Packing and covering of the complete graph, IV: the trees of order seven

Y. Roditty

School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv
Israel

Abstract. It is shown that the maximal number of pairwise edge disjoint trees of order seven in the complete graph K_n , and the minimum number of trees of order seven, whose union is K_n are $\left\lfloor \frac{n(n-1)}{12} \right\rfloor$ and $\left\lceil \frac{n(n-1)}{22} \right\rceil$, $n \ge 11$, respectively. ($\lfloor x \rfloor$ denotes the largest integer not exceeding x and $\lceil x \rceil$ the least integer not less than x).

1. Introduction.

Graphs in our context are undirected, finite, and have no multiple edges or loops. We refer to [H] for the basic definitions.

We denote by P(n, H), the packing number, namely, the maximal number of pair-wise edge disjoint graphs H, in the complete graph K_n , and by C(n, H), the covering number, namely, the minimum number of graphs H whose union is K_n .

As usual $\lfloor x \rfloor$ will denote the largest integer not exceeding x and $\lceil x \rceil$ the least integer not less than x.

In [R1], [R2], and [R3], it was proved that:

(1)
$$P(n,T) = \left\lfloor \frac{n(n-1)}{2e(T)} \right\rfloor$$
 and
(2) $C(n,T) = \left\lceil \frac{n(n-1)}{2e(T)} \right\rceil$, for $n \ge n_0$,

where T was any tree of order less than equal six, e(T) is the number of edges of T and n_0 was a constant determined in the various cases.

It was asked in [R3] if (1) and (2) are true for all trees.

Our purpose in this paper is to answer that question in the affirmative for all trees of order seven.

Definition: A graph H is said to have a G-decomposition if it is the union of edge disjoint subgraphs each isomorphic to G. We denote this fact by $G \mid H$.

The G-decomposition problem, for $H = K_n$, is to determine the set of naturals N(G), such that K_n has a G-decomposition if and only if $n \in N(G)$.

Note that G-decomposition is actually an exact packing and covering.

In the proof of our problems of packing and covering, we make a great use of the results obtained by Huang and Rosa [HR], for the *G-decomposition* problem in cases when *G* is a tree of order seven.

We denote $H = \bigcup_{i=1}^{t} G_i$ when the graph H is the union of t edge disjoint graphs G_i , i = 1, 2, ..., t.

The results of these problems which will be discussed in details in the remainder of the paper, can be summarized in:

Main Theorem (Packing and Covering).

- (a) $P(n,T) = \lfloor \frac{n(n-1)}{12} \rfloor$, $n \ge 11$ and T any tree of order seven. (b) $C(n,T) = \lceil \frac{n(n-1)}{12} \rceil$, $n \ge 11$ and T any tree of order seven.

Remark: In the case $7 \le n < 11$ we shall give the exact values of the packing and covering numbers for each tree in consideration.

The relevant trees to our problems are:

(i) T_1 , the path of length six, which is denoted (x, y, z, u, v, w, s).

(ii) T_2 , is denoted (x, y, z, w, s; u, v).

(iii) T_3 , is denoted (x, y, z, w(s), u, v).

(iv) T_4 , is denoted (w; u, v, s, z - y, x).

(v) T_5 , is denoted (x, y, z(w), u; v, s).

(vi) T_6 , is denoted (u, v; z, x, y; w, s).

(vii) T_7 , is denoted (x, y, z; u, v, w - s).

(viii) T_8 , is denoted (x, y, z; w(u), v(s)).

(ix) T_9 , is denoted (x; z, y, w, u; v, s).

(x) T_{10} , is denoted (x; y, z, w, u, v - s).

(xi) T_{11} , is denoted (x; y, z, w, u, v, s).

2. Preliminary results.

Notation: The vertex set of K_n is defined to be \mathbb{Z}_n , and addition of vertex labels are done mod n.

Lemma 2.1. $T_i \mid K_{2,6}, K_{3,6}, i = 4, 6, 10.$

Proof: Let $V(K_{2,6}) = A \cup B$ where $A = \{a, b\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. Let $V(K_{3,6}) = A' \cup B'$, where $A' = A \cup \{c\}$ and B' = B. The T_i -decomposition of $K_{2,6}$ and $K_{3,6}$ i = 4, 6, 10 is found in Table 1.

