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Abstract. A graph G is a swn graph if there is a labelling o of its vertices with distinct
positive integers, so that for any two distinct vertices « and v, yv is an edge of G if and
only if o(u) + 0(v) = o(w) for some other vertex w. Every sum graph has at least one
isolated vertex (the vertex with the largest label). Harary has conjectured that any tree
can be made into a sum graph with the addition of a single isolated vertex. We prove
this conjecture.

1. Introduction

All graphs in this paper are finite and have no loops or multiple edges. The idea of
sum graphs was introduced by Harary [2]. A sum graph is a graph whose vertices
can be given a labelling which determines the graph in a particularly simple way.
A sum labelling of a graph G is a labelling o of the vertices of G with distinct
positive integers, so that for any two distinct vertices u and v, uv is an edge of G
if and only if o( ) + o(v) = o(w) for some other vertex w. A sum labelling is
strong if the above definition holds with “distinct vertices u and v” replaced by
“possibly equal vertices u and v.” If G has a (strong) sum labelling it is a (strong)
sum graph. The quantity o(u) + o(v) is called the sum of the edge uv.

Every sum graph must have at least one isolated vertex, the vertex with the
largest label. Also, any graph with m edges can be made into a strong sum graph
by the addition of at most m isolated vertices: label the original vertices with
distinct powers of 3, and the m new isolated vertices with the m distinct sums
corresponding to the edges. Thus, it is natural to ask for the minimum number of
isolated vertices which must be added to a given graph G to form a sum graph.
Let this number be denoted s(G).

The trivial upper bound s(G) < m can be improved substantially for “dense”
graph by the following theorem.

Theorem 1.1 (Gould and Rodl [1]). Let G be a graph with m vertices and n
edges. Suppose that G has p vertex-disjoint complete subgraphs having m ,ma, ...,
ny, vertices, where n; > 3 foreach i,1 <1 < p. Then

p .
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The proof of this theorem uses the fact that s( K,,) < 2n— 3 for any complete
graph K, : label the vertices 1,3,5,...,2n— 1. Gould and Rddl also have some
lower bounds on s(G).
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For sparse graphs Theorem 1.1 seems not to provide a very good upper bound
on 3(G); in fact for triangle-free graphs it just gives the trivial bound s(G) < m.
The sparsest connected graphs are the trees, and Harary [2] has conjectured that
8(T) = 1 for any tree T'. The purpose of this paper is to prove this conjecture.

2, Caterpillars

To prove that s(T') = 1 for any tree T # K, we shall give an algorithm which
finds a strong sum labelling of TU{ 2}, where 2 is an isolated vertex. The algorithm
has two stages. Stage 1 is reasonably straightforward, and in some cases gives
the complete sum labelling of T U {2}. However, in other cases Stage 1 gives
only a partial labelling, and further action must be taken by Stage 2 to complete
the labelling. In this section we lay the groundwork for Stage 1 by examining a
special class of trees, the caterpillars.

When many people (including the author) first attempt to give a sum labelling
a 10 T U {2}, the following is what they suggest.

Naive Algorithm.. Label some vertex vo of T arbitrarily with a positive integer
a. Choose a neighbour v, of vy, and label v, with 8, where f > « and 8 #2a
(so that a(vo) + a(vo) # a(v1)). Now, since vov, is an edge, a(vg) + a(v;)
must appear as the label of some vertex. Choose an unlabelled vertex v, adjacent
toan already labelled vertex u; (u2 = vo orvy ), andlabel v, with a(vo)+0o(vy).
Now, a(v2) + o(u2) must appear on some vertex, so choose an unlabelled vertex
vs adjacent to an already labelled vertex us, and label it with o(v2) + o(uz).
Continue in this fashion: at each step the vertex v;,, receives the label o(v;) +
o(u;), where u; is the only labelled neighbour of v;. When the last vertex v,_,

of T is labelled, the sum o(v,-1) + a(u,_1) is allocated to the isolated vertex
2, | |

