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Abstract. An obvious necessary condition for the existence of an almost resolvable
B(k,k—1;v)isy=1 (mod k). We show in this paper that the necessary condition
is also sufficient for k = 5 or 6 possibly excepling 8 values of v when k = 5 and 3
values of vy when k = 6.

1. Introduction.

A balanced imcomplete block design (BIBD) with parameters v, k and X (simply
B(k,); v)) is a pair (X,.A), where X is a v-set of points and A is a set of k-
subsets of X called blocks such that any 2-subset of X is contained in exactly
X blocks. A B(k,),v) is resolvable, denoted by RB(k, X, v), if there exists a
partition of its set of blocks into subsets called parallel classes each of which
in turn partitions the set X. A B(k, k — 1;v) is said to be almost resolvable,
denoted by AR(k,v), if its set of blocks can be partitioned into some families
called almost parallel classes such that each family forms a partition of X — {z}
for some z € X,where z is called a singleton. An obvious necessary condition
for the existence of a AR(k,v) isv =1 (mod k).

It has been shown in [2] that for each positive integer v = 1 (mod 5) there
exists an AR(5, v) with at most 26 possible exceptions. That is

Lemma 1.1. Let v be a positive integer. If v=1 (mod 5) and v ¢ E, thenan
AR(5,v) exists, where E = {46,51,86,116,141,161,196,201, 226,236, 261,
266,291, 296 326,351,376 ,411,471,476,501,591, 596,711,766 ,986 }.

In this paper, we shall give a new technique used in the construction of almost
resolvable BIBDs. As an appliction, we improve the above result, and reduce this
number of possible exceptions to 8. It is also shown that an AR(6,v) exists for
eachv =1 (mod 6) with at most 3 possible exceptions.

For the concepts not defined in this paper, the reader is referred to [1]. In what
follows, we shall adopt the following notations:

B(K,)) = {via PBD B(K,X; v) exists},
AR(k) = {v:an AR(k,v) exists}.
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2. Preliminaries.

In this section we shall define several types of incomplete designs and state some
preliminary results which will be used later,

Let (X, A) be a BIBD. If a set of points Y C X has the property that, for
each A € A, either Y N A| < 1 0r A C Y, then we say that Y is a subdesign
or flat of the BIBD. An AR(k, w) is a subsystem of an AR(k,v) if the almost
parallel classes of the AR(k,w) are induced by the almost parallel classes of
the AR(k,v). Note that the almost parallel class P of the AR(k,w), which is
induced by the almost parallel class P(z) with singleton z of the AR( k,v),hasz
as its singleton. If we remove the subsystem AR(k, w) from AR(k,v), leaving
a hole, we obtain an incomplete system IAR(k,v; w).

Anincomplete group divisible design (IGDD) is a quadruple (X, Y, G ,A) which
satisfies the following properties:

(1) X isasetofpoints,andY C X;

(2) G is a partition of X into groups;

(3) A is aset of blocks, each of which intersects each group in at most one
point;

(4) no block contains two members of Y';

(5) every pair of points {z,y} from distinct groups, such that at least one of
z,yisin X — Y, occurs in precisely X blocks of A.

We say that an IGDD (X, Y, G, A) is a(k,))-IGDDif | 4| = k for every block
A € A. The type of the IGDD is defined to be the multiset of ordered pairs
{tGIGNY]): G € G}. We sometimes use the “cxponential” notation for its
description. Note that whenY = @, a (k,)-IGDD is just a ({k}, »)-GDD. By
(K, ))-GDD we mean a GDD with block sizes in K and index ).

We also use incomplete frame. An incomplete (k, \)-frame is a (k,)\)-IGDD
(X,Y,G,A) in which the set of blocks .A can be partitioned into holey parallel
classes, each of which is a partition of X — H for some H € G, ora partition of
X - (HUY) for some H € G. Simple calculation shows that, for each group
H, there are exactly A\|H N'Y|/(k — 1) holey parallel classes which partition
X—(HUY),and A\|H -Y'|/(k—1) holey parallel classes which partition X — H.
An incomplete (k, \)-frame with Y # @ is called a (&, )) -frame. Remember that
the type of an incomplete ( k, \) -frame is the type of the underlying ( k,\)-IGDD.