Table 1
The decomposition

	$K_{2,6}$	$K_{3,6}$
T_4	(a;0,1,2,3-b,4)	(a;0,1,2,3-b,4)
	(b;0,1,2,5-a,4)	(b; 0, 1, 2, 5-c, 3)
		(c;0,1,2,4-a,5)
T_6	(0,1;a,2,b;3,4)	(0,1;a,2,b;3,4)
	(0,1;b,5,a;3,4)	(0,2;c,5,a;3,4)
		(0,5;b,1,c;3,4)
T_{10}	(a;0,1,2,3,4-b)	(a;0,1,2,3,4-b)
	(b;0,1,2,3,5-a)	(b; 0, 1, 2, 5, 4-c)
		(c;0,1,2,3,5-a)

Corollary 1. $T_i \mid K_{2\alpha+3\beta,6t}$ for $i = 4, 6, 10, \alpha, \beta$ non-negative integers at least one is positive and t a positive integer.

Lemma 2.2. $T_1, T_7 \mid K_{t,6} \text{ for } t = 3, 4, 5.$

Proof: Let $V(K_{3,6}) = A \cup B$ where $A = \{a, b, c\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. Let $V(K_{4,6}) = A_1 \cup B_1$ where $A_1 = A \cup \{d\}$ and $B_1 = B$, and $V(K_{5,6}) = A_2 \cup B_2$ where $A_2 = A \cup \{d, e\}$ and $B_2 = B$. The T_1, T_7 -decompositions of $K_{1,6}, t = 3, 4, 5$ are found in Table 2.

Table 2
The decomposition

	T_7	T_1
$K_{3,6}$	(b,2,a;0,1,3-c)	(0, a, 1, b, 2, c, 3)
	(a, 5, b; 3, 4, 0-c)	(1, c, 4, b, 5, a, 2)
	(a,4,c;2,5,1-5)	(4,a,3,b,0,c,5)
$K_{4,6}$	(b, 2, a; 0, 1, 3-c)	(0, a, 1, b, 2, c, 3)
	(a, 5, c; 0, 1, 2-d)	(0, b, 5, c, 4, d, 3)
	(a,4,b;0,5,3-d)	(b, 3, a, 2, d, 1, c)
	(b, 1, d; 0, 5, 4-c)	(c,0,d,5,a,4,b)
$K_{5,6}$	(b, 2, a; 0, 1, 3-c)	(0,a,1,b,2,c,3)
·	(a,4,c;0,1,2-e)	(0,c,4,d,5,e,3)
	(a,5,b;3,4,1-d)	(0,d,1,c,5,a,4)
	(b,0,d;2,5,3-e)	(1, e, 4, b, 3, a, 2)
	(c, 5, e; 0, 1, 4-d)	(3,d,2,e,0,b,5)

Corollary 2. $T_1, T_7 \mid K_{3\alpha+4\beta+5\gamma,6t}$ where α, β, γ are non-negative integers at least one positive and t a positive integer.

Lemma 2.3. $T_2 \mid K_{t,6}$ for t = 4,5,6.

Proof: Let $V(K_{t,6}) = A \cup B$ where $A = \{a, b, c, d, e, f\}$ (according to the value of t), and $B = \mathbb{Z}_5$. The T_2 -decomposition is found in Table 3.

Table 3
The decomposition

$K_{4,6}$	$K_{5,6}$	$K_{6,6}$
(0, a, 1, b, 2; c, d)	(a,0,b,2,c;1,3)	(a,0,b,2;1,5)
(2, a, 4, b, 0; c, d) (3, d, 1, c, 5; a, b)	(c,4,d,5,e;2,3) (d,2,a,3,b;1,4)	(a,2,d,1,b;4,5) (c,4,d,5,e;1,3)
(5,d,4,c,3;a,b)	(e,4,a,1,d;0,3) (1,e,0,c,5;a,b)	(e,4,a,5,f;0,2) (2,e,1,a,3;b,d)
		(4, f, 3, c, 0; a, e)

Corollary 3. $T_2 \mid K_{4\alpha+5\beta+6\gamma,6t}$ where α, β, γ are non-negative integers at least one positive and t a positive integer.