The problem with this algorithm is that the labelling it produces may not, in
general, be a sum labelling. It certainly ensures that if uv is an edge of G, then
a(u) + o(v) = o(w) for some vertex w: in fact, every edge of T' can be written
as u;v; forsome i, 1 < i < n— 1 (letting u; = vo), and the sum of this edge
appears on vi,; — i + 1 (letting v, = 2). However, the converse may not be true:
there may be vertices u, v and w with o(u) + o(v) = o(w), where uv is not an
edge of T'. This is not allowed by our definition of a sum labelling. For example,
the labelling in Figure 2.1 was produced by the Naive Algorithm (with « = 1 and
B = 3), and has o(v2) + o(v3) = 11 = o(vs), even though v, v; is not an edge
of the tree. Therefore it is not a sum labelling.

While the Naive Algorithm does not produce a sum labelling when applied
indiscriminately, one may wonder whether it could produce a sum labelling if the
order in which the vertices are labelled was carefully chosen. R.J. Gould (private
communication) discovered that if T is a caterpillar and its vertices are labelled in
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v 3 v 4 vs
Figure 2.1: Non-sum labelling found by Naive Algorithm

a particular order, then the Naive Algorithm does give a sum labelling of U {z}.
His method forms the basis of our Stage 1.

For our purposes, a caterpillar C consists of a path sg s; ... s;, called the spine,
with leaves (degree 1 vertices) known as feef attached to the intemnal vertices of the
spine by edges known as legs. We shall always think of the spine of a caterpillar
as oriented in a particular direction, from the tail sq to the head s;.

Caterpillar Algorithm (Gould).. Suppose that each spine vertex s; of the cater-
pillar C has feet t;5,1 < j < f;, adjacenttoit. Wehave f; >0 for1 < i< 11,
and fo = fi = 0 - the tail and head of a caterpillar are leaves. Use the Naive Al-
gorithm (o Iabel the vertices in the order:

30,31:tllstll’.s--':tlﬁ:SZtchtnw"atz,fzysi‘h”-)sl

(followed by z). | |

In other words, beginning at the tail, label each spine vertex, followed by any
feet adjacent to it, before moving to the next spine vertex. An example of a la-
belling produced by the Caterpillar Algorithm is given in Figure 2.2 (wherea = 2
and 8 = §). As the Caterpillar Algorithm is a special case of the Stage 1 algorithm
discussed in the next section, we shall not prove here that it actually gives a sum
labelling. Notice that

0(v541) = o(v;) + o(y;),

where u; is the unique labelled spine vertex adjacent to v; at the time that v; re-
ceives its label.

3. Stage 1

Stage 1 of our algorithm proceeds by trying to divide the tree T into caterpillars to
which the Caterpillar Algorithm can be applied. The division of T" into caterpillars
must be done carefully to ensure that the resulting labelling is in fact a strong sum
labelling. Some terminology is necessary.

First, if C is a caterpillar with spine sg s; ... s; the vertex s;_; will be called the
heart of C, and the vertex s;_; will be called the neck of C.
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2 5 39 56 263

17

7 12 95 151 207
Figure 2.2: Sum labelling produced by Caterpillar Algorithm

Second, the vertices of T" will be partitioned into three types: leaves, near-leaves
and inner vertices. A leaf, as already mentioned, is a vertex of degree 1. A near-
leaf is a non-leaf which has at most one non-leaf neighbour. An inner vertex is a
vertex which has at least two non-leaf neighbours.

Now we state Stage 1 of our algorithm. Since it is easy to see that s(K;) = 0
and s( K3) = 1, we henceforth assume that T has at least three vertices.

Stage 1 Algorithm.. Let T be a tree, and z an isolated vertex. To construct the
first caterpillar C,, choose any leaf whose neighbour is a near-leaf to be its tail
s). Such a leaf always exists, since near-leaves occur in any tree other than K,
or K. Construct the spine Sy = s}s] ...s}, of Cy as follows. Given sfs} ...s!,
choose s},,, to be a currently unused vertex adjacent to s} , preferring an inner
verlex over a near-leaf and a near-leaf over a leaf. Stop when the path cannot be
continued because the last vertex chosen, s,‘. , is aleaf. To form C,,add to S, all
leaves of T adjacent to internal vertices of S\. All the vertices of C, are now to
be considered ‘used.’

