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Abstract. In this paper we consider group divisible designs with equal-sized holes
(HGDD) which is a generalization of modified group divisible designs [1] and HMOLS.
We prove that the obvious necessary conditions for the existence of the HGDD is suf-
ficient when the block size is three, which generalizes the result of Assaf [1].

1. Introduction

A group divisible design (GDD) denoted by GDD[ K, \, M ; v] isatriple (X, G, A)
where X is a v-set, G and A are collections of some subsets of X (called groups
and blocks respectively) such that

(1) |Gl € M forevery G € G;

(2) |B| € K forevery B € A;

(3) |GNB| < 1 forevery G € G and every B € A; and

(4) every pairset {z,y}, where z and y belong to distinct groups, is contained
in exactly X blocks of A.

The group type of a GDD(X, G, A) is the multiset {|G|: G € G} and denoted
by 1°273% ..., which means that in the multiset there are { occurrences of 1, j oc-
currences of 2, etc. A set of blocks is called a parallel class if the blocks partition
X . Forease of notation we sometimes writeaGDD[ K, A\, M; v] asaGDD[ K, \]
together with its group type or just as a GDD[ K, A].

A sub-GDD(Y,G', A") of aGDD(X, G, .A) is a GDD whose points and blocks
are respectively points and blocks of the GDD(X, G, .A) and whose every group
is contained in some group of the latter. If the sub-GDD is missing, then it is called
an incomplete GDD, or say that the GDD has a hole. In fact the missing sub-GDD
need not exist.

If a GDD has several equal-sized holes which partition the point set , we call it
a holey GDD, or HGDD. We give a formal definition as following.

Let X be a v-set, where v = tmn. Let G = {Gij:1 < i< n,1 < j <t} such
that G is a partition of X and |G;;] = m for any G;; € G. Let A be a collection
of some k-subsets of X (called blocks) such that for any two points z and y of
X from G;; and G, respectively, there are A blocks of A containing both = and
ywheni # sand j # h, while wheni = sorj = hnoblock A € A can
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contain both x and y. Then we call the design (X, G, A) a (v, k, )\)-HGDD of
type (n, m*). We call U}, Gi; a group and UL.1Gi;j a hole of the HGDD.

The HGDD is a special case of DGDD (double group divisible design), how-
ever, for simplicity, we shall not state the definition of the latter here. The inter-
ested readers are referred to [14].

The existence of a (v, k, 1)-HGDD of type (k, m?) is equivalent to the exis-
tence of £ — 2 HMOLS (holey mutually orthogonal Latin squares) of order tm
which has been studied in [4], [9], [10], [11], [12] and [13].

A (v,k,))-HGDD of type (7, 1*) is called a modified group divisible design
in [1] which was motivated by the problem of resolvable group divisible designs
with & = 3, ) = 2 and other constructions of designs.

For any positive integers k, n, m, ¢t and ), the necessary conditions for the
existence of an HGDD are the following,.

Lemma 1.1. The necessary conditions for the existence of a (v, k, )) -HGDD of
type (n,m*) arethat v = tmn,t > k,n > k,\(t—1)(n—1)m = 0 (mod k—1)
and Mv(t — 1)(n—1)m =0 (mod k(k — 1)).

Proof: A(t—1)(n—1)m/(k— 1) is the number of blocks containing each point
of the design and Av(t— 1) (n—1)m/(k(k—1)) is the total number of the blocks.
The other conditions follow from the definition of HGDD directly.

The above necessary conditions are not sufficient for the existence of an HGDD.
For example, there exist no (24,4, 1)-HGDD of type (4, 15) because there exist
no GDD([{4},1,{6},24] (see [7]). But in this paper we shall prove that the
conditions of Lemma 1.1 are sufficient for the existence of HGDD when k = 3.
In [1] Assaf has proved the following.

Theorem 1.2. Let t,nand X be positive integers. The necessary and sufficient
conditions for the existence of an (nt,3, ) -HGDD of type (n, 1*) are that n>
3,1 23, Mt -1)(n—-1) =0 (mod2) and Mtn(t — 1)(n—1) =0 (mod 6).

We shall generalize Assaf’s result and obtain the main Theorem of this paper
as following.

