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1. Introduction

Abstract — It is unknown whether or not there exists a [51,5.33,3]-code
(meeting the Griesmer bound). The purpose of this paper is to show that there
is no [51,533,3]-code.

Let V(n;q) be an n-dimensional vector space consisting of row vectors
over the Galois field GF(g). If C is a k-dimensional subspace in V(n;q)
such that every nonzero vector in  has a Hamming weight (i. e., number of
nonzero coordinates) of at least d, then C is denoted an [n, k, d; q]-code. It is
well known [Griesmer, 1960, Solomon and Stiffler, 1965] that if there exists
an [n, k, d; q)-code, then
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where [z] denotes the smallest integer > z. The bound (1.1) is called the
Griesmer bound. It is unknown whether or not there exists a [51,5,33;3]-code;
which would meet the Griesmer bound. The purpose of this paper is to prove
the following theorem.

Theorem 1.1, There is no [51,5,33,;3]-code.

Remark 1.2, 1t is known that there exists a [52,5,33;3]—code. Hence ‘Theorcm
1.1 shows that n3(5,33) = 52, where ny(k, d) denotes the smallest value of n
for which there exists an [n, k, d; g]-code.

2. Preliminary results

Let S; , be the set of all column vectors c, ¢ = (cn, ¢y, -+, ck—1)7, in
W (k,q) which satisfy the following condition:

=1,

=0, i<j<k—1 2.1
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where W(k,q) denotes a k-dimensional vector space consisting of column
vectors over GF(q). Then S; , consists of (¢¥ — 1)/(g — 1) nonzero vectors
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in W(k, ¢). For any nonzero vector y in W(k, ¢), there exists a unique vector
x in S; 4 and a unique element ¢ in GF(q) such that y = ox, and there is no
element ¢ in GF(q) such that x, = ox, for any two vectors x; and x; in Sy ,.
Hence the (¢* —1)/(g — 1) vectors in Sy, can be regarded as (¢* — 1)/(g—1)
points in a finite projective geometry PG(k — 1, ¢) where q > 3.

Let F' be a set of f points in PG(l,q). If |[F N H| > m for any (¢ — 1)-
flat (i. e., hyperplane) in PG(t,q) and |[F N H| = m for some (¢ — 1)-flat
in PG(t,q), then F is called a {f, m:, ¢}-minihyper, where |A| denotes the
number of points in the set A.

Proposition 2.1. [Hamada, 1987]. Let F be a set of f points in Si. 4, and let C
be the subspace of V(n; q) generated by a k x n matrix (denoted by G) whose
column vectors are all the vectors in Sy (\ F,where n = v, — f,1 < f < e =1,
and vy = (¢* - 1)/(g - 1).

(1)LetH, = {y € Sk,q | z-y = 0 over GF(q)} for any nonzero vector z in S, a4
Then H, is a hyperplane in PG(k — 1, q), and the weight of the code vector 2TG
is equal to |F N H,|+¢*~! — f, where 2T denotes the transpose of the vector z.

(2)In the case k > 3 and 1 < d < ¢*~1, C is an [n, k, d; q)-code meeting the
Griesmer bound if and only if F is a {vi. — n,vp—1 — n+d: k — 1, q}-minihyper.

Definition 2.2. Two [n,k,d;g]-codes C, and C, are said to be equivalent if
there exist generator matrices G; for C;, i = 1, 2, such that G; = G,DP (or
G2 = G1PD) for some permutation matrix P and some nonsingular diagonal
matrix D with entries from GF(q).

Remark 2.3. Proposition 2.1 shows that in the case £ > 3 and 1 < d < ¢*-!
there is a one-t0-one correspondence between the set of all nonequivalent
[n, k, d; q)-codes meeting the Griesmer bound and the set of all {v; — n, vj—1 —
n + d; k — 1, ¢}-minihypers.