Lemma 2.4. $T_3, T_9 \mid K_{t,6} \text{ where } t = 3, 4, 5$

Proof: Let $V(K_{3,6}) = A \cup B$ where, $A = \{a, b, c\}$ and $B = \mathbb{Z}_5$. Let $V(K_{4,6}) = A' \cup B$ where $A' = A \cup \{d\}$. Let $V(K_{5,6}) = C \cup B$ where $C = A' \cup \{e\}$. The decomposition is in Table 4.

Table 4
The decomposition

	T_3	<i>T</i> 9
K _{3,6}	(2,b,5,c(0),4,a)	(0,1,2;a,3;b,c)
	(3,c,2,a(1),0,b)	(0,1,2;b,5;a,c)
	(5,a,3,b(4),1,c)	(0,1,2;c,4;a,b)
$K_{4,6}$	(1,b,2,d(4),3,a)	(0,1,2;a,3;b,c)
•	(1,d,5,b(3),4,c)	(1,2,3;d,4;a,c)
	(3,c,2,a(1),0,b)	(1,2,5;c,0;b,d)
	(4,a,5,c(1),0,d)	(1,2,4;b,5;a,d)
$K_{5,6}$	(0,a,1,b(2),3,c)	(0,1,4;b,5;a,c)
•	(0,b,5,c(2),1,e)	(1,2,4;a,3;b,c)
	(1,d,5,a(4),3,e)	(3,4,5;d,2;b,e)
	(5, e, 4, d(3), 2, a)	(3,4,5;e,1;c,d)
	(b,4,c,0(d),e,2)	(a, d, e; 0, c; 2, 4)

Corollary 4. $T_3, T_9 \mid K_{3\alpha+4\beta+5\gamma,6t}$ where α, β, γ are non-negative integers at least one positive and t a positive integer.

Lemma 2.5. T_5 , $T_8 \mid K_{t,6}$ where t = 3, 4, 5.

Proof: Let $V(K_{3,6}) = A \cup B$ where, $A = \{a, b, c\}$ and $B = \mathbb{Z}_5$. Let $V(K_{4,6}) = A' \cup B$ where $A' = A \cup \{d\}$. Let $V(K_{5,6}) = C \cup B$ where $C = A' \cup \{e\}$. The decomposition is in Table 5.

Table 5
The decomposition

~

	75	T_8
$K_{3,6}$	(0,a,1(b),c;2,3)	(0,a,1;b(2),c(3))
·	(0,c,4(a),b;2,3)	(0,b,5;a(3),c(2))
	(0,b,5(c),a;2,3)	(0,c,4;a(2),b(3))
$K_{4,6}$	(0,a,1(b),c;2,3)	(0,a,1;b(2),c(3))
	(0,b,2(a),d;2,3)	(0,b,4;c(2),d(1))
	(0,c,5(d),a;3,4)	(0,d,3;a(2),b(5))
	(0,d,4(c),b;3,4)	(0,c,5;a(4),d(2))

Table 5 continued

 T_8

 T_5

$$K_{5,6}$$
 $(0,a,1(b),c;2,3)$ $(0,a,1;b(2),c(3))$ $(0,b,2(d),e;1,3)$ $(0,c,4;d(3),e(5))$ $(0,c,4(e),d;1,5)$ $(1,d,5;a(4),b(3))$ $(0,d,3(a),b;4,5)$ $(1,e,2;a(3),c(5))$ $(0,e,5(c),a;2,4)$ $(2,d,0;b(4),e(3))$

Corollary 5. T_5 , $T_8 \mid K_{3\alpha+4\beta+5\gamma,6t}$ where α, β, γ are non-negative integers at least one positive and t a positive integer.

3. Proof of Main Theorem in the various cases.

Huang and Rosa [HR] proved the following:

Theorem 3.1.
$$N(T_i) = \{n \mid n \equiv 0, 1, 4, 9 \pmod{12}, i = 1, 2, ..., 10\}$$
 and $N(T_{11}) = \{n \mid n \equiv 0, 1, 4, 9 \pmod{12}, n \geq 12\}.$

As a result of Theorem 3.1 we have to prove the Main Theorem for the listed trees only in the cases:

(1)
$$n = 12 m + k, k = 2, 3, 5, 6, 7, 8, 10, 11.$$

Theorem 3.2. The Main Theorem is valid for T_1 for all $n \ge 7$.