Given caterpillars C,,C,, ..., C;_1, we now construct C; as follows. As the
tail si of C; choose any vertex used in C1,Cy, ...,Ci-1 which has an unused
neighbour, with the restriction that the heart of C;_y may not be chosen - in other
words, s # sj~!_,. To construct the spine S;, grow a path by starting at s} and
adding unused inner vertices until the only possible vertices to add are near-leaves
or leaves. Complete the path with an unused near-leaf s;;_, and finally a leaf s;" .
To obtain C; from S;, add any leaves of T' adjacent to intemal vertices of S;. Note
that any leaves of T adjacent to s} do not form part of C; - they are already part
of some earlier caterpillar. Also, the leaves added to S; to form C; have not been
used by any earlier caterpillar.

The process continues until we have formed caterpillars C,,C,,...,Ck, and
either all the vertices of T' have been used, or the only used vertex with an unused
neighbour is the heart of Cy. LetT' = Cy U G, U --- U Cy be the subtree of T
induced by the used vertices. We label T' U {z} by applying the Naive Algorithm
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to the vertices in the following order:

8d,s],...(verticesof Cy) .. ,s,,,s,, .(vertices of C;) ..
enz,...,sl,...(verllce.s'ofc,;)....s,,t

(followed by z), where the vertices in each C; are ordered as in the Caterpillar
Algorithm. Note that fori > 2, the tail si of C; is not labelled with the vertices
of C; becaue it is equal to some s;; with j < 1, and has already been labelled with
the vertices of C;. |

Thus, T is (completely or partially) decomposed into caterpillars, which are
labelled in succession using Gould’s Caterpillar Algorithm from Section 2. An
example of a Stage 1 labelling appears as part of the example of a complete strong
sum labelling in Figure 5.1. Notice the following four properties of Stage 1.

(A) Using the notation of the Naive Algorithm, we have that if v; is labelled as
part of C;, then
a(vj+1) = o(vj) + o(yj),

where u; is the unique spine vertex of C; which is both adjacent to v; and
already labelled when v; is to be labelled.
(B) Asin any application of the Naive Algorithm, we have

a(v;) < a(v;) when i < j.

(C) In each individual caterpillar C; with spine length I, if spine vertex s; has
fi adjacent feet t;; then

a(ty;) = o(si-1) +jo(s), 1<j<fi
a(s8i+1) = o(8i) + (fi+ Do(sy), 1<i<i-1.

(D) Foranyi > 2, the tail s} of C; is an inner vertex used in the spine of some
C;j, where j < 1 — 1. It cannot be a leaf or near-leaf, since then all of its
neighbours would have been used by Cj, eliminating it as a possible choice
for the tail of C;. Thus, s} cannot be a vertex of C;._, labelled after the heart
of C;_1, for all such vertices are leaves or near-leaves. It also cannot be the
heart of C;_, itself, because this is explicitly forbidden. Therefore, the tail
of C; has a label smaller than the heart of C;_;.

We must now prove that the Stage 1 Algorithm gives a strong sum labelling of
T'U{z}. Since itis an implementation of the Naive Algorithm, we know thatif uv
is an edge of T" then o(u) + o(v) = o(w) for some w. So we just need to show
that if o(u) + o(v) = o(w), then uv is an edge of T'. We may assume without
loss of generality that o(u) < o(v), which implies that o(v) > o(w)/2.
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If w = vp then no u and v exist with g(u) + o(v) = o(w). If w = v; then the
only possibility is that u = v = vp, but by the requirement that 8 # 2 a, in the
initialization of the Naive Algorithm, o(vo) + o(vo) # o(v1). Itis also clear
that if w = v; then u = vp and v = v, and thus uv is an edge. Therefore, we may
now assume that w = vj,1, where j > 2. Hence, by (A) above,

o(w) = a(vjs1) = o(v;) + o(u;),

where, supposing v; was labelled as part of C;, u; is a spine vertex of C; which is
adjacent to v; and which was labelled before v;. To prove that uv is an edge it is
therefore sufficient to show either that u = uj, or that v = vj.