Theorem 1.3. The necessary and sufficient conditions for the existence of a
(v,3,))-HGDD of type (n, m") are that v = tmn,t > 3,n> 3, \(t - 1)(n—
1)m =0 (mod 2) and Av(t — 1)(n—1)m = 0 (mod 6).

2. Constructions and related designs
In this section we shall give the main recursive constructions of this paper. The
designs of PBDs and TDs will be used. So we first state the definitions of these
designs below.

A pairwise balanced design (or PBD) of index ), denoted by B[ K, \; v],is a
pair (X, A) where X is a set of v elements (called points) and A is a collection of

316



subsets (called blocks) of X, such that every unordered pair of points is contained
in exactly X blocks of A and every block in A has its size in K.

A transversal design TD(k,v) is a GDD[{k},1, {v}; kv]. It is well-known
that the existence of a TD(k, v) is equivalent to the existence of k¥ — 2 mutually
orthogonal Latin squares (MOLS) of order v. Furthermore, if there exists k — 1
MOLS of order v, then there exists a TD( k, v) which has v/k parallel classes. For
the existence of MOLS the reader is referred to [3] and [8].

In [1] the following lemma has been proved.

Lemma 2.1, Forevery positivet # 2, there exists a TD(3,t) which has at least
one parallel class of the blocks.

For the existence of GDD[ {3}, A1, the following result is given in [5].

Lemma 2.2, There exists a GDD[3,\, m,um] if and only if u > 3, Mu —
1)m =0 (mod 2) and Au(u — 1)m? =0 (mod 6).

Let B(K) = {v: there exists a B{K, 1, v]}. If B(A) = A for some set A4,
then we say that the set A is PBD-closed. If Ay is a finite subset of A such that
B(Ao) = B(A), then Ay is called a basis of A. Let N, = {v € N:v > a}. The
following results are cbtained by Hanani and Wilson (see [2]).

Lemma 2.3. Let Ay = N3, Ay = {v € Na:v =0 or 1(mod 3)} and A3 =
{v € N3:v = 1(mod 2), then A,, A, and A3 arePBD-closed and their bases are
By ={3,4,5,6,8},B, ={3,4,6} and Bs = {3,5} respectively.

The proof of the following lemma is simple. It just comes from the definition
of HGDD directly. Nevertheless, as we shall see, this lemma is very useful in our
proofs.

Lemma 2.4. There exists an HGDD of type (n, m®) if and only if there exists
an HGDD of type (t,m").

In order to use the above Lemma, we need the concept of double PBD-closed
set. A double PBD-closed set is a cartesian product of two PBD-closed sets A
and B. If A and B has their bases A¢ and By respectively, we call A9 x By the
basis of the double PBD-closed set A x B.

To give a point x weight ¢(x) means that the point x is replaced by the set
{z} x Iyz) where Iy = {1,2,...,t(z)}. The following four lemmas are the
main recursive constructions in this paper.

Lemma2.5. Ifthereexista TD(n,t) which has one parallelclass anda GDD[ {k},
)] of type m®, then there exists a (tmn, k,\) -HGDD of type (n, m').

Proof: Give weight m to every point of a TD(=,t) which has one parallel class.
Then input GDD[ {k}, A] of type m™ to every block of this TD except those in the
parallel class.
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Lemma2.6. Ifthereexista B[ K,1;v] anda (ktm, k', \) -HGDD of type (k, m')
forevery k € K, then there exists a (vtm, k', \) -HGDD of type (v, m*).

Proof: Give weight mt to every point of the B[ K, 1; v]. For every block of size
k, input an HGDD of type (k, m').

Lemma 2.7. Ifthere exista (v, k,\1) -HGDD of type (n,m*) and a GDD[{k'},
X2] of type r*, then there exists a (rv, k', \1, \2) -HGDD of type (n, (mr)?).

Proof: Give every point of the HGDD weight r and input GDDs of type r* to
every block of this HGDD.

Lemma2.8. Let Ax B be adouble PBD-closed setand Ag x By be its basis. If
forevery (n,t) € Ao x By there exists an (mnt, k, \) -HGDD of type (n, m*),
then for any (u,v) € (A x B) U (B x A) there exists an (muv, k, \) -HGDD
of type (u, m").

Proof: Conclusion follows from Lemma 2.4, Lemma 2.5 and Lemma 2.6 imme-
diately.