Since there is a one-to-one correspondence between the set of all nonequiv-
alent [51,5,33;3)-codes meeting the Griesmer bound and the set of all
{70, 22;4, 3}-minihypers, it is sufficient to prove the following theorem in or-
der to prove Theorem 1.1.

Theorem 2.4. There is no {70,22; 4, 3}-minihyper.

Remark 2.5. Refer references ([Hamada, 1991, Hamada and Deza, 1991, Hamada
and Helleseth, 1990, Hamada ez al., 1991] with respect to a characterization of
[n, k, d; q]-codes meeting the Griesmer bound using minihypers in PG(k—1, q).

3. The Proof of Theorem 2.4

In order to prove Theorem 2.4, we prepare the following three lemmas
whose proofs will be given in Sections 4, 5, and 6, respectively.
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Lemma 3.1. Suppose there exists a {70, 22; 4, 3}-minihyper. Then |FNH| = 22,
25, or 31 for any 3-flat H in PG(4,3), and the following properties hold:
(I)If|[FNH| =25, then FNH is a {25,7;4,3}-minihyper in H.

(2)If |[FNH| =31, then FN H is a {31,9;4, 3}-minihyper in H.

(3) There exists at least one 3—flat H in PG(4, 3) such that |F N H| = 31.

Lemma 3.2. Any {31,9; 3, 3}-minihyper must contain a 2-flat in PG(3, 3).

Lemma 3.3. There is no {25,7;3,3}-minihyper which contains a 2-flat in
PG(3,3).

Proof of Theorem 2.4. Suppose there exists a {70, 22; 4, 3}- mlmhyper F. Then
it follows from Lemma 3.1 that there exists a 3-flat H in PG(4,3) such that
FNH is a {31,9; 4, 3}-minihyper in H. Since H is a 3-flat, it follows from
Lemma 3.2 that F N H contains a 2-flat (denoted by V) in H.

Let H; ¢ = 1,2,3) be three distinct 3-flats in PG(4,3), different from
H, which contain V, where |F N Hi| < |FN Hy < |FN Hj|l. Since
|F| 70, |Fn H| = 31, |V| = 13, and |F N H;| = 22, 25, or 31 for

= 1,2,3, it follows that ZIFO(H.\V)I = |F|-|FNnH| = 39, and

an(H, \V)|=|FnH;|- |V| =9,12,0r18 for i = 1,2,3. Hence we have

(IF N Hy|,|F N0 Hy|,|F N Hsl) = (22,25,31).

Since |F N H,| = 25, it follows from Lemma 3.1 that F N Hy is a {25,7; 4, 3}-

minihyper which contains the 2-flat V in H,. Since H is a 3-flat, this implies

that there exists a {25, 7; 3, 3}-minihyper which contains a 2-flat in PG(3, 3).

This is contradictory to Lemma 3.3. Hence there is no {70, 22; 4, 3}-minihyper.
O

4. The proof of Lemma 3.1

Let £ = { (1,2,1), 2.2,1), 3.2,1), (03,1}, (0,0,2), (1,0,2), (2,0,2), (3,0.2),
0,1,2), (1,1,2), (2,1,2), (3,1,2), (0,2,2), (1,2,2), (2,2,2), (3,2,2), (0.3,2), (0,0,3)
}. Then for any integer m such that 22 < m < 40, there exists a unique
ordered set (my, mg, m3) € E such that m = myv; + mgvy + m3avz, where
vy = 1, vg = 4, and v3 = 13. In what follows, let v; = (3' — 1)/(3 — 1) for
any integer | > 0.

Lemma 4.1. Suppose there exists a {va + 2v3 + va(= 70),v) + 2v2 + va(=
22); 4, 3}-minihyper F.

(1) If H is a 3-flat in PG(4,3) such that |F N H| = mv; + mavy + mavy
for some ordered set (my,my,m3) € E, then F N H is a {mv1 + mavz +
mavs, Mg + mavy + mave; 4, 3}-minihyper in the 3-flat H.