The following lemmas are slight generalizations of the constructions in [4] and
[5).

Lemma 2.1. Suppose (X,Y,G,A) is an IGDD with index utility and let a non-
negative integral weight W, be assigned to each point = € X. For every block
A € A, suppose that there exists a ( k, \) -frame of type {W,: = € A}. Then there
exists an incomplete (k, X) -frame of type {(X_,ce Wz, 3 seqny We): G € G}.

Lemma 2.2. Suppose that the following designs exist:
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(1) aincomplete (k,))-frame of type {(t1,u1),(t2,u2),...,(tn,ua) };
(2) an IAR(k,t;+ a;u;+a) for1 < i< nyand
(3) an AR(k,u+ a).

Then there exists an AR(k,t + a) wheret = Zt;,u=Zu;anda > 0.

Lemma 2.3. Suppose there is a (k,\)-frame of type {t1,12,...,t,}, and let
€ > 0. For 1 < i < n, suppose there is a (k, \) -frame of type T; U {&}, where
Yter, t = ti. Then there is a (k, ) -frame of type {€} U (U1<icaT3)-

We shall also make use of the following lemma.

Lemma 2.4. Let v = p" be any prime power and k > 2 be such that k is a
divisor of v — 1. Then there exists an AR(k,v) which can be generated by a
collection of base blocks under the additive group of GF(p").

Proof: Let X = GF(v),andletwbea primitive element of X. The base blocks
of required design are {w*, w*¢,... , w14} wherei=0,1,...,d -1 and
d=(v-1)/k. I

3. Resolvable TD determined by a Latin rectangle.

We recall that an r x nmatrix A = (@;j)rxn iS anr X n(r < n) latin rectangle
on set S of cardinality = if the elements in each row are all different and so are the
elements on each column.

It is well known that a transversal design (TD) T D('m,n) is a ({m}, 1)-GDD

of type n™. A TD (X, G, A) is said to be resolvable if its set of blocks A can be
partitioned into some families called parallel classes such that each family forms a
partition of X. Here we introduce the idea of a resolvable TD determined by some
Latin rectangle. Informally, such a design is a resolvable TD with the property
that the set of blocks can be produced from one distinguished parallel class by
means of some latin rectangle.
Definition 3.1: LetI,, = {0,1 ..., m—1}andG= {go =0,91,... ,9n-1} be
an Abelian group of order n. Let L = (@4)mx(n-1) be a Latin rectangle defined
on G — {0}. Suppose that A is the union of the following families of m-subsets
of I, x G:

AO = {Ag0:A90 = {(Olg)l(lig)l"‘ l(m—llg)}lg GG}:
Af = {Ag!:Ag( = {(0:g+ 00!)|(1:g+ 011),... l(m—ltg+ a(m—l)t)};g € G},

where 1 < t < n— 1 and (aot, G1¢, -+ »@(m-1)¢)” is the t-th column of L. If
(Im x G,{{8} x G: s € In} , A) isaresolvable TD in which Ao, Ai, ... ,An-1
forms its mutually disjoint parallel classes, then we say that it is a resolvable TD
determined by L and denote it by RT*(m,n).
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Remark: Careful inspection of Definition 3.1 gives rise to the fact that B, =
{4, Ajj € Ajand 0 <7< n—1} (g € G) are also n mutually disjoint
parallel classes of the RT'X(m, n).

We now present the following existence theorem for RT'L(m, n).

Theorem 3.2. Let R, be a commutative ring of order n with unity, and U be a
set of elements with multiplicative inverse in R,. If |U| > m,and uy —uy € U
foreach pair {u,,u2} C U, then there exists an RT"('m,n) definedon I, x R,.