Proof: The proof will take case of several cases according to the various values of n. We use the well-known decomposition (see [H p. 89]) of K_n , n— odd, into $\frac{n-1}{2}$ spanning cycles and for n— even into $\frac{n}{2}$ Hamilton paths.

For n— odd the proof of the theorem follows immediately by cutting the P_7 -paths from the suitable Eulerian tour, created by union of the above mentioned spanning cycles, leaving a path of length less then seven, unpacked. We demonstrate it with n = 11.

$$K_{11} = \bigcup_{i=0}^{4} (0, 1+i, 2+i, 10+i, 9+i, 4+i, 8+i, 5+i, 7+i, 6+i).$$

When n is even, put $n-1 \equiv q \pmod{6}$. Let, $K_n = \bigcup_{i=0}^{\frac{n}{2}-1} P_i$, where, $P_i = \left(1+i,2+i,n+i,3+i,n-1+i,\dots,\frac{n+4}{2}+i,\frac{n+2}{2}+i\right)$, and addition is done modulo n. First we deal with n=8.

We give the construction for q = 3, 5. For q = 1 the construction is similar.

Let q=3. From each of the paths P_i delete the edges (1+i,2+i) and $(\frac{n+4}{2}+i,\frac{n+2}{2}+i)$, so that the remaining paths are P_7 decomposable. The union of the rest of the edges results in a spanning cycle, a fact which completes the proof in this case.

Table 6

n Packing Remains for Covering
8
$$(1,7,6,5,4,3,2)$$
 $(2,1,4,7,5,0,6)$ $(2,7,3,5) \cup (0,1)$ $(3,1,6,4,2,0,7)$ $(4,0,3,6,2,5,1)$ T_1 -decomposition (Theorem 3.1)
12 m , 12 $m+1$ T_1 -decomposition (Theorem 3.1)

Let q=5. Delete from each path P_i , (1+i,2+i,n+i) and $(\frac{n+4}{2}+i,\frac{n+2}{2}+i)$. The remaining paths are P_7 -decomposable, and so is the union of the deleted edges, excluding a path of length three. We demonstrate it for n=18. After the decomposition of $P_i \setminus \{(1+i,2+i,n+i) \cup (\frac{n+4}{2}+i,\frac{n+2}{2}+i)\}$, we add the following three P_7 -paths: (2,3,4,5,6,7,8,9), (10,11,12,13,14,15,16,17), (17,18,2,1,3,5,7,9). The non-packed path is (2,4,6,8). This completes the proof of the theorem.

Theorem 3.3. The Main Theorem is valid for T_2 for all $n \ge 7$.

Table 7

n	Packing	Remains for Covering
7	(0+i,6+i,1+i,5+i,2+i,3+i,4+i), i=0,1,2	$(0,5,6) \cup (1,4)$
8	(0+i,7+i,1+i,6+i,2+i,4+i,5+i), i=0,1,2	
	(2,3,4,1,5;0,7)	(4,5,6;0,7)
9	T_2 -decomposition (Theorem 3.1)	
10	(0+i, 6+i, 1+i, 5+i, 2+i, 3+i, 4+i), i=0,1,2	
	(1,4,8,9,7;5,6)	
	(3,7,8,6,9;1,2)	
	(7,4,9,5,8;0,1)	(9,0,5,6)
	(9,3,8,2,7;0,1)	
11	(0+i, 1+i, 10+i, 2+i, 9+i; 5+i, 6+i), i=0,, 3	
	(4+i,5+i,3+i,6+i,2+i;7+i,8+i), i=0,1,2	
	(0,6,1,7,9;8,10)	(0,10)
	(9,0,5,10,8;6,7)	
12,13	T_2 -decomposition (Theorem 3.1)	