There are two cases to examine, depending on whether u; is the tail of C; or
not. First suppose that u; is not the tail of C;. Then u; = s} with & > 1. Let
v = o(si_,) and § = o(s}), so that by (B) above v < §. Now v; must be
8i.+1 Or some foot ¢}, of C; adjacent to s}. In either case, by (C) above, a(v;) =
a(si_;) + po(s}) for some p > 1. Thus,

o(u;) = §,
o(v;) = v+ ps,
a(w) = a(vj) + a(u;) = v+ (p+ Db

Therefore, o(w) > 28 and o(v) > o(w)/2 > §, which by (B) above implies
that v was labelled after s{. Of course, v was also labelled before w = vj,;. Thus,
either v = v;, in which case we are finished, or else v = ¢} for some ¢ < p.
Assuming the latter,

o(v) =q7+¢6 by (C),
o(u) = o(w) —a(v) =(p+1—-q)b.

Since p > ¢, o(u) > & and by the same reasoning as for v, u = ti, for some
r < p,and
o(u) =~4+7r8 by(C).

Equating the two values of o( u) givesy =0 (mod &) which is impossible since
0<y<8.
Second, suppose that u; is the tail of C;. Since j # 1, we may assume that
i > 2. Letl = [_, be the length of the spine of C;_,. Then we must have
v; = st, uj = sb, Vi1 = sf'l, Uj_1 = sf:}.

Lety = o(s{Z}), 8 = a(siZ}) and € = o(u;). By (D) we know that € <  and
by (B)y < 6. Letp= f{=} + 1 be the number of leaves (including s} ') adjacent

340



to si=}; then p > 1. We now have

o(uj_1) =4,
o(vji1) =y+pd by(C),
a(y;) =¢,

a(vy) = a(uj-1) + o(vj—1) =4+ (p+ 1),
o(w) = o(uy) + o(vj) = e+ v+ (p+ 1)4.

Since p > 1, o(w) > 26 and thus o(v) > o(w)/2 > &. Hence, v was labelled
after s“' indicating that either v = v;, in which case we are finished, or v is a leaf
of C.-l adjacent to si=}. Assuming the latter,

o(v) =+ ¢§ forsomegwithl < ¢g<p,
o(u) = o(w) —o(v) =€+ (p+1-g)é.

Thelrefore a(u) > &, and by the same reasoning as for v, u is a leaf adjacent to
s;_y and

o(u) =q+r§ forsomerwithl < r < p.

Equating the two values of o(u), we now see that e = « (mod §), which is
impossible since 0 < e < v < 4.

Notice that our argument in this last case relies on the fact that e < -y, which
follows from the restriction in the algorithm that the tail of C; not be the heart of
C;_-1. This is the reason for that restriction.

This completes the proof that Stage 1 does give a strong sum labelling of T U
{z}. Our task now is to complete that labelling when 77 # T

4. Shrubs

Just as Stage 1 of our algorithm depends on an algorithm for labelling caterpillars,

so Stage 2 depends on an algorithm for labelling another special class of trees. A
shrub is a tree with at most one inner vertex. We shall think of a shrub as a tree
with a distinguished vertex, called the root, all of whose neighbour are leaves or
near-leaves. If a shrub has an inner vertex, then the root must be this vertex,

Our approach to labelling shrubs is different in nature from the approach to la-
belling caterpillars, which employed the Naive Algorithm. The Naive Algorithm
assigns a unique sum to each edge, and every vertex except the two with the low-
est labels has a label which is the sum of some edge. In contrast, the labelling
procedure for shrubs assigns nonunique sums to some edges, and there are some
vertices whose label is not the sum of any edge.