Proof: Let R, = {r0 = 0,71,...,7n~1 },and {to,t1,... ,um-1} C U. Wetake

uo”n uoT2 s UQTa-1
un u1T2 U] To-1
Um—-17T1 Up-1T2 - Up-1Tp-1

Then it is clear that L is a latin rectangle on R, — {0}. As in Definition 3.1, we
write Ag = {Aw: A0 = {(0,7),(},7),...,(m—1,r}and r € R,}, and
At = {An : A = {(0,7 + uore), (1,7 + w1mg),...,(m = 1,7+ up_i7e) }
and r € R,}, wheret = 1,2,...,n— 1. We need to prove that (I, X Ry,
{{s} x R, s € I,}, A) is aresolvable TD in which A = Up¢jcn1 A;. Since
L is a Latin rectangle, it is easy to show thateach A; (0 < j < n—1) forms a
partition of I, x R,, and hence is a parallel class. Note that each block of A meets
each group {s} x R, (s € I,,) in precisely one point. Therefore, we need only to
prove that no pair of points from distinct groups occurs in two distinct blocks. In
fact, assume there are two blocks A,;, € A; and Ay ;, € Aj, (0 < j1 # /2 <
n—-1,r,7" € R,) which contain the same pair of points of I, x R,. Without loss
of generality, we assume that one of the two points comes from the s;-th group
and the other from the s -th group. By definition, we have

((31:7"" u,,rj,),(sz,'r+ uaz"'}])) = ((S],T' + ualr)'z)v(SZvT,"' uazrjz)) )
namely,
{ TH Uy T =1 4 Uy Ty,
T+ Uy T, =7 4 U,

This means that (u,, — ts,) v, = (s, — U5,)7j,. Since u, —u,, € U, we
getr;, = rj,, and hence j} = j,, which is a contradiction. The conclusion then
follows. |
Corollary 3.3. If n = p{'-p5* ...p¢" is the factorization of the integer n into
powers of the distinct primes p1,p2,... ,pr, and m = min{p{’ — 1;1 < i < r}
then there exists an RT*(m,n). on I, x (GF(p}') x --- x GF(p%)).
Proof: Take R, = GF(p}') x ... x GF(ptr). Then the conclusion follows from
Theorem 3.2. ]
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4. A new construction.

We defined RT'“(m,n) in Section 3. Our main application of these designs in-
volves using them to establish the following new construction for almost resolv-
able BIBDs.

Construction 4.1. Let m,n,w be positive integers such that n = w = 1
(mod k), m =0 (mod k). Suppose that the following designs exist:

(1) an RT*(m,n) on I, x G, where G is an Abelian group;

(2) an AR(k,n) on G which can be generated by a collection of base blocks

under the action of G;

(3) an RB(k,k — 1;m) andan AR(k,m + 1); and

(4) an AR(k,w), where1 <w<n
Then there exists an AR(k, mn+ w).
Proof: LetG = {go = 0,91,--- ,gn-1 } bean Abelian group. Let L = (a;j)mx(n-1)
be a Latin rectangle defined on G — {0 }. Suppose (Im x G, {{s} x G: s € In},
A) is an RTL(m,n), which is determined by L. By Definition 3.1, we have n
parallel classes A; (f = 0,1,... ,n— 1) which form a partition of A, where

.AO = {Ago:Ago = {(019),(1,9):--- ,(m—l,g)},ge G}!
'At = {Agt:Agt = {(0,9 + aot)y(llg"' a'lt)) (4'1)
see v(m—l)g"' a(m—l)t)}:g € G}s
(t=1,2,...,n—1). Foreach1 <t < n—1, (aos,01¢,... ,6(m-1))T is the
t-th column of L.

As already mentioed in the remark of Definition 3.1, we also have n other par-
allel classes B,(g € G) which form another partition of A, where

By ={Ag:Ajj € Ajand 0 < j<n—1} (g€Q). 4.2)

Take F = {000,001,... ,°0w—l} andT = {go,g1,... .yw-n} cG.

At this point, we will construct an AR(k, mn+ w) on (I, x G) UF as follows.

