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Abstract. An H-decomposition of a graph G is a representation of G as an edge dis-
joint union of subgraphs, all of which are isomorphic to another graph H. We study
the case where H is P3 U tK2 - the vertex disjoint union of a simple path of length
2 (edges) and ¢ isolated edges - and prove that a set of three obviously necessary con-
ditions for G = (V, E) to admit an H-decomposition, is also sufficient if | E| exceeds
a certain function of ¢. A polynomial time algorithm to test H-decomposability of an
input graph G immediately follows

1 Introduction

All graphs considered, are finite, undirected, with no loops and no multiple edges.
Let G and H be two graphs. An H-decomposition of G is a representation of G
as an edge disjoint union of subgraphs, all of which are isomorphic to H. Graph
decomposition was, and still is, a rather popular research area. Intensive research
has been done on many special cases, beginning with the classical work on "Steiner
triple systems” (H is a triangle and G' a complete graph) [11] and proceeding with
hundreds of papers until present days. (see [2] for a partial list of references).

One of the most important results in the area is the following, obtained by R.M.
Wilson [12]: For every graph H = (V, E) and an integer n > no( H), the com-
plete graph K, has an H-decomposition if and only if | | divides () and n — 1
is divisible by g.c.d.{d(z)|z € V}.

Wilson’s theorem implies that the existence of H-decomposition of the com-
plete graph K, is decidable for any fixed graph H, in O(log(n)) time. Prac-
tically, even for the simple case where H is the complete graph on 6 vertices,
there are still scveral dozens of integers # (all in the interval 100-1000), for which
H-decomposability of K,, is yet undetermined. (The case where H is a small
complete graph and G = K, was the first and most intensively studied). Wil-
son’s theorem points out a family of graph decomposition problems, which can be
solved in polynomial time. Another of the few results of that character is due to
Y. Caro [5], which presented a polynomial time algorithm to solve decomposition
problems where both G and H are trees.

We are interested here in the class of problems, each determined by a fixed
graph H, where the other graph G is given as input.
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Definition. For a fixed graph H, the H -decomposition problem is stated as fol-
lows: Can an input graph G be represented as an edge disjoint union of subgraphs,
all of which are isomorphic to H?

1. Holyer [9] proved that A -decomposition is NPC for every complete graph
H = K,,n > 3. He also conjectured NP completeness whenever H consists
of at least 3 edges. In its general form the assertion of that conjecture is false
(assuming P # NP). Even before Holyer stated his conjecture, Brouwer and
Wilson, in an unpublished paper [4] gave a polynomial time algorithm (although
their result is not stated in that form) for the case where H = tK, (the union of
t disjoint edges). The same result was obtained later, independently, by N. Alon
[1], after the case H = 3 K had been studied by Bialostocki and Roditty [3] .
Later, Favaron, Lonc and Truszczynski [7] have obtained a similar result for the
case where H = P; U K is the disjoint union of a single edge and a simple path
of length 2 (we measure path length by edges). Holyer’s conjecture might still
hold if restricted to the case where H is connected, or equivalently, contains a
connected component with at least 3 edges (this equivalence is proved in section
3 of [6]). In addition to his result about complete graphs, Holyer (8] also proved
H -decomposition to be NPC whenever H is either a simple circuit or a simple path
(at least 3 edges long). Recently Cohen and Tarsi [6] proved H-decomposition to
be NPC for a family of graphs H, which contains all trees.

While discussing known results, mention should be made of a closely related
topic, the H-factorization problem, where vertices, rather than edges, play the
main role: Given an input graph G = (V, E), is there a collection of vertex
disjoint subgraphs of G, isomorphic to a fixed graph H, such that the union of
their vertex sets is V? H-faclorization is also known as generalized matching (a
complete matching is indeed a K, -factorization). The complexity status of this
class of problems was studied by Kirkpatrick and Hell [10], who showed that H -
factoriation is NPC, whenever H contains a connected component of at least three
vertices and it is polynomial otherwise.

