intersects b;c;41
on page 1. Therefore, there is no element ¢’ € {c1, ¢c2,¢3,¢4} \{ci, ci+1, ¢} such
that ¢ < ¢; in L. In a similar way we can show that c;1 < ¢ for no such ¢'. This
completes the proof that no c lies between ¢; and ¢;,; in L.
By symmetric arguments, the relations c;+; < ¢ < ¢; are also impossible in L.
1

Figure 2

Lemma 1 implies the following:

Corollary. In every linear extension L of P such that pn(P,L) < 3 we have
citherra<z<c<a<a<au<y<eooa<z<au<a<c<cc<
y<e.

We now assume thata < z < ¢ < ¢2 < ¢3 < ¢4 < y < e and show
Lemma 2. Forevery v € P,v # e,e wehavea<v <einlL.

Proof of Lemma2: Itis sufficient to show thatae < b;in L foreveryi=1,2,3 and
d; < e will follow by symmetry. Let us assume that b; < a forsome i € {1,2,3}.
Edges b;c; and b;c;+1 have to be on page 3, ac;+1 on page 1, ¢;e on page 2, ¢;d; on
page 2, hence, ¢;,1e must be on page 3. If i < 3 (see Figure 3) then b, c;+2 have
to be on page 2, ac;,2 on page 1, c;.2¢e on page 3, so there is no space for d;, .
Therefore,{ = 3,a < b) and a < b, (see Figure 4). Edges ¢ e, ¢z ¢, and c3 e, must
be assigned to page 2. Edge cada have to be placed on page 1, then by c3 must be
on page 3, therefore, ac, is on page 1, c1d; must be on page 3 and ac, is on page
1. In this case there is no page for adding edge by c. |
Finally,

Lemma 3. For a linear extension L, edges ac;, aci+1, cannot be drawn on one
page (1 or 3) and edges c;e, c;,1 e on another one (2 or 3, or 2, respectively).

" Proof of Lemma 3: Let us assume that edges ac;, ac;+ are drawn on one page and
cie, C;i+1 e are on another one. By Lemma 2 we have a < b; and d; < e, hence, b;
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Figure 4

¢;+1 intersects ac; and c;e, ¢) id; intersects acy+1 and c;+1e. Therefore, b;c;41 and
c;d; must be drawn on the third page, but there b;c;,; intersects c;d;. [ |
To complete the proof of the Theorem, we distinguish several cases:

1. Ifboth ac; and ac; are on page 3 (see Figure 5) then ¢, e must be assigned to
page 2, c e is on page 3, acs and ac4 are on page 1.
a. If cse is assigned to page 3 then, by Lemma 3, c4 e is on page 2, bscs is on
page 2, c2dz on page 2, 5o c)e; intersects by c; on page 1.
b. If cse is assigned to page 2 then, by Lemma 3, ¢4 e is on page 3, by c4 is on
page 3, so cad; intersects bacs or c4e on page 3.
In a similar way one can show that both c3 e and ¢4 e cannot be placed on page 3.
2. Ifboth acy and acs are assigned to page 3 (see Figure 6) then ac, is on page
1, ¢y e and c; e are on page 2, c3e on page 3 (by Lemma 3), ac, is on page 1, ¢, d;
and by c3 are on page 1, codz and by cq are on page 2, SO cse is on page 3. Hence,
there is no space for cads.
In a similar way on can show that both c; e and c3 e cannot be placed on page 3.

3. Ifboth acs and acq are assigned to page 3 (see Figure 7) then cye, cae, c3e,
are on page 2, acy is on page 1 (by case 2), ac; and c4 e are on page 3 (by Lemma
3), so by c3 intersects ac; or c;d; on page 3.

In a similar way one can show that both c; e and c4 e cannot be placed on page 3.

4. Ifboth ac; and ac; are assigned to page 1 then

a. Ifcieisonpage 3 (see Figure 8) then ac3, acq are on page 1. By Lemma 3,
c; e is placed on page 2, c3 e is on page 3, cq e is on page 2, so ca d intersects
b3cq on page 2.
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b. If cie is assigned to page 2 (see Figure 9) then c; e is on page 3 (by Lemma
3), therefore, acs and acq are on page 1. Again, by Lemma 3, c3 e is on page
2, cae is on page 3, so ca dy intersects bycq on page 3.