Table 7 continued

Packing

Remains for Covering

14
$$(0+i, 1+i, 13+i, 2+i, 12+i; 6+i, 7+i), i=0, ..., 6$$

 $(9+i, 10+i, 8+i, 11+i, 7+i; 0+i, 1+i), i=0, ..., 4$
 $(2+i, 7+i, 8+i, 6+i, 9+i; 4+i, 5+i), i=0, 1$
 $(12, 5, 0, 13, 6; 1, 11)$
15 $(2+i, 14+i, 3+i, 13+i, 4+i; 12+i, 0), i=0, ..., 6$
 $(9+i, 7+i, 10+i, 6+i, 11+i; 5+i, 0), i=0, ..., 6$
 $(1, 2, 3, 4, 5; 6, 12)$
 $(3, 11, 12, 13, 14; 1, 7)$
 $(6, 7, 8, 9, 10; 11, 3)$ $(5,13)$

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

n

Let

(2)
$$K_{12m+2} = K_{12(m-1)} \cup K_{14,12(m-1)} \cup K_{14}, \ m \geq 2$$
.

Then, using Theorem 3.1, Corollary 3, and Table 7, for n = 14 we have the packing and the covering as well.

k = 3.

Let

(3)
$$K_{12m+3} = K_{12(m-1)} \cup K_{15,12(m-1)} \cup K_{15}, m \ge 2.$$

Then, using Theorem 3.1, Corollary 3, and Table 7, for n = 15 we have the packing and the covering as well.

k = 5.

Let

$$(4) K_{12m+5} = K_{12m} \cup K_{5,12m} \cup K_5.$$

We have by Theorem 3.1, and Corollary 3, that $T_2 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$.

Take a tree from the decomposition of $K_{5,12m}$, say, (12 m, 0, 12 m + 1, 1, 12 m + 2; 2, 3) and with the non-packed K_5 create the following trees:

$$(12m,0,12m+1,1,12m+2;12m+3,12m+4)$$
 and $(12m+3,12m+4,12m,12m+1,12m+2;2,3)$.

Hence, the packing is completed and we are left with the non-packed path (12m + 2, 12m, 12m + 3, 12m + 1, 12m + 4).

$$k = 6.$$

Let

 $(5) K_{12m+6} = K_{12m} \cup K_{6,12m} \cup K_6.$

Using Theorem 3.1, and Corollary 3, $T_2 \mid K_{12m} \cup K_{6,12m}$.

Denote the vertices of K_6 by, $\{12 m + j\}$, $j = 0, 1, \dots, 5$.

Take some tree from the T_2 -decomposition of $K_{6,12m}$, say, (12m,0,12m+1,1,12m+2;2,3).

Using that tree and the unpacked graph K_6 we create the following trees T_2 :

$$(0, 12m, 12m+1, 12m+2, 12m+3; 12m+4, 12m+5);$$

$$(0, 12m+1, 1, 12m+2, 12m+4; 12m, 12m+5)$$
; and

$$(12m+4,12m+1,12m+3,12m,12m+2;2,3).$$

We are left with the non-packed star:

(12m+5; 12m, 12m+1, 12m+2) for the covering.

$$k = 7, 8, 10, 11.$$

Let

(6)
$$K_{12m+k} = K_{12m} \cup K_{k,12m} \cup K_k$$
.

From Theorem 3.1, and Corollary 3, we have that $T_2 \mid K_{12m} \cup K_{k,12m}$. In Table 7 we find the packing and covering of K_k . Hence, the proof is completed.

Theorem 3.4. The Main Theorem is valid for T_3 for all n > 7.

Table 8

n	Packing	Remains for Covering
7	(0,2,6,4(5),1,3)	
	(0,1,2,3(4),5,6)	$(0,6,3) \cup (2,5)$
	(6,1,5,0(3),4,2)	
8	(0,2,6,4(5),1,3)	
	(0,1,2,3(4),5,6)	(1,6,7;0,5)
	(0,6,3,7(4),2,5)	
	(7,1,5,0(3),4,2)	
9	T_3 -decomposition (Theorem 3.1)	
10	(0,6,3,7(4),2,5)	
	(1,3,8,5(4),9,6)	
	(4,8,9,1(0),2,3)	
	(7,1,5,0(3),4,2)	$(1,4,9) \cup (0,8)$
	(8,1,6,7(5),0,9)	