3. The existence of HGDDs of )\ = 1

In this section we prove the existence of (v, 3, 1)-HGDD. From Theorem 1.2 we
have the following lemma.

Lemma 3.1. The necessary and sufficient conditions for the existence of an
(nt,3,1)-HGDD of type (n,1%) are that n > 3,t > 3,(t - 1)(n-1) =0
(mod 2) and tn(t — 1)(n— 1) = 0 (mod 6).

Now we consider the case with holes of size m > 1. From the necessary
condition of Lemma 1.1 it is not difficult to know that to treat the cases m = 2,3
and 6 is the main task of this section.

Lemma 3.2, There exists a (v,3,1)-HGDD of type (3,2%) for every positive
integert > 3.

Proof: Make use of Lemma 2.5 by letting n = 3 and m = 2. The required TD
and GDD are given in Lemmas 2.1 and 2.2.

Lemma 3.3. There exists a (v,3,1)-HGDD of type (4,2") for any positive
integer t € B,.

Proof: Fort = 4, 5 or 8, there exists a TD(4,t) which has a parallel class (for
there exist 3 MOLS of order t). So we can use Lemma 2.5 to obtain a (8¢,3, 1)-
HGDD of type (t,2*) by inputting a GDD[ {3}, 1] of type 2. An HGDD of
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type (3,24) is given in Lemma 3.2. An HGDD of type (4,2°) is given below.

points:  ({a,b}U Z10) X Z4
groups:  ({a,b}U Zy) x {1},1=0,1,2,3
holes:  {a,b} x Za, {i,i+5},i=0,1,2,3,4

blocks: {0:1230} {019260} {01824} mod(10,4)
develop the first coordinates of the elements in
the following blocks i — i + 2 modulo 10
{000122} {b01132} {001123} {b021 33}
{ap1233} {b02243} {a1 0o 12} {b; 102;}
{210233} {b11243} {610330} {b11340}
{e22113} {b21103} {322003} {6230 13}
{a23110} {b24120} {a31002} {b32012}
{230132} {b31142} {033100} {b341 10}

The proof is complete.

Lemma 3.4. There exists a (v,3,1)-HGDD of type (6,2%) for any positive
integert € B;.

Proof: The (v, 3,1)-HGDDs of type (3,2°) and (4,2°) are given in Lem-
mas 3.2 and 3.3 respectively. So we have the HGDDs of type (6, 23) and(6,24).
The HGDD of type (5, 26) comes from Lemma 2.7 by letting (n, m, ¢, 7, k, k') =
(5,1,6,2,3,3). The required HGDD and GDD come from Lemma 3.1 and 2.2.
From 5 MOLS of order 8 we obtain a TD(6,8) which has a parallel class. Us-
ing Lemma 2.5 by taking (n, m,t,k) = (6,2,8,3),a HGDD of type (6,2%) is
obtained. An HGDD of type (6,26) is displayed below.

points:  ({a,b}) U Z10) % Zs
groups:  ({a,b}) UZo x {i},i=0,1,2,3,4,5
holes: {a,b} x Zs,{3,5+5} % Zs,i=0,1,2,3,4

blocks: {a11500} {b10s20} {019430} {01249}
{013420} {014460} {013345 } mod(10,6)
develop the first coordinates of the elements of the
following blocks ¢ — 1 + 2 modulo 10 and the second
coordinates (written as subscripts) modulo 6
{013214} {14224} {10233} {b11243}
{14304} {b15314}

The proof is completed.

Lemma 3.5. Thereexist (v,3,1) -HGDDs of type (n, 3%) forany (n,t) € By x
Bs.

Proof: This proof is similar to the proof of Lemma 3.2. Hereweletm =n=3
in Lemma 2.5 to show that HGDDs of type (3,3%) exist for any ¢t € B;. For
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t € {5,8} there exists TD(5,t) which has a parallel class (there exist 4 MOLS
of order t). So the HGDD of type (5,3*) can be constructed by again using
Lemma 2.5 where the required GDD[ {3}, 1] of type 3% comes from Lemma 2.2.
A (v,3,1)-HGDD of type (¢, 1) exists from Lemma 3.1 where t € {4,6}. So
the HGDD of type (t,3°) exists fort € {4,6} by Lemma 2.7. This completes
the proof.