(2) There is no 3—flat H in PG(4, 3) such that |F N H| = myv, + mavg + mav3
for any ordered set (m1, m2, m3) € E unless my + ma+ my = 4.
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Proof. (1) Let H be a 3-flatin PG(4, 3) such that |[FNH| = mjvi+maeve+mav;
for some ordered set (m, ma,m3) € E. Suppose there exists a 2-flat A in H
such that |[F N A| < —1 4+ myvg + myv; + mave. Let H; (i =12,3) be
three distinct 3—flats in PG(4, 3), different from H, that contain A. Since
|F|=va+2v3+ vy =70 and|FﬁH|> rn+2m+=22fori=1,2,3,it

follows that |[F| = |F N H|+Z (IFNH;| = |[FNAl) > 694my+ma+m3 >

71 > | F|, a contradiction. chce |FNA| > mjva+ mav) + mavy for any 2-flat
Ain H.

If |[FNA| > mw + mav) + mavy for any 2-flat A in H, it follows that
|F N H| > myv; + mgvg + mauy, a contradiction. Hence there exists a 2—-flat
A in H such that |F N A| = myvy + mav; + mavs. This implies that F N H is
a {m1v + mavz + mavz, mvg + mav; + mavy; 4, 3}-minihyper (cf. Theorem
2.2 in [Hamada, 1991)).

(2) Suppose there exists a 3—flat A in PG(4, 3) such that |F N H| = myv; +
mavg + mav; for any ordered set (m,, ma, m3) € E such that m; +my+m3 >
4. Then it follows from (1) that there exists a 2-flat A in H such that
|FNA| = mpvg + mavy + mavp. Let H; (i = 1.2,3) be three distinct
3—ﬂats in PG(4,3), different from H, that contain A. Since |F| = |[FNH|+

Z(IFDH|—|F0A|)>66+m;+m2+m1> 70 = |F|, we have a

comradxctlon

Suppose there exists a 3—flat H in PG(4, 3) such that |FNH| = myv;+mave+
mav; for any ordered set (my, ma, m3) € E such that mn; +mgy+ m3 < 4. Then
|F n Hl = 2v3, v] + 2v3, v + 2v3, Or Jus.

Casel: |FNH| = 2v;. It follows from (1) that there exists a 2-flat A in A such
that |[FNA|=2vy =8. Let H; (i = 1,2, 3) be three distinct 3—flats in PG(4, 3),

different from H, that contain A. Since Z [FO(H\A)| = |F|-|FNH|=

44and |[FN(H;\ Q)| = |FnH|—]FnA| > 14 for i = 1,2, 3, there exists a
3-flatIT in { Hy, Ha, H3} such that | FNII| = 23 or 24. Since 2v;+2v3+v3 = 23
and 3v; + 2vg + v3 = 24, this is a contradiction.
Case II: |F N H| = vy + 2v3, v2 + 2v3, or 3vs. Using a method similar 1o
Case 1, it can be shown that there exists a 3-flat IT in PG(4,3) such that
|F NII| = 2v9 + 2v2 + v3 = 23, a contradiction. This completes the proof.

O

Lemma 4.2. (1) There is no {28, 8; 3, 3}-minihyper.
(2) There is no {34, 10; 3, 3}-minihyper.

Proof. (1) Suppose there exists a {28, 8; 3, 3}-minihyper. Since v3 = 13 and

vq = 40, it follows from Remark 2.3 that there exists a [12,4,7:3]-code. Since
there is no [12,4,7;3]-code, this is a contradiction.
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(2) Suppose there exists a {34, 10, 3, 3}-minihyper. Then it follows from Remark
2.3 that there exists a [6,4,3;3]-code; a contradiction.
a

Proof of Lemma 3.1. 1t follows from Lemma 4.1 that |FNH| = v) +2va+v3(=
22), 3vy + va(= 25), 2vy + 2v3(= 28), 1 + vy + 2va(= 31), 2uy + 2v3(= 34),
or vg(= 40) for any 3-flat H in PG(4,3).