Our labelling for shrubs departs from the strict definition of a sum labelling,
in that some of the labels are not integers, but rational numbers. However, any
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rational sum labelling can be transformed into an integral one by multiplying all
labels by a suitable constant integer. The reason for using rational numbers is
merely to make it easier to combine the Stage 1 labelling with the labelling of a
shrub in Stage 2.

The labelling procedure for shrubs is as follows.

Shrub Algorithm.. Suppose S is a shrub with root r, and z is an isolated ver-
tex. Let the degree 1 neighbours of r be ay,a3,...,0n, the degree 2 neighbours
b1,b2,...,bs and the remaining neighbowrs c\,ca,...,cp, Where c; has degree
d; > 3 in S. Each b; has a leaf neighbour x; # r, and each c; has leaf neigh-
bours yi; #r,wherel < j<di—1. Define Dy =1 and D; = didy ...d;j—1
fori=2,...,p+ 1.

Choose positive integers 0, \ with: > 2(m + 1)0. Label as follows:

a(r) =0,
a(c) = Dy},
o(yi;) =JDix + 6.

Ifn=0 let

a(a;) = Dpr1 A + (1 — 1) 0,
0(2) = Dpr1 A+ 0,

and ifn # 0 choose an integervn > m and let

o(a;) = Dpr1 X — 40,

o(b) = Dpuid+ (i— 1) /7,
0(z;) = Dpy A + 0+ (n—1) /n,
0(2) =2Dpn A+ 0+ (n—1)/n.

Examples of labellings produced by this algorithm are shown in Figure 4.1. To
prove that this labelling produces a strong sum labelling, we must first show that
the sum of every edge appears on some vertex. All edges in S have one of the
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200-5- 20 13
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21 161 21 161 201—§-
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121 3 121

41 sl 41 8l

Figure 4.1: Strong sum labellings produced by Shrub Algorithm
following forms: ra;, rb;, bz, rci, Or ciys;. It is not difficult to verify that:

o(a) ifi>2,
o(r)+o(a,-)={0'(z) ifi=landn=0,

a(b1) ifi=landn>0,
a(r) + o(b) = o(Zn1-i)3
a(b) + o(z;) = o(2) (whenn> 0);
a(r) + a(c) = o(yar);
a(yijn) ifj<di—2,
o(yis1y) ifi<p—-landj=d;—1,
a(z) ifi=pj=d,—1andn=0,
o(za) ifi=p,j=d,—1andn>0.

o(c) + a(yij) =

Thus, the sum of every edge appears as the label on some vertex.
We must also show that if o u) + o(v) = o(w), then uv is an edge of S. There
are two cases to examine, namely n > 0 andn= 0.

(I) n>0.LetA={ay,...,an},B={b,...,0.}, X = {z1,...,2,},C =
{c1,....cp}andY = {yn,...,Ypq,-1}. Forany integer u, let () denote
the set of vertices with integral label congruent to 4 (mod )). Consider
the following subcases.

(1.1) u e BUX. Thena(w) > o(u) > DpiA,andsow € BUX U{z}.
Suppose first that w = 2. From a(v) = o(w) — o(u) we find that
if u = b; then v = x;, and vice versa; therefore uv is an edge. Now
suppose that w € X. Since o(v) = ag(w) — a(u), we have that
-l<o(w)<lifue X,and0—-1 < o(v) <0+ 1ifu € B.
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The only possibility is that « € B, g(v) = 0 and v = 7, implying
that uv is an edge. Finally, suppose that w € B; then u € B also.
From o(v) = o(w) — a(u), we get that —1 < o(v) < 1, which is
impossible.

(1.2) u =r. By (1.1)we may assume thatv € BU X, sothatv € {r} U
AUCUY.Ifve AUC then uv is an edge. If v € {r} UY then u,
v € I1(0), implying that w € I(26). However, all the integral labels
are congruent toone of 0,8, A — 0,1 —20,...,2—méf (mod \),and
none of these is equivalent to 26 (mod )) because A > 2(m + 1)4.