In a similar way one can show that both c3 e and c4 e cannot be placed on page 1.

5. If both ac; and ac; are assigned to page 1 then ac; is placed on page 3.
a. Ifc;eis assigned to page 3 (see Figure 10) then, by Lemma 3, c; e is on page
2, cse is on page 2, cq e is on page 3, acs is on page 1,50 cpd, intersects bz
¢4 on page 3.
b. Ifc; e is assigned to page 2 (see Figure 11) then, by Lemma 3, c3 e is on page
3, acq is on page 1, cae is on page 2, 50 c; d; intersects by c3 on page 3.
In a similar way one can show that both ¢; e and c3 e cannot be placed on page 2.

6. If both ac3 and ac, are assigned to page 1 then ac; is on page 3 (by case 5),
ac is on page 1 (by case 1), c; e is on page 2.
a. Ifcyeis assigned to page 3 (see Figure12) then cs e is on page 2 (by case 2).
By Lemma 3, ¢4 e is on page 3, so c2d, intersects bz c4 on page 3.
b. If c; e is assigned to page 2 (see Figure 13) then cae is on page 3 (by case
2). By Lemma 3, c4 e is placed on page 2, so cdy intersects bycq on page
pA

In a similar way one can show that both c; e and c; e cannot be placed on page 2.

7. Then, we have only one possibility left ac4 is on page 1 (if ac4 is assigned to
page 3 then c; e and c; e must be on page 2) acs is on page 3, ac; is on page 1 and
ac; is on page 3. In a similar way, we have to place c; e on page 2, c; e on page 3.
Therefore, acs intersects c; e on page 3. [ ]

Figure 5

Now we we the poset P in Figure 1 to construct a planar poset Q (see Figure
14) which needs 4 pages.

Theorem 2. For the poset Q we have pr(Q) = 4.

Proof: Let L be a linear extension of Q, let z € {ci,...,c16} be such that for
every c € {c1,...,c16}, ¢ # = we have x < ¢ in L. Then there exists ¢
such that z ¢ {¢;,...,ci.7}. Lety € {ci,...,cis7} be such that for every
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Figure 9

v € {Gi,...,ci+7} We have v < y. Then there exists j such thati < j <
i+7andy ¢ {cj,...,cj»3}. By Theorem 1, the subposet of Q on the set
{1,2,2,y,bj,... ,bjs2, ¢j,... ,¢js3,d},... ,djs2} is isomorphic to the poset P
defined in Theorem 1, hence, pn( P, L) > 3. Thus, pn(Q) > 3.

In Figure 15 we show a four-page embedding of Q. |
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Figure 12

Figure 13

3. Six-page embeddings.

The purpose of this section is to disprove a conjecture of Czyzowicz [4] that the
page number is unbounded on a class of nested iterations of the poset Q of Figure
14,

A simple diamond is the poset with the diagram shown in Figure 16, and Fig-
ure 15 shows the diagram of a diamond of degree 0 Q° = Q. Simple diamonds
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1
Figure 14

(bi,ci,civ1,d5) fori = 1,2,...,15 are distinguished in Q and called holes. A
diamond of degree i Q' for i > 1 is constructed from the diamond of degreei —1
by replacing all its 15 holes by the poset Q. In what follows, for the diagram of
Q' we take the one which results from the above construction of Q° with Q taken
as shown in Figure 14. One can see that each diamond is a planar poset. We will
show that pn( Q*) < 6 forevery i > 1.

To simplify the description of an embedding of Q on 6 pages, we regard a linear
extension of a poset as a mapping from its element set to distinct points on the
real line and identify each element with its image. Thus, the interval between the
images of two elements u and v is simply called an inferval and denoted by [u, v].
We distinguish several classes of elements in posets Q*. Let A;_; (respectively,
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E;_1) be the set of maximal (resp., minimal) elements of Q*~!. We denote the
remaining elements of Q*~! from left to right in its diagram by ¢;,...,c,. A
hole of Q™! is denoted by (e;,cj,cj+1,05), where ¢; € E;_1, a; € Ay for
1 <j<nLetcj,,...,cj14 denote the middle elements from left to right added
in hole (e;, ¢j, ¢j41, a;) of Q! while constructing Q¥

We shall construct a 6-page embedding of a poset Q*~! (i > 1) with the fol-
lowing properties:

Pl.ci>crforj>k

P2. All edges from ¢; (1 < j < m) to elements a; (resp., 1o c; from e;) such that
a; > ¢; (resp., e; < c;) are drawn on one page, which is called a front page (resp.,
a back page) of c;. An edge c;a; (resp., e;c;) is called a front edge (tesp., a back
edge) of ;.