First,in view of hypothesis (2), we construct an AR(k,n) on G. Without loss
of generality, we assume that

Dl = {gthZ:“' )gk}l D2 = {gk+lsgk+2)"' !QZk},"' )
Dz = {9@=1)k+1,9(@=1)k+2,+++ 01}  (@=(n—1)/k)
are the collection of base blocks of the AR( k, n). It follows that, for each s € I,

Dy ={(s,91),(8,82),.--,(8,00) },

Dy = {(8,9k+1),(8,gk+2) -+, (8,920) }, @3)

Dz = {(3,9G-1)k+1), (8, gm-13k+2) -+ ,(8,9n-1) }
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are the collection of base blocks of an AR(k,n) on {s} x G (as an isomorphic
image of ), and they form an almost parallel class with singleton ( s, 0) . Note that
we have T — {go} = {gx,... ,gw_l} = Uicncw DycCcGwherew=(w-— l)/k

Second, we adjoin w infinite points in F to w parallel classes B,, (gs € T C
G) of the RT*(m,n), where ooy is adjoined to exactly the parallel class B,
(0 £ f < w—1). This gives rise to a resolvable ({m, m + 1},1)-GDD of type
n™w! with group set {{s} x G: s € I.,} U{F}. From (4.1) and (4.2), we know
that this resolvable GDD has the following parallel classes as a partition of its set
of blocks

Aj={Ag;U{oor}:9s €T}U{Ayig €G-T},
J=0,1,...,n—1.

Third, we use our hypotheses and the above resolvable GDD to construct a
B(k,k — 1;mn+ w) on (I, x G) U F as follows: put an AR(k,n) with the
collection of base blocks (4.3) on each group {s} x G (0 < s < m — 1) of size
n, an RB(k, k — 1; m) on each block of size m, an AR(k, m + 1) on each block
of sizem + 1,and putan AR(k,w) on F.

Finally, we prove that the B(k, k — 1; mn+ w) obtained above is almost re-
solvable. For the convenience of notation, we make the following conventions:

(1) (s,9) +9 =(s,9+g')foreach(s,g) € I, xGandg' € G;

(2 T+g'={g+9:g€T}foreachT C Gandg' € G;

(3) Duu+ g ={(s,9+g'):(s,9) € Dy} foreachg’ € G and D,;, shown in
4.3

Itis well known that an AR( k, v) has v almost parallel classes, andan RB(k, k—
1;v) has v — 1 parallel classes. We use the points of A to label those almost
parallel classes of the AR(k,m + 1) on A.for each block A of size m + 1.
Write D( A) for the almost parallel class with singleton z (x € A). Write also
FooorFoors+++ s Fooey fOr the almost parallel classes of the AR(k, w) on F. For
each block A of size m, we simply denote those parallel classes of the RB(k, m)
on Abye(A),e2(A),...,em-1(4).
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Take

8o = [U Digpn(Ag0 U{OOJ})] U [ U ei(Ago)]
9

97€T

€G-T
U[ U Dih] (i=1,2,...,m—1);
1<h<
800 = [U Do ,gp)(Agj0 U{oof})] 4.4)
g/7€T

UL U U D,,.}ulu Do,,];and

SoSm—1 T+ 1Sh<R 1<h<®
Y0 = | Deos(Ag0 U{oos}).

9s€T

Similarly, foreacht,1 <t < n— 1, we take

8;" = [ U D(i,g,+aa)(Ag,t U {OO[})]

grtou€T+oy
u U &4m|u [ U D+ 0-’:)] )
9EG—(T+ay) 1<h<

(i=1,2,...,m—1);

4.5)
Sot = [ U D(0,g/+a0r) (Agyt U {oo;})]
9r

+a0i€T+ao0;

ul U U (Da+ aat)] u [ U (Don+ ao:)] ;and

0<s<m—1 1+B<h<A 1<h<T

Y= | Dooy(Age U{oos}).