Casel: |FN H| = 2v; 4+ 2vs(= 28). It follows from Lemma 4.1 that FNH isa
{2v1+2v3, 2v0+2v2; 4, 3}-minihyperin H. Since H is a 3-flat, this implies that
there exists a {28, 8; 3, 3}-minihyper, which is contradictory to (1) in Lemma
4.2, Hence there is no 3—flat H in PG(4,3) such that |[F N H| = 28.

Case II: |[F N H| = 2vy + 2va(= 34). Using a method similar to Case I, we
have a contradiction from Lemmas 4.1 and 4.2. Hence there is no 3-flat A in
PG(4,3) such that [F N H| = 34.

Case IlII: |F N H| = vy(= 40). This implies that F contains the 3-flat H.
Let V be any 2-flat in H and let H; (i = 1,2,3) be three distinct 3-flats in
PG(4,3), different from H, that contain V where |F N Hy| < |F N Hyf <
|F N Hs|. Since |F| = 70, lvl 13 and |F N H;| = 22, 25, 31, or 40

for i = 1,2,3, it follows thatZ]Fn(H \V)| = |F|-|FnH| =30 and

IFN(H;\V)| = |FNnH;| - |V| =9, 12, 18, 27, for i = 1,2,3. Hence we
have (|F N Hy|,|F N Ha|, |F N Ha|) = (22,22, 25).

Since |F N H3| = 3vp + vz = 25, it follows from Lemma 4.1 that F N Hy is
a {3v, + v3, 3v; + vg; 4, 3}-minihyper in H3. Since Hjy is a 3-flat, this implies
that there exists a {25, 7: 3, 3}-minihyper which contains a 2—-flat in PG(3, 3).
Hence we have a contradiction from Lemma 3.3.

From Cases I-I1I, it follows that |F N H| = 22, 25, or 28 for any 3-flat H in
PG(4,3).

(1)-(2). Since 3v2 + v3 = 25 and vy + v2 + 2v3 = 31, it follows from Lemma
4.1 that (1) and (2) in Lemma 3.1 hold.

(3) Let n; be the number of 3-flats H in PG(4,3) such that |Fn H| = i for
i = 22,25, 31. Since (i) there are vs(= 121) 3-flats in PG(4, 3) and (ii) there
are vq(= 40) 3-flats I in PG(4, 3) such that P € II for any point P in F, and
(iii) there are v; 3-flats IT in PG(4,3) such that Q, € IT and @, € II for any
two distinct points @ and @, in F, it follows that

ngg + Nas + N3 = U5
22n32 + 25na5 + 31na; = |Flug

22 25 I 31 _ |F|
9 ngg + 2 .25 9 ni = 9 v3.

Hence we have (nsg, nas, n31) = (95, 16, 10). This completes the proof. a
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5. The proof of Lemma 3.2

Let C be an [n, k, d; g]-code and let A; and B; be the number of codewords
of weight 7 in the code C and in its dual code C+, respectively. The following
lemma due to MacWilliams plays an important role in the proof of Lemma 3.2.

Lemma 5.1 (The MacWilliams Identities).

n—t . ¢ .
n—] — k- n—J .
Z( t >‘4j_" tZ(n.—()BJ

j=b ) j=n
fort =0,1,...,n

Lemma 5.2. If F is a {31,9;3,3}-minihyper, then |[F N A| = 9, 10, 12, or 13
Jor any 2-flat A in PG(3,3) and |F N L| > 2 for any 1-flat L in PG(3, 3).

Proof. Suppose there exists a 1-flat L in PG(3,3) such that [FN L| <
1. Let Ay = 1,2,3.4) be the four 2-flats in PG(3,3) which contain
L. Since [F| = 31 and |[FNA;| > 9 fori = 1,2,3.4, it follows that

|F|= 2 |FnAi|—3|FNL|> 33> |F|,acontradiction. Hence |[FNL| > 2

for any l-ﬂat L in PG(3,3).