Lemma 3.6. There exists a (v,3,1)-HGDD of type (n,6%) for any (n,t) €
Bl X Bl.

Proof: From 7 MOLS of order 8 we obtain a TD(8, 8) which has a parallel class.
Using Lemma 2.5 by inputting a GDD[ {3}, 1] of type 6%, we obtain a HGDD
of type (8,6%). By using Lemma 2.7 we can construct HGDD:s of type (3, 6%),
(4,6%,(5,6% and (6,6%) from HGDD:s of type (3,2%), (4,2%), (5,3% and
(6,2?%) respectively, where t € B;. The required GDDs come from Lemma 2.2.
This completes the proof.

Theorem 3.7. The necessary and sufficient conditions for the existence of a
(v,3,1)-HGDD of type (n,m") are that v =tmn,t > 3,02> 3,(t - 1)(n—
1)m = 0 (mod 2) and v(t — 1)(n— 1)m = 0 (mod 6).

Proof: To prove this Theorem we distinguish four cases. By virtue of Lemma 2.8,
we need only consider the pairs (n,t) which are from the basis of certain double
PBD-closed set.

Case 1: m # 0 (mod 2) and m # 0 (mod 3). In this case t and n should satisfy
(n=1(-1) =0 (mod 2) and v(n— 1)(¢t — 1) = 0 (mod 6). So we can use
Lemma 2.7 to construct an HGDD of type (n, m*) from an HGDD of type (=, 1%)
which comes from Lemma 3.1.

Case 2: m = 0 (mod 2) and m # O (mod 3). In this case ¢ and n should
satisfy tn(n — 1)(t — 1) = 0 (mod 3). Without loss of generality, we assume
that (n,t) € A2 x A;. Form = 2, Lemmas 3.2, 3.3 and 3.4 tell us that for any
(n,t) € B, x By, there exists a(v, 3, 1)-HGDD of type (n,2%). Form > 2, the
HGDD of type (t,m") can be obtained from an HGDD of type (t,2") by using
Lemma 2.7. The required GDD of type (m/2)* comes from Lemma 2.2.

Case 3: m = 1 (mod 2) and m = 0 (mod 3). From the necessary condition
described in Lemma 1.1, ¢ and n should satisfying (¢ — 1)(n— 1) = 0 (mod
2). We assume that (n,t) € A; x As. From Lemma 3.5 we know that for any
(n,t) € By x Bj there exists an HGDD of type (n,3*). The HGDDs of type
(t,m®), where m > 3, can be constructed by using Lemma 2.7. The required
GDD of type (m/3)* comes from Lemma 2.2.

Case 4: m = 0 (mod 6). For m = 6, the conclusion follows from Lemma 3.6.
Form > 6, the HGDD of type (¢, m") can be obtained by using Lemma 2.7 from
the fact that there exists a GDD[ {3}, 1] of type (m/6)3.
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4. The existence of HGDDs of )\ > 1

We now consider the case A > 1 to complete the proof of our main result. By
virtue of Theorem 1.2, we should treat the case m > 1.

Lemma 4.1. There exists a (v,3,2) -HGDD of type (n,3%) forany (n,t) €
Bl X Bl.

Proof: As the existence of (v, 3, 1)-HGDD of type (3, 3?) and (5, 3*) has been
proved in Theorem 3.7, we can repeat every block of these designs two times to
obtain (v, 3,2)-HGDD:s of type (3, 3*) and (5, 3*). From Theorem 1.2 we know
thata (v, 3, 2)-HGDD of type (4,1%) or (6, 1%) exists. Soa (v, 3,2)-HGDD of
type (4,3%) or (6,3*) can be constructed by using Lemma 2.7. Finally, from a
TD(8, 8) which has a parallel class (7 MOLS of order 8 exist) and aGDD[ {3 }; 2]
of type 3% we can obtain a (v, 3,2)-HGDD of type (8,3%). This completes the
proof.

Theorem 4.2. The necessary and sufficient conditions for the existence of a
(v,3,2)-HGDD of type (n,m*) are that v = tmn, t > 3,7 > 3 and v(t —
)(n—-1)m =0 (mod 3).