Table 8 continued

n	Packing	Remains for Covering
	(8,2,9,3(4),5,6)	
	(9,7,8,6(4),2,1)	
11	(0,6,3,10(1),7,2)	
	(1,3,8,5(4),9,6)	
	(1,4,9,10(2),8,0)	
	(3,7,4,10(0),6,5)	
	(4,8,9,1(0),2,3)	
	(7,1,5,0(3),4,2)	(2,5)
	(8,1,6,7(5),0,9)	
	(8,2,9,3(4),5,10)	
	(9,7,8,6(4),2,1)	
12,13	T_3 -decomposition (Theorem 3.1)	
14	(0,6,3,10(1),7,2)	
	(1,3,8,5(4),9,6)	
	(1,4,9,10(2),8,0)	
	(2,5,11,4(12),13,3)	
	(3,7,4,10(0),6,5)	
	(4,8,9,1(0),2,3)	
	(5,12,3,11(10),13,2)	
	(6,13,7,12(0),8,11)	
	(7,1,5,0(3),4,2)	(11,12)
	(7,11,6,12(10),13,5)	
	(8,1,6,7(5),0,9)	
	(8,2,9,3(4),5,10)	
	(9,7,8,6(4),2,1)	
	(9,12,1,13(5),0,11)	
	(10,13,9,11(1),2,12)	
12 m, 12 m+1		
12m+4, $12m+9$	T_3 -decomposition (Theorem 3.1)	

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (2).

Then, using Theorem 3.1, Corollary 4, and Table 8, for n=14 we have the packing and the covering as well.

k = 3.

Let

 $(7) K_{12m+3} = K_{12m} \cup K_{3,12m} \cup K_3.$

Using Corollary 4 Theorem 3.1 we have that $T_3 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12 m, 12 m+1, 12 m+2. Take some T_3 from the decomposition of $K_{3,12m}$, say, (2,12m+1,5,12m+2(0),4,12m), and together with the non-packed triangle create the tree, (2,12m+1,5,12m+2(0),12m,4), leaving the path (4,12m+2,12m+1,12m) non-packed, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

We have by Theorem 3.1, and Corollary 4, that $T_3 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}$, $j=0,1,\ldots,4$.

Take a tree from the decomposition of $K_{5,12m}$, say, (0, 12m, 1, 12m+1(2), 3, 12m+2) and with the non-packed K_5 create the following trees:

$$(0, 12m, 1, 12m + 1(12m + 3), 12m + 4, 12m + 2)$$
 and $(2, 12m + 1, 3, 12m + 2(12m + 3), 12m, 12m + 4)$.

Hence, the packing is completed and we are left with (12 m + 2, 12 m + 1, 12 m, 12 m + 3, 12 m + 4) for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1, and Corollary 4, $T_3 \mid K_{12m} \cup K_{6,12m}$.

Denote the vertices of K_6 by, $\{12 m + j\}$, $j = 0, 1, \dots, 5$.

Take some tree from the T_3 -decomposition of $K_{6,12m}$, say, (0,12m,1,12m+1(2),3,12m+2).

Using that tree and the unpacked graph K_6 we create the following trees T_3 :

$$(2, 12m+1, 12m+4, 12m(0), 12m+2, 12m+5);$$

$$(12 m, 12 m + 5, 12 m + 3, 12 m + 2(12 m + 4), 3, 12 m + 1)$$
; and

(12m+5,12m+4,12m+3,12m+1(12m+2),1,12m).

We are left with the non-packed path:

(12m+3,12m,12m+1,12m+5).

k = 7, 8, 10, 11.

Let K_{12m+k} be as in (6).

From Theorem 3.1, and Corollary 4, we have that $T_3 \mid K_{12m} \cup K_{k,12m}$. In Table 8 we find the packing and covering of K_k . Hence, the proof is completed.

Lemma 3.5. $P(7,T_4) = 3$, $C(7,T_4) = 5$.

Proof: The proof is easy by straight forward verification.

Theorem 3.6. The Main Theorem is valid for T_4 for all $n \ge 8$.