Suppose there exists a 2-flat A in PG(3,3) such that |F N A| = 11. Since
Al = v3 = 13, there exists a point Q in A such that Q ¢ F. Let
Li(i = 1,2, 3 4) be four 1-flats in the 2-flat A passing through the point

Q. Since Z]Fn(L \{@Nl = IFNA| = 11 and |(L; \ {@))] = 3 for

i=1,2,3, 4 there exists a 1-flat L in {L,, Ly, L3, L4} such that |[FNL| =
[FN(L\{Q})| = 2. Let A; (i = 1,2, 3) be three distinct 2—ﬂats in PG(3,3),

different from A, that contain L. Then |F| = |FNA| + Z [FNna; -

3|F N L| > 32 > |F|, a contradiction. Hence there is no 2-flat A in PG(3,3)
such that |Fn Al = 11. Since 9 < |[FNA| < A =13 for any 2-flat A in
PG(3,3), this completes the proof.

a

Lemma 5.3. Any [9,4, 5; 3]-code has the unique weight enumerator 1 + 36:% +
2425 + 1828 + 22°.

Proof. Let G be a 4 x 9 generator matrix of a [9, 4. 5; 3]-code C. Without loss of
generality, we can assume that any column vector of G belongs to the sct S1,3.

Let G denote the set of 9 column vectors in G and let F be the set S13\G. It
follows from Proposition 2.1 that F is a {31, 9; 3, 3}-minihyper.

Since C is a [9, 4, 5; 3]-code, it follows from Proposition 2.1 and Lemma 5.2
that Ag =1, A= As = A3=A;=0=A;,By=1, and By, = B; = 0. Since
IGNL|+|FNL|=|L| for any 1-flat L in PG(3,3), it follows from Lemma
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5.2 and |L| = 4 that |6’n L| < 2 for any 1-flat L in PG(3,3). This implies
that no three column vectors in G are linearly dependent and B; = (0. Hence
it follows from Lemma 5.1 that

Ay + A+ Az + Aa =80
4A5 4+ 3As + Ag =234

4 3 .
(2).45+ (2).45— 288
4 3
<3)As+ <3)A6— 168.

From the above equations, we have A5 = 36, As = 24, Ay = 18, and Ay = 2.
This completes the proof.
O

Proof of Lemma 3.2. Let F be any {31,9;3.3}-minihyper. It follows from
Proposition 2.1 and Lemma 5.3 that there exists one 2-flat A in PG(3,3) such
that [F N A| = 13. Since |A| = 13, this implics that F' contains the 2-flat
A in PG(3,3).

a

6. The proof of Lemma 3.3

Suppose there exists a {25, 7;3, 3}-minihyper F which contains a 2-flat
(denoted by V') in PG(3,3). Without loss of generality, we can assume that
F C S33. Let G be a 4 x 15 matrix whose column vectors are all the vectors
in G := S, 3\ F and let C be the subspace of V(15, 3) generated by the matrix
G.

Let H, = {y € Sa3 | z-y = 0 over GF(3)} for any nonzero vector z in
W(4,3). Then H. is a 2-flat in PG(3, 3). Since F is a {25, 7; 3, 3}-minihyper
which contains a 2-flat V in PG(3, 3), there exist two vectors z; and z2 in Sy 3
such that |[FN H,,|=T-and H;, = V.

Since w(zTG) = | FNH,|+2 for any nonzero vector z in W(4,3) and G C Sy 3,
it follows from |F N H,,| = |V| = 13 that C is a [15,4,9; 3]-code such that
A1s > 2and By = By = 0. This is contradictory to Theorem 4.2 (and its proof)
in [Hill and Newton, 1988]. Hence there is no {25, 7; 3, 3}-minihyper F which
contains a 2-flat in PG(3, 3). a
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