Proof: When m # 0 (mod 3), ¢t and n should satisfy tn(t — 1){(n—1) = 0
(mod 3). From Theorem 1.2 we know that there exists a (n, 3,2)-HGDD of
type (t,1%). So a (tmn,3,2)-HGDD of type (¢, m") can be obtained by using
Lemma 2.7. The required GDD[ {3}, 1] of type m® comes from Lemma 2.2.
When m = 0 (mod 3), there exists an HGDD of type (t,3") by Lemmas 4.1
and 2.8. Using Lemma 2.7 by inputting GDD[{3}, 1] of type (m/3)? yields a
(v,3,2)-HGDD of type (¢, m™) for m > 3. The conclusion follows.

Lemma 4.3. There exists a (v,3,3)-HGDD of type (t,2%) for any (n,t) €
B] X Bl.

Proof: As the existence of (v,3,1)-HGDDs of type (4,2%) or (6,2%) has been
proved in Theorem 3.7, we can repeat every block of these designs three times to
obtain (v, 3, 3)-HGDD:s of type (4,2?) or (6,2¢). From Theorem 1.2 we know
that the (v, 3, 3)-HGDDs of type (3, 1™) and type (5, 1™) exist. Sothe (v, 3, 3)-
HGDD of type (3,2") and type (5,2") can be constructed by using Lemma 2.7.
Finally, from a TD(8, 8) which has a parallel class (7 MOLS of order 8 exist) and
aGDD[{3}, 3] of type 28 we can obtaina (v, 3, 3)-HGDD of type (8, 2%). This
completes the proof.

Theorem 4.4. The necessary and sufficient conditions for the existence of a
(v,3,3)-HGDD of type (n,m') are that v = tmn,t > 3,n > 3 and (¢t —
D(n—1)m =0 (mod 2).

Proof: Whenm # 0 (mod 2), ¢ and nshould satisfy (¢ — 1) (n—1) = 0 (mod 2).
From Theorem 1.2 we know that there exists a (¢n, 3, 3)-HGDD of type (t,1%).
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So a(tmn,3,3)-HGDD of type (¢, m") can be obtained by using Lemma 2.7.
The required GDD[ {3}, 1] of type m? comes from Lemma 2.2.

When m = 0 (mod 2), there exists an HGDD of type (¢,2") by Lemma 4.3.
Using Lemma 2.7 by inputting GDD[ {3}, 1] of type (m/2)? yields a (v,3,3)-
HGDD of type (¢, m)™ for m > 2. The conclusion follows.

Theorem 4.5. The necessary and sufficient conditions for the existence of a
(v,3,6)-HGDD of type (n,m') are that v=tmn,t >3 and n > 3.

Proof: From Theorem 1.2 we know thata (v, 3, 6)-HGDD of type (=, 1*) exists.
So wecan use Lemma 2.7 toobtaina (v, 3, 6)-HGDD of type (n, m*) by inputting
aGDD[{3}, 1] of type m3.

We are now in a position to prove our main Theorem which is restated below
for the reader’s convenience.

Theorem 4.6. The necessary and sufficient conditions for the existence of a
(v,3,))-HGDD of type (n,m*) are that v =tmn,t > 3,n> 3, Mt - 1)(n—
1)m = 0 (mod 2) and Mv(t — 1)(n— 1)m = 0 (mod 6).

Proof: When ) # 0 (mod 2) and X % 0 (mod 3), then ¢, » and m should satisfy
(t—1)(n—1)m =0 (mod 2) and v(n—1)(t— 1) = 0 (mod 6), so there exists a
(v,3,1)-HGDD of type (n, m*) by Theorem 3.8. The required (v,3,))-HGDD
then can be obtained from this design by repeating every block X times.

When A = 0 (mod 2) and X # 0 (mod 3), then v(t — 1)(n— 1)m = 0 (mod
3), so there exists a (v, 3, 2)-HGDD of type (n, m*) by Theorem 4.2 and then the
required (v, 3, A)-HGDD of the same type.

When ) Z 0 (mod 2) and A = 0 (mod 3), then (t — 1)(n— 1)m = 0 (mod
2), so there exists a (v, 3, 3)-HGDD of type (n, m*) by Theorem 4.4 and then the
(v,3,))-HGDD of the same type.

When ) = 0 (mod 6), there exists a (v, 3, 6)-HGDD of type (n, m*) by The-
orem 4.5 and then the required (v,3,)-HGDD of the same type. The proof is
completed.
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