9/€T

Foreachl <t < n—1,{8s:0 < 3 < m— 1} U {¢} is a partition
of the blccks of the resolvable designs arising from A, together with the blocks
Dg +ay, D +ag,... ,Dig+an(s=0,1,... m=1). Also, {8,0:0 < s <
m — 1} U {0} is a partition of the blocks of the resolvable designs arising from
Ao, together with the blocks shown in (4.3). Therefore, the families of blocks
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shown in (4.4) and (4.5) form a partition of all blocks the of B(k, k — 1; mn+ w)
on (I, x G) U F except those blocks of the AR(k,w) on F. Further, we know
that §,; (0 < s < m—1,0 < j £ n—1) is an almost parallel class of the
B(k,k — 1; mn+ w), with singleton (s, a,;) when j # 0, or (s,0). Now, we
need only partition the blocks contained in Up¢j<n-1 %; together with the blocks
of the AR(k, w) on F into almost parallel classes. This can be done by taking

8 = Fooy U [UogjDoo, (4g,; U{oogD], F=0,1,...,w—1.
This completes the proof. 1

5. Results for AR(k,v) withk=50r6.
In this section,we shall rely heavily on Construction 4.1 to obtain our results for
almost resolvable BIBDs with block size 5 or 6.

Constructions using finite fields and elementary Abelian groups provide us with
the following

Lemma 5.1. Let q be any prime power and k > 2 be such that k is a divisor of
g — 1. Suppose that there is an AR(k,v) on an Abelian group G which is gen-
erated by a collection of (v — 1) [ k base blocks. Then there exists an incomplete
(k, k — 1) -frame of type (v, 1)1.

Proof: Letqg = kn+ 1,and Dy(i = 1,2,...,(v — 1) /k) be the collection of
base blocks of an AR(k,v) on G, where D; = {d0,di1,... ,dig—1} forl < i<
(v — 1) /k. Without loss of generality, assume diy # 0 (1 < i < (v—1)/k,
0 < r < k—1). Letz be aprimitive element of GF(q). Take X = GF(q) xG.
Let B consist of the following nv blocks:

{(«7,di0), (=", din), ... (¥ dip 1)}
{(mj+n)di0)s(mj+2ntdﬂ)s'“ ,(Ij,d,‘.k_l)}

{(@* D" dig), (2, dn), ..., (275D diy 1) }
{(,0),(z"*",0),...,(a7**D", 0},
where j=0,1,... ,n—1landi=1,2,... ,(v=-1)/k.

It is readily checked that B is the collection of base blocks of an (k, k — 1)-
frame of type v? on the Abelian group GF(g) x G, with group set {{g} x G:
g € GF(q)}. The required incomplete ( k, k — 1) -frame then can be obtained by
removing the following blocks:

{(,0),(z"**,0),... ,(=7**D" 0)} mod (g,~), where j =0,1,... ,n—1.

This completes the proof. ]
‘We also need the following obvious result.
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Lemma 5.2. An AR(k,v) is equivalent to a (k, k — 1) -frame of type 1°.
Let P, = {n:n > 1 is a prime power such that n=1 (mod k)}.

Lemma 5.3. AR(k) D B(FP;,1).

Proof: For each v € B(FPy), there is a B( P, 1; v), namely, a (P, 1)-GDD of
type 1°. Give weight 1 to every point of the GDD and apply Lemma 2.1 with
Y = §. Since a (k, k — 1)-frame of type 17 exists for each p € P; from Lemma
2.4 and Lemma 5.2, we obtain a ( k, k— 1) -frame of type 1. Thenv € AR(k). 1

The following result was obtained in [3].

Lemma 54. Let v be a positive integer. If v = 1 (mod 6) and v ¢ Q,
then v € B(Ps,1), where Q = {55,115, 145,205,235, 253, 265,295,319,
355,391,415,445,451,493,649,655,667,685,697,745,781,799, 805, 1243,
1255,1315,1585, 1795, 1819,1921}.

As an immediate consequence of Lemma 5.3 and Lemma 5.4, we have

Lemma 5.5. AR(6) contains all positive integers v = 1 (mod 6) possibly
excepting those values of v in Q.

Lemma 5.6. There exists a (5,4) -frame of type 46.

Proof: Delete one point from a resolvable B(5, 1;25) to produce the required
(5,4)-frame of type 46. |

Lemma 5.7. {261,501} C AR(S5).