The partial results on H-decomposition seem to indicate the validity of a similar
statement, which turns Holyer’s conjecture into an ’if and only if* form:

Conjecture. I -decomposition is NPC, henever H contains a connected com-
ponent of at least three edges and it is polynomial otherwise,

The subject of this research is the second half of that conjecture, that is, con-
structing polynomial time algorithms for H -decomposition, where each connected
component of H is either a single edge or a simple path of length 2, Let such a
graph with s components which are paths of length 2 and ¢ isolated edges, usually
referred 10 as sP; UtK>, be shortly denoted by D ;.

As mentioned above, the existence of a polynomial time algorithm for D, -
decomposition is known for (s,t) = (1,0) (trivial), s = 0 ([4], [1]) and (s,2) =
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(1,1) ({7)). In the following section we prove the existence of a polynomial time
algorithm for D, ;-decomposition, for any natural number ¢.

2 Necessary and asymptotically sufficient conditions for D; ;-decomposition

Almost all (hundreds of) known results on graph decomposition are of the fol-
lowing scheme: A system of a few simple necessary conditions for a graph G
to admit an H-decomposition are also sufficient if G is large enough. In most
cases such statements are restricted to certain families of graphs G such as com-
plete graphs, or complete multipartite graphs. A complete characterization of H -
decomposability contains an explicit list of the exceptions, that is, those graphs G
which satisfy the conditions, but admit no H -decomposition. Complete solutions
of that kind, where G is not restricted 10 a certain family, are given for H = Do 3
in [3] and for H = Dy in [7].

Being interested here mainly in the complexity status of decomposition prob-
lems, there is no need to explicitly list the exceptions (the number of which might
increase exponentially with the size of H). It suffices to show that a system of
easily (polynomially) verified conditions, are also sufficient, if the size of G ex-
ceeds a certain value (dependent on H'). Once such a system is found, it implies
the existence of a polynomial time algorithm for H-decomposition. A result of
this character is presented in [1] for H = Dg;. We solve here the case where
H = D, by proving the following:

Theorem 1. The following necessary conditions for a graph G = (V,E) to
admit a D, s-decomposition, are also suficient if |E| > f(t), where f(t) is a
certain function of t.

1. |E| = k(t + 2) is an integer product of ¢ + 2 and

2. The number of connected components of G with an odd number of edges is
at most kt and

3. Letd,...,dy) be the degree sequence of the vertices of G in decreasing
order,then Y. d; < k(m+ 1), foreachm = 1,...,|V|.

i=1

Proof

Necessity: Necessity of 1 is obvious. Admitting a D; ;-decomposition, E can be
partitioned into k copies of D, each containing ¢ isolated edges. An odd com-
ponent of G contains at least one of these kt edges. Necessity of 2 immediately
follows. Condition 3 is the summation of the degree sequence over k copies of
Dy,

Sufficiency: The case t = 1 is proved in [7] . Our condition 3 is replaced there
by the equivalent: A(G) < 2k with the exclusion of the existence of one edge
adjacent to all other edges. Accordingly, we assume throughout this prooft > 2.
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Our proof has two main phases. First we prove decomposability of E into k
subgraphs, some of which are isomorphic to D, ., while the others are copies of
Dg t+2 . In the second phase we show that the number of Dy 42 copies in such a
decomposition can be reduced to 0.

Definitions and Notation for the Proof: LetG = (V, E) beagraphon|E| = k(t+
2) edges. A Do t+2, D1 ¢-decomposition of G is a partition P = {Dy,..., D}
of E into k subgraphs, each isomorphic either t0 Do 42 or to D;1¢. The sub-
graphs Dy, ..., D; are called P-graphs. The P-graphs isomorphic to Do .2 are
referred to as matchings, while the copies of D, . are called clusters. The 2-edges
component of a cluster C € P is called the hook of C. The other ¢ edges of a
cluster, as well as all t+ 2 edges of each matching, are referred to as daggers. The
drift dr(P) of a Do t+2,D) t-decomposition P is the number of matchings in P.
Clearly a Dy ¢-decomposition isa Dy 442, D) ¢-decomposition P withdr(P) = 0.