P3. A hole (ej, cj,¢j+1,a;) is embedded as follows (see Figure 17) intervals
[ej, ¢j] and [cj.1, a5] contain no other elements, A’ is a subset of A;_;, E' is sub-
setof E;_;, [[cj,cj+11], which denotes the interval between A’ and E', contains
no other elements.

P4. Elements c; and c;. have different back pages and different front pages.

We now use three back pages (namely, pages 1, 2, and 3), and three front pages
(namely, pages 4, 5, and 6) to embed Q° on 6 pages for i > 0). The embedding
will have properties P1 — P4.

For i = 0, the embedding of Q shown in Figure 15 satisfies P1 — P4 . In this
case, the back pages of c1,c2 are, respectively, 1, and 2, and their front pages are
4,and 5.

Suppose that given is an embedding of Q*~!(i > 1) on 6 pages which satisfies
P1 — P4. For every hole (ej, cj, cjs1,0;) (1 < j < m) of Q! we proceed as
follows:

1. Embed Cjly.-+,Cj 14 in [[stci+1]] n the order 1 <...< Cj14.

2. Embed the elements of A; \ A;_; and E; \ E;_, insucha way that every hole
of Q' satisfies P3.

3. Elements c;,,c¢;j3,... ,c;13 have the same back and front pages as ¢j+1. Ele-
ments ¢;2, ¢ja,. .., Cj,14 have back and front pages different from back and front
pages of ¢; and cj41. .

We can easily see that such an embedding of elements is a linear extension of
Q*. Moreover, by the definition, this embedding has properties P1 — P4 . We will
show that no two edges intersect on page 1, and a similar conclusion holds true for
the remaining pages.

By the inductive assumption, no two edges of Q*~! intersect. Let ec be an edge
in B(Q*) — E(Q*") and in the diamond obtained from hole (e;, €j, Cjs1,6;) Of
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Qi-l, thatis,e € E;andc € {Cj,Cj‘l yeoo ,Cj,14,Cj+1}. We assume that ec is
drawn on page 1. By 1and 2, we have ¢; < e < ¢ < Cj41-

If ¢ = ¢ju1 then e, ¢;,14, c are in the same hole of Q' (see Figure 18). Interval
(e, c] contains only c;,14 and some elements of E;. Element c;,14 has a back page
different from that of ¢ (by 3), hence, its back edges are not drawn on page 1.
Every element ¢ (¢’ # cj,14), of which a back edge €' ¢/ (¢’ € E;) crosses ec
must have ¢’ € [e,c] and ¢ > c. of which a bacl edge e’c’ - ¢’Ei Hence, e'c
crosses e;cj.1 100. If e'c € E(Q'"!) then e'c is not drawn on page 1 (because
ejci+1 € E(Q'!) an it is placed on page 1). Otherwise, by 1 and 2, ¢'c’ must be
an edge of diamond in Q° obtained from the hole (ej.1, ¢j+1,Cj+2,6j+1), then ¢
has a back page different from that of ¢ (by 3).

If c = ¢; thene, ¢, c;,1 are in the same hole of Q*, hence, [e, ¢] does not contain
any other element of Q* (by 2).

If c = ¢jx (1 < k < 14) then two cases are possible:

1. e and c are in the same hole of Q°, then [e, c] contains no elements (by 2).

2. e = ej (see Figure 19). Then, there are only two elements, ¢; and ¢; k41 (if
k = 14 then c;,1), of which back edges cross ec (by 1 and 2). But, by 3, both of
them have back pages different from that of c.

Therefore, edge ec does not cross any other edge on page 1.

Figure 16. A simple diagram

Figure 18
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Figure 19
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