Proof: The proof will take case of several cases according to the various values of n:

1

Table 9

n	Packing	Remains for Covering
8	(0;4,5,6,1-2,3)	
	(3;0,4,5,6-1,7)	(5.2 6 1 2)
	(4; 1, 5, 6, 7 - 1, 0)	(5;2,6,1-3)
	(7;0,3,5,6-2,4)	
9	T_4 -decomposition (Theorem 3.1)	
10	(0;4,5,6,1-2,3)	
	(3;0,4,5,6-1,7)	
	(4; 1, 5, 6, 7-1, 0)	
	(7;0,3,5,6-2,4)	(8; 0, 1, 9)
	(8; 3, 4, 7, 6-5, 2)	
	(9,0,1,3,2-8,5)	
	(9;4,6,7,5-1,3)	
11	(0;4,5,6,1-2,3)	
	(3,0,4,5,6-1,7)	
	(4; 1, 5, 6, 7-1, 0)	
	(7;0,3,5,6-2,4)	
	(8; 3, 4, 7, 6-5, 2)	(0,8)
	(9;0,4,6,5-1,3)	` ' /
	(9; 1, 2, 3, 7 - 10, 8)	
	(10;0,2,3,5-8,9)	
10 10 .1	(10;4,6,9,1-8,2)	
12 m 12 m 1		

12 m, 12 m+112 m+4, 12 m+9 T_4 -decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let

 $(8) K_{12m+2} = K_{12m} \cup K_{2,12m} \cup K_2.$

Then, using Corollary 1 and Theorem 3.1, we have the packing number leaving K_2 in (8) unpacked for the covering.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 1 and Theorem 3.1 we have that $T_4 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12m, 12m+1, 12m+2. Take some T_4 from the decomposition of $K_{3,12m}$, say, (12m; 0,1,2,3-12m+1,4). Instead of the edge (12m, 0) put (12m, 12m+2), so that we are left with the path (12m+2, 12m+1, 12m, 0) unpacked, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

Since $K_{5,12m} = 2m(K_{2,6} \cup K_{3,6})$ we have by Theorem 3.1 and Corollary 1 that $T_4 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$. Take a tree from the decomposition of $K_{5,12m}$, say, (12m;0,1,2,3-12m+1,4)

and with the non-packed K_5 create the following trees:

$$(12m; 0, 1, 12m + 1, 12m + 2 - 12m + 3, 12m + 4)$$
 and $(12m + 1; 4, 12m + 2, 12m + 3, 3 - 12m, 2)$.

Hence, the packing is completed and we are left with (12m+4; 12m+2, 12m+1, 12m-12m+3) for the covering.

k = 6.

Let

 $(9) K_{12m+6} = K_{12m+4} \cup K_{2,12m} \cup K_{2,4} \cup K_2.$

Using Theorem 3.1, and Corollary 1, $T_4 \mid K_{12m+4} \cup K_{2,12m}$.

Denote the vertices of $K_{2,4}$ by, $\{12 m, 12 m + 1\}$, $\{12 m + 2, 12 m + 3, 12 m + 4, 12 m + 5\}$.

Take some tree from the T_4 -decomposition of $K_{2,12m}$, say, (12m; 0, 1, 2, 3 - 12m + 1, 4).

Using that tree and the unpacked graph $K_{2,4} \cup K_2$ we create the following trees T_4 :

$$(12m; 0, 1, 12m + 2, 12m + 5 - 12m + 1, 4)$$
; and $(12m + 1; 12m + 2, 12m + 3, 12m + 4, 3 - 12m, 2)$.

Hence, the packing is completed and we are left with the non-packed star:

(12 m; 12 m + 1, 12 m + 3, 12 m + 4) for the covering.

k = 7.

Let

 $(10) K_{12m+7} = K_{12m+4} \cup K_{3,12m} \cup K_{3,4} \cup K_3.$

Using Theorem 3.1 and Corollary 1, $T_4 \mid K_{12m+4} \cup K_{3,12m}$.

Denote the vertices of $K_{3,4}$ by $\{12m, 12m+1, 12m+2\}$ and $\{12m+3, 12m+4, 12m+5, 12m+6\}$.

Take two trees from the T_4 -decomposition of $K_{3,12m}$, say, (12m; 0, 1, 2, 3 - 12m + 1, 4) and (12m + 1; 0, 1, 2, 5 - 12m + 2, 3).

Using those trees and the unpacked graph $K_{3,4} \cup K_3$ we create the following trees:

- (12m; 0, 1, 2, 12m + 3 12m + 1, 4);
- (12m; 12m+4, 12m+5, 12m+6, 12m+1-5, 12m+2);
- (12m+2; 12m+3, 12m+4, 12m+5, 12m+1-3, 12m);
- (12m+1;0,1,2,12m+6-12m+2,3). So the packing is completed.