Two edges, or two subgraphs, which share at least one vertex, as well as two
vertices which are endvertices of an edge, are said to be adjacent to each other.
An edge and each of its endvertices are incident to each other.

A connected component of a (sub)graph G’ consisting of a single edge is re-
ferred to as a trivial component of G'.

Proposition 1. Let G = (V, E) be a graph which satisfies conditions 1 and 3 of
theorem 1, with k > 8 /3(t+2) —2, then G admits a Do 4.2, D) z-decomposition.

Proof of Proposition 1: Letthe excess c(z) ofavertexz € V be defined as d(z) —
k if d(z) > k, or 0 otherwise (d(x) stands for the degree of z). The total excess
¢(@G) is the sum of c(z) over V. Select now for each vertex z with d(z) > 0 aset
of ¢(z) excess edges incident to z, such that no edge is selected as an excess edge
of more than one vertex. This can be done for one vertex after another. According
to condition 3, ¢(G) < k, hence the degree of each vertex z with ¢(z) > 0 is
more than the total excess and c(z) edges, not previously selected, can be taken
out of those incident to z. Define now a new graph G’, on the same edge set E,
obtained from G by ’disconnecting’ all the excess edges of every vertex z € V
from z and inserting instead a new vertex y, as a common endvertex for all the
*disconnected’ edges. The degree in G’ of the original vertices of G is at most k
and d(y) = ¢(G) < k. Thus, G’ is of maximum degree A(G’) < k. Theorem
1 of [1] states that a graph F with kt > 8/3(t%) — 2t edges and maximum
degree A (F') < k,always admits a Dy ;-decomposition. Consequently, our graph
G’ admits a Do 4.2 -decomposition. That is, E can be partitioned into k& Do ¢+2
subgraphs of G'.Since all excess edges of G share a common endvertex y of &',
each of them belongs to a distinct set of that partition. In particular, two excess
edges of the same vertex z of G belong to distinct sets. The degrees of vertices =
with d(z) > k in G are reduced to exactly & in G’ and hence the k edges incident
to each of these vertices in G’ belong to all & sets of the partition. It turns out that,
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as subgraphs of G, each set of that partition P is either isomorphic to Do ¢+2 or
isomorphic to D ;. In other words, P is a Dg 442, D) s-decompositionof G. 1

In what follows we refer to a graph G, which satisfies conditions 1,2,3 of the-
orem 1 and admits a Do 4.2, D1 s-decomposition. We also assume |E| > f(?),
where the bound £(t) is explicitly determined later during the proof. Let Py be a
Dg 142, Dy t-decomposition of Go whose drift dr(Pp) is minimum over all such
decompositions. To complete the proof of theorem 1 we should show dr( Py) = 0.
The first step towards achieving this goal is:

Proposition 2. The union of any two matchings of Py consists of 2(t+2) trivial
components.

Proof: Each component of the union of two matchings A, B € P, is either a
simple path or an even circuit and the edges along each component are alternating
between A and B. If any component has at least four edges, then four consecutive
edges belonging to A, B, A, B, in that order, can be exchanged between A and
B to the new order A, A, B, B. That way both A and B are transformed into
clusters. If there exists a component of size 3, that is a path of the pattern 4, B, A,
it can be transformed into A, A, B. Two distinct 2-edges components both of the
form A, B can be changed to A, A and B, B and finally, if there exists only one
2-edges component, of the pattemn A, B, it can be transformed into A, A, while
another trivial component of A is moved into B. In all cases a new partition is
obtained with lower drift than that of Py - a contradiction.

Our main tool for the reduction of dr{ Pp) is:

Proposition 3. If © C P, isaset of Po-graphs, which contains a matching M
and in addition to M, another malching, or at least two clusters, then the subgraph
U = Upee D has a connected component, which contains at least two daggers.

Proof of Proposition 3: Assume on the contrary, that © is a maximal subset of
Py, which contradicts the proposition. If @ = Pp then U = Gy and thus no two
daggers of Pp belong to the same component. Due to the existence of at least one
matching, it contradicts condition 2 of theorem 1. Hence, there exists a Py -graph
Rin Py—0O. Since © is maximal, there existx a connected componentT of UUR
which contains at least 2 daggers. Let (¢;,t,) be a pair of daggers, such that the
distance in T between t; and ¢ (the length of a shortest path which contains both)
is minimum. Let D denote the set of all daggers of P-graphs in ©. To simplify
keeping track of the proof, we cut it at this point into several phases.