(1.3) u € A. By (1.1) and (1.2) we may assume thatv € AUCUY. If
v € Athen o(v) > o(am) = Dpuyd —mb,andifv € CUY,
o(v) > A, ineither case o(v) > A — mé. Therefore,

Dpe1) = m8 = 6(am) < o(u) < o(a1) = Dpuid 6,
A —mb < a(v) < a(b1) = Dpsy).

Since a(w) = o(u) + o(v), and since A > 2(m + 1)4,

0(21) = Dpiid + 0+ (n—1)/n < Dpnd + A —2mé
< o(w) <2Dp ) — 0 < 0(2).

But there are no vertices with label between a(z) and o(2).

(1.4) u € C. By (1.1)~(1.3) we may assume thatv € C UY. Suppose first

that v € C; without loss of generality we may assume that o(u) <
o(v). Then w € I(0) and o(v) < o(w) < 20(v). However, for
any v = ¢; € C C I(0), the vertex with next smallest label in I(0)
has label d;o(v) > 30(v), and so this is impossible.
Suppose therefore thatv € Y'; write u = ¢; and v = yji. Theno(w) =
Di)+ kDjA+ 6andw € I(6). Foranyy € Y C I(6),let y* denote
the vertex with next smallest label in I(8). If i > j then o(y;1) <
o(w) < a(yi2), which cannot happen because y;» = yj;. If j > i then
o(yjr) < o(w) < o( y;,;), which again cannot happen (y}k iS yjke1,
yj+1,1 Or z, depending on j and k, but in all three cases o( Yip) =
(k+ 1)D;\ + 6). Thus, i = j and uv = ¢;yi is an edge.

(1.5) u € Y. By (1.1)-(1.4) we may assume that v € Y also. But then u
and v are both in J(0), implying that w € I(28), which is impossible,
as we saw in (1.2).

(2) n=0. This follows by a slightly modified and simplified version of the
argument for (1). The relationship between the two cases is illustrated by
Figure 4.1.

This completes the proof that the Shrub Algorithm gives a strong sum labelling
of S U {z}. In the next section we use this to complete our strong sum labelling
of TU {z}.



Notice that if we require only a sum labelling, not a strong sum labelling, then
we can simplify the above procedure by labelling the degree 2 neighbours of r in
the same way as the neighbours of degree at least 3: in other words, in the above
algorithm we include the neigbours of degree 2 in the vertices ci,...,cp and do
not have any vertices by , . .., b, The resulting labelling may not be strong because
if ¢; has degree 2 then we get 20(c1) = o(ci+1). However, all of the labels are
integers; thus, we can obtain an integral labelling in which the smallest label is
any given positive integer 8, including 1.

S, Stage 2

In this section we show how the Shrub Algorithm of Section 4 can be used to
complete a strong sum labelling produced by the Stage 1 Algorithm. As this al-
gorithm uses the Shrub Algorithm from Section 4, it can produce labels which are
nonintegral rational numbers; however, as in Section 4, the labelling can easily be
converted to an integral labelling if desired.

Stage 2 Algorithm.. Suppose that T is a trec and z is an isolated vertex. Assume
that the Stage 1 Algorithm of Section 3 has terminated without labelling all vertices
of T, after producing caterpillars C,,Ca, ...,Ck. Let | = l; denote the length of
the spine of Cy. The only used vertex with unused neighbours is the heart of C,
sk ,. All the unused neighbours of sf_, must be near-leaves: the leaf neighbours
are used by some caterpillar C;, where j < k — 1, and if there were an unused
inner vertex adjacent to sf_, , it would have been chosen rather than the near-leaf
sf_, when constructing the spine of Ck.

There are various cases depending on the values of k and .

(@ k =1,1 <4, Then T is a shrub whose root can be taken to be r = sf ,.
Use the Shrub Algorithm to give a sum labelling to T U {2}, replacing any
labels already assigned by Stage 1.

() k =1,1 >5. Let C] be the caterpillar obtained from C; by reversmg its
spine. ‘Since 1 > 5, 8|_, is not the heart of Cj, and therefore we can return
to the caterpillar construction phase of Stage 1, after discarding the labelling
of C] .