Proof: Give weight4 tothe ({6}, 1)-GDDs of type 5! and 5% which can be con-
structed respectively by deleting one point froma B(6, 1; 66) anda B(6, 1; 126)
(see [6]). This guarantees that both (5, 4)-frames of type 20!3 and 20 exist by
applying Lemma 2.1 with Y = @ and Lemma 5.6. We then use Lemma 2.3 with
€ =1 and the fact that 21 € AR(S5) to get the required result. [ |

Lemma 5.8. Incomplete (5 ,4)-frames of type (26,1)" and (32,2)% exist.

Proof: It is knowm (see [2]) that an AR(S5, 26) exists on Z»s which can be gen-
erated by a collection of base blocks. Therefore, the first incomplete frame exists
from Lemma 5.1.

Remove one block from aT"D(6, 16), which exists since 16 is a prime power,
we geta (6,1)-IGDD of type (16, 1)¢. Give each point of the IGDD weight 2
and apply Lemma 2.1. This produces the second incomplete frame sincea (5,2)-
frame of type 26 exists (see [2]). |

Lemma 5.9. There existan IAR(5,31;6) andan IAR(5,36;6).

Proof: Remove one block froma B(6, 1; 31) (see [6]) to producean TAR(S, 31; 6).
An TAR(S5, 36; 6) exists from [2]. [
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Corollary 5.10. {196,291} C AR(5).

Proof: Apply Lemma 2.2, Lemma 5.8, and Lemma 5.9. ]
Now we are able to give the main result of this paper.

Theorem 5.11. Suppose that v > 6 and v = 1 (mod 5). Then v € AR(S)
with at most 8 possible exceptions. The possible exceptions are 46,51, 116,141,
201,266,296 and 351.

Proof: Combining Lemma 5.7 and Corollary 5.10 with Lemma 1.1, we need only
to prove that {86,161, 226,236, 326,376,411,471,476, 591,596, 711, 766,
986} C AR(5). We give the proof using Construction 4.1 with parameters shown
in Table 1. The required RT'“(5,n) come from Corollary 3.3. The other condi-
tions of Construction 4.1 are satisfied because of Lemma 1.1 and Lemma 2.4.

Table 1

v=5n+w 86 161 226 236 326 376 411 471 476 591 596 711

n 16 31 41 41 61 71 71 81 81 101 101 121
w 6 6 21 31 21 21 56 66 71 86 91 106
v=Sn+w 766 986
n 131 181
w 111 81

[ |

Theorem 5.12, Suppose that v >7 and v=1 (mod 6). Then v € AR(6) if
v # 55, 145,355,

Proof: From Lemma 5.5, we need only to consider those values of v in Q. We
apply Construction 4.1 with parameters shown in Table 2. All conditions of Con-
struction 4.1 are satisfied by Lemma 2.4, Lemma 5.5, and Corollary 3.3.

Table 2

v=6n+w 115 205 235 253 265 295 319 391 415 445 451

n 19 31 37 37 43 49 49 61 61 73 73
w 1 19 13 31 7 1 25 25 49 7 13
v=6n+w 493 649 655 667 685 697 745 781 799 805 1243
n 79 103 103 103 109 109 121 127 127 127 199

w 19 31 37 49 31 43 19 19 37 43 49
v=6n+w 1255 1315 1585 1795 1819 1921
n 199 199 229 283 283 283
w 61 121 211 97 121 223
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|
Summarizing the results in Theorem 5.11 and Theorem 5.12, we have the fol-
lowing

Theorem 5.13. The necessary condition for the existence of an AR(k,v), namely,
v = 1 (mod k), is also sufficient for k = 5 or 6 with the possible exceptions
of (v, k) = (46,5), (51,5), (116,5), (141, 5), (201, 5), (266, 5), (296, 5),
(351,5),(55,6),(145,6) and (355,6).

6. Concluding remarks.,

The constructions and results established in this paper may be used to discuss
the existence of resolvable B(k, k — 1; v), which is now under investigation, An
almost complete solution to the existence problem for £ = 5 has been recently
obtained, which will be reported in subsequent papers.

Note added in Proof

Recently, S.C. Furino and the authors have constructed AR(k, v)s for (v,k) =
(46,5),(116,5),(266,5),(296,5),(351,5) and (355, 6). Therefore there are
now 5 unsolved cases.
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