Claim 1. Given any daggers dy,dz,ds € D, we can assume that both d\ and dy

belong to the matching M. We can also assume that ds does not belong to M,
unless M Is the only matching in © and dj is adjacent to the hooks of all other
Py -graphs in © (Such a dagger, if it exists, is clearly unique).
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What we mean by "we can assume " is that if Py does not satisfy the above
then the edges can be repartitioned among the P,-graphs of © to obtain a new
decomposition, with the same number of matchings and clusters, where d; and
da, but not ds, belong to the same matching M.

Proof of Claim 1: Let us take care first of d; and d,. By proposition 2, all the
matchings in © are pairwise vertex disjoint and hence, if either d; or d; (or both)
belongs to a matching it can be exchanged with any edge of M. If d; belongs
to a cluster C, then, as © is assumed to contradict proposition 3, at most one
edge of M is adjacent to (the hook of) C. Since [M| = t+ 2 > 4 there exists
another edge d € M, which is nonadjacent to C and it is not dy. Exchanging d;
and d between C and M and, if necessary, acting similarly on d,, we obtain d;,
dy € M as required. Consider now d3. Assuming d3 € M. If there exists a
Po-graph in © — { M}, which is nonadjacent to d3 then any dagger of that graph
can be exchanged with d3 to reach the required situation. If there is no such a
Po-graph in © then every D € © — M is a cluster with its hook adjacent to d3.
This case is given in claim 1 as an exception. |

Claim 2. We can assume that both t) and t, belong to M (this holds also if
t) and t, are adjacent, in which case it turns M into a cluster in contradiction
to dr(Py) being minimum and thus completes the proof of proposition 3 in that
case).

Proof of Claim 2: We can directly apply claim 1 to either t; or ¢; (or both) if
it belongs to D. If t; ¢ D then it is a dagger of R. If R is a matching then
by proposition 2 it is vertex disjoint of M and thus we can reach t; € M by
repartitioning RU M.

It is left to take care of the case where R is a cluster and either ¢, or t3, or, if
things come to worst, both of them, are daggers of R: If three edges of M are
incident each with one vertex of the hook of R then we can take the component
which contains that hook to serve as the component 7", which contains the daggers
t1,t2, now obviously in M, as required. Thus, we can assume that at most two
edges of M are adjacent to the hook of R. If no dagger of R is adjacent to an
edge of M then there are at least two (4 minus 2 adjacent to the hook) edges of
M nonadjacent to any edge of R. These two edges can be exchanged with ¢, ¢,
between M and R (only one edge, if only one ¢; € R) to reach the requirement of
claim 2.

Finally consider the case where there exists a dagger r € R adjacent to an edge
dy € M. The set of daggers D contains at least 2¢ + 4 edges (2¢ + 4 in two
matchings, or 3t + 2, which by t > 2 is at least as many, in one matching and
two clusters), each in a distinct connected component of U. There are only 2t + 3
vertices in the cluster R. This implies that there exists a daggerd; € D, belonging
to a component of U U R, which contains no edge of R. By means of claim 1 we
can assume that both d; and d; are in M. Exchanging r and d, between R and
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M, there are now two adjacent edges r and d in M. If there exists another edge
ds € D adjacent to r then claim 1 allows us to assume d3 ¢ M (in the case
where dj is the exceptional edge mentioned in claim 1 we first switch between d;
and d3). Now r and d; form a Py component, which turns M into a cluster, in
contradiction to dr( Py ) being minimum. |