© k>2,1>3.In this case the tail s§ of Cy is a spine vertex of some earlier
caterpillar C;, say s§ = s. Define two new caterpillars C} and C} as
follows: C; has spine S} = s}s{...s]_;(s] = s§)st...sf, and C/ has
spine S} = o Iy .. 3’;' each has as feet the leaves of T adjacent to the
intemal vertices of the spine. Then the tail of C} is not the heart of C;_,,
the tail of C} is not the heart of C} because [ > 3, and the tail of Cj.1 is not
the heart of Cj. Therefore, Stage 1 can be used to construct the following
sequence of caterpillars:

Glrczt"')Ci—l)C}IC},)Cf‘Fh'":Ck—l-
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The union of this sequence of caterpillars is the same subtree 7" as before.
The vertex s , is still the only used vertex with unused neighbours, but is
now not the heart of the last caterpillar in the sequence. Therefore we can
return to Stage 1 and continue constructing caterpillars, after discarding the
original Stage 1 labelling.

(d) k >2,1 <2. Since C; starts at an inner vertex of some earlier C; (see
(D) of Section 3), we must have [ = 2. Let r = s§ be the tail of C;. Let
S be the subtree of T induced by V(Ci) U (V(T) — V(T")). Then the
neighbours of r in S are s¥ and the unused neighbours of r, all of which
are near-leaves. Therefore S is a shrub with root r. Let § = o(sk) and
X = o(sf), and label the vertices of S U {2} using the Shrub Algorithm,
replacing any labels already present from Stage 1.

|
2
122101-5 [ 5 61090
61090+
2 3
61011
3
1
610113
103 §
’j m n
] O O 2
3 h 79 61011 610903
4 "
3,. 1353 182 40753
4
L |

1
1
’
(]
SR 6779
1360 ¢ 1 261 1
h tl> 2713 20416
!
1

! 6858 13637
1 0 4066

Ci= C'l':m:; Cp=== § ——
Figure 5.1: Strong sum labelling produced by Stages 1 and 2

Figure 5.1 shows an example of a strong sum labelling produced by the com-
plete algorithm (Stages 1 and 2). The original Stage 1 labelling had caterpillars
with spines S) = abcdef, S = cghi and S» = djkl. After applying (c) of Stage
2, the sequence of caterpillars C;, C{, C> as shown was formed, and a new cater-
pillar C3 with spine jmn was constructed. On returning to (d) of Stage 2, C;
became part of S.
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We must now prove that the complete algorithm (Stages 1 and 2) produces a
strong sum labelling of TU{z}. If we never use Stage 2, this follows from Section
3. If we arrive at (a) of Stage 2, then it follows from Section 4. If we reach (b)
or (c), then we return to Stage 1 and construct exactly one more caterpillar, with
tail s} , (since the unused part of T’ forms a shrub rooted at sf_,). Now we either
have a complete Stage 1 labelling of T U {2}, or we must apply (d) of Stage 2.
Step (d) can also be reached without applying (b) or (c), and we henceforth asume
that the algorithm has terminated in (d).

To prove that the labelling produced in (d) is a strong sum labeling, we need
some notation. The sum labelling of T"U{ 2} after we leave Stage 1 for the last time
will be denoted oy. The final labelling of T' U {2z} after the algorithm terminates
will be denoted o,. The vertices of the subtree T = C; U - -+ U Cjy do not
have their labels changed in any way by Stage 2, so that o2(v) = o1(v) for all
v € V(T"). Notice that E(T) = E(T")Y UE(S),V(T) = V(T")UV(S),and
V(T") N V(S) = {r}. Let g = l4_; denote the length of the spine of Cj._,.

Notice the following properties of (d).

(A) Since the root r of S is used in some Cj, where j < k — 1, the leaves
adjacent to r are used by C; and are not part of S. In the notation of Section
4, this means that m = 0.

(B) By (D) and (B) of Section 3,8 = 01(s§) < 01(sk7}) < on(sf2}). Thus,
for any vertex v of T,

o2(v) = a1(v) < o1 (¥ ) = o (sh) —an(sfsh) < A -0

(C) Letting v = r = s§ in (B), we see that @ = a1(s§) < A — 6, 0r X > 26.
Since m = 0, this implies that A > 2(m + 1) 8. Therefore, from Section 4,
the labelling of S U {2} in (d) is a strong sum labelling. In other words, the
restriction of o3 to S U {z} is a strong sum labelling.

(D) Since m = 0, the four smallest integral labels on vertices of S U {z} are 6,
MA+0,and2)+ 0. If p > O these occuron r, ¢y, yy; and yy2;ifp=0
these occur on 7, b;, T, and z. Notice also that all nonintegral labels are
greater than ).

To prove that o is a strong sum labelling, we must first show that the sum of
any edge appears as the label of some vertex. For any edge of S, the sum appears
on a vertex of S U {z}, by (C) above. For any edge of T" us sum appears on
another vertex of 7, by Section 3, except for the edge aq_, sq ! joining the last
two spine vertices of Ci_;. The sum of this edge, from Section 3, is o( sl) =
which from (D) above appears on a vertex of S.

Finally, we must show that if o2 (1) + o2(v) = 02 (w), then uv is an edge of
T. There are three cases.

(1) u,v e V(T"). By (B), 02(u) + 02(v) < 2)X —240. Thus, by D), w €
V(T"),02(w) = \,0ra2(w) = A+0. Now )\ = g1 (s¥) and ) + f is equal
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to either o1 (t};) or o1(s§). Therefore, in any of the three cases there is
some w' € V(T") with 02(w) = gy (w'). Then oy(u) + 01(v) = o1 ('),
and since o, is a sum labelling, uv is an edge of T and hence an edge of T'.

(2) u,v € V(8) — {r}. Then by (B) and (D), w € V(S) U{z} and uv is an
edge by (C).

(3) ueV(8)—{r},v e V(T"). Then by (B) and (D), w € V(S) U {z}.
If g, (u) is not integral then 4 € B U X, and the arguments of Case (1.1)
in Section 4 show that v = r and u € B, proving that uv is an edge. If
o2 (u) is an integer, then m = O implies that u,w € I(0) UI(#), and hence
02(v) = o2(w) — 02(v) is congruent to 0, # or A — 6@ (mod \). By (B),
0 < 02(v) < X — 0, so the only possibility is that o2 (v) = fand v = r.
But then u, v, w € V(S) U {z} and uv is an edge by (C).

This concludes the proof that the algorithm gives a strong sum labelling of T U
{z}. Thus, we have our main result.

Theorem S.1. If T is any tree other than K, then T U {2} has a strong sum
labelling, where z is an isolated vertex. Consequently, s(T) = 1.

As F. Harary has pointed out, this result also gives the value of s(F") for any
forest F. We have s(F) = 0 when F has an isolated vertex, and s(F) = 1
otherwise.

If we require only a sum labelling, and not a strong sum labelling, then by
modifying Stage 2 in the way described at the end of Section 4, we do not have to
introduce nonintegral labels. Thus, we obtain the following result.

Theorem 5.2. If T is any tree other than K, , and « is any positive integer, then
T U{z} has a sum labelling with smallest Iabel ., where z is an isolated vertex.

6. Final comments

It would be nice to obtain bounds on s(G) for other classes of sparse graphs. One

now-disproved conjecture stated that for any connected graph G with n vertices
and m edges, s(G) < m — n+ 2. A counterexample is provided by the 4-cycle
C4, but it seems that this conjecture may actually hold for some restricted classes
of graphs: this paper verifies that it is true for trees. One possible approach to
extend this result to other graphs is to try to use a spanning tree T of a graph
G. Assuming G has n vertices and m edges, one would take isolated vertices
Z1,...,Zm-m+2, label T U {2z}, and then label z;, ..., z5_ne2 with the sums of
edges of G not in T. However, this approach has the same problem as the Naive
Algorithm of Section 2: it can create situations where v and v are nonadjacent,
but o(u) + o(v) is the label of some vertex. It seems to be very difficult to choose
T and the labelling of T U {21} to avoid this problem.
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