Now we are in a position to complete the proof of proposition 3, assuming
t1t2 € M: Ift; and ¢, are adjacent to each other (as a result of the transfor-
mation used in the proof of claim 2) then they form a hook for M and propo-
sition 3 is proved (a contradiction to dr(Po) being minimum). Otherwise, let
{t1,a1,...,0am,t2 } be ashortest path containing ¢, and t;. By the minimum con-
dition on the distance between ¢; and ¢, none of a,,..., an is a dagger and no
dagger other than t, ¢, is adjacent to any of a,, ..., a,,. In particular, a, is con-
tained in the hook H of a cluster C. The subgraph H U {t; } can be repartitioned
into a copy H' of P and a single edge t}, such that the distance between ¢ and
t, is strictly smaller than between ¢, and t2 (a separate case is where t1, {2 and a
thirdedgets € M each is incident to one vertex of H. in thatcase HU{t1,t2,13}
can be repartitioned into two hooks and a dagger, disjoint from one of them and
thus transforming M into a cluster). The drift of the partition obtained as C is
replaced by (C — H) U H' and M by (M — {t1}) U {t} } is at most equal that of
Py. Iterating this process until the two daggers are adjacent to each other, yields
a Do g+2, D1 s-decomposition with drift < dr(Pp), which completes the proof of
proposition 3. 1

Proposition 2 forces any two matchings of Py to be vertex disjoint, while propo-
sition 3 prohibits the existence of two vertex disjoint matchings. The only escape
from contradiction is thus:

Proposition 4.
dr(Po) < 1

It remains to eliminate the possibility of a single matching in Py.

Proposition 5. Let M, Cy, C; € Po be, in that order, a matching and two
clusters, such that no edge of C, has its two endvertices both in M and no edge of
C, has its two endvertices in M UC), then no two daggers of © = {M,C,,C.}
belong to the same connected componentof U= M UC, UC;,.

Proof of Proposition 5: Consider first the matching M and the cluster C,. If no
edge of C; has both its endvertices in M, then each component of M U C is
a simple path, either 1,2 or 3 edges long, except for the hook of C;, which can
form a simple path, 2 to 6 edges long, or any component on 3 edges. Having this
structure, M U C; can clearly be repartitioned into two clusters, in contradiction
to dr( Py) being minimum, unless M UC, has exactly one nontrivial component,
consisting of either 2 or 3 edges.
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Consider now U = M UC) UC;, where no edge of C; has its endvertices both
in M U C;. Each component of U is a simple path with 1,2 or 3 edges, except
for the nontrivial component of M U C; and the hook of C;, which might form
either 1 or 2 larger components. A very simple case analysis shows that, again, a
repartition of U into 3 clusters is possible, unless no component of U holds more
than a single dagger. |

Combining propositions 3 and 5 we immediately obtain:

Proposition 6. Let M, C1, C; € Py be, in that order, a matching and two
clusters, then either an edge of C, belongs (o the subgraph of Gy, induced by the
vertices of M, or an edge of C, belongs to the subgraph induced by the vertices
of MUG,.

Completing the proof of theorem 1: Let us assume, in contradiction to theorem 1,
that dr(Po) > 0. By proposition 4 this implies dr(Py) = 1. Let M be the only
matching in Py. The subgraphs of G induced by the 2t + 4 vertices of M hold
at most (*%}*) edges. Hence, at most that many clusters of Py have an edge in
this subgraph. Once f(t) is selected to make & larger than that value, there exists
acluster C; € Pp with no edge in that subgraph. The same argument, where M’
is replaced by M U C), implies the existence of a cluster C; with no edge in the
subgraph induced by M U C;. However, this contradicts proposition 6 and thus
the proof of theorem 1 is now completed. |

A remark about the bound f(t): The bound f(t) for the size of E, obtained from
our proof above is about 8¢3. A significantly lower value can be reached for the
price of amuch longer proof. In fact we managed, by means of a long case analysis
to prove theorem 1 with & > 8 /3(t+2)—2 (thatis f(t) = 8 /3(t+2)2-2(t+2)).
The bottle neck here is the bound of |E| > 8/3t? — 2t, given in [1] for Do -
decomposition, which we use in proposition 1 above. Any improvement of this
bound can be used to obtain a lower value for f(t). The smallest graph that we
know of, which satisfies conditions 1,2,3 of theorem 1, but does not admit a Dy -
decomposition is of size k = 21t.
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