We are left with the unpacked graph:

 $(12 m + 1; 12 m + 4, 12 m + 5) \cup (12 m, 12 m + 2)$ which proves the covering as well.

k = 8, 10, 11.

Let K_{12m+k} be as in (6). We have from Theorem 3.1, and Corollary 1, that $T_4 \mid K_{12m} \cup K_{12m,k}$. From Table 9 we have the packing and covering of K_k . Hence, the proof of Main Theorem for T_4 is completed.

Theorem 3.7. The Main Theorem is valid for T_5 for all $n \ge 7$.

Table 10

n	Packing	Remains for Covering
7	(0,1,2(3),4;5,6)	
	(1,4,3(0),6;2,5)	$(0,2) \cup (3,5) \cup (1,6)$
	(3,1,5(2),0;4,6)	
8	(0,1,2(3),4;5,6)	
	(0,7,3(4),1;5,6)	
	(1,4,7(2),6;0,5)	(0,3,6,2,5)
	(1,7,5(3),0;2,4)	
9	T_5 -decomposition (Theorem 3.1)	•
10	(0,1,2(3),4;5,6)	
	(0,7,3(4),1;5,6)	
	(1,4,7(2),6;0,5)	$(0,8,9) \cup (2,5)$
	(1,7,5(3),0;2,4)	
	(1,8,3(0),9;5,7)	
	(4,8,2(6),9;0,1)	
	(4,9,6(3),8;5,7)	

Table 10 continued

n	Packing	Remains for Covering
11	(0,1,2(3),4;5,6) (0,7,3(4),1;5,6) (1,4,7(2),6;0,5) (1,7,5(3),0;2,4) (2,5,10(4),3;8,9) (3,0,10(1),9;5,8) (4,8,2(6),9;0,1)	(2,10)
12,13 14	(4,9,6(3),8;5,7) (9,7,10(6),8;0,1) T_5 -decomposition (Theorem 3.1 (0,1,2(3),4;5,6) (0,3,13(6),10;1,9) (0,7,3(4),1;5,6) (0,9,13(1),2;6,8) (0,10,11(6),9;5,8) (1,4,7(2),6;0,5) (1,7,5(3),0;2,4) (2,5,10(4),3;8,9)	(2,10)
12 m, 12 m+1 12 m+4, 12 m+9	(4,9,6(3),8;5,7) (8,0,12(5),10;6,7) (9,7,11(5),8;1,10) (10,2,11(3),12;6,7) (11,1,12(2),13;4,5) (12,4,11(0),13;7,8) T ₅ -decomposition (Theorem 3.1)

We have to prove the theorem in Ihe cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (2).

Then, using Theorem 3.1, Corollary 5, and Table 10, for n = 14 we have the packing and the covering as well.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 5 and Theorem 3.1 we have that $T_5 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take some T_5 from the decomposition of $K_{3,12m}$, say, (0, 12m, 1(12m + 1), 12m + 2; 2, 3). Then together with the non-packed triangle we consider the tree: (12m + 1, 1, 12m(0), 12m + 2; 2, 3), leaving the path (1, 12m + 2, 12m + 1, 12m) unpacked, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

We have by Theorem 3.1 and Corollary 5 that $T_5 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$.

Take a tree from the decomposition of $K_{5,12m}$, say, (0, 12m, 1(12m+1), 12m+2; 2, 3), and with the non-packed K_5 create the following trees:

$$(0, 12m, 1(12m+1), 12m+2; 12m+3, 12m+4)$$
 and $(12m+4, 12m+3, 12m+1(12m), 12m+2; 2, 3)$.
Hence, the packing is completed and we are left with $(12m+1, 12m+4, 12m; 12m+2, 12m+3)$ for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1 and Corollary 5, $T_5 \mid K_{12m} \cup K_{6,12m}$. Denote the vertices of K_6 by, $\{12m+j\}, j=0,1,\ldots,5$.

Take some tree from the T_5 -decomposition of $K_{6,12m}$, say, (0,12m,1(12m+1),12m+2;2,3).

Using that tree and the unpacked graph K_6 we create the following trees T_5 :

$$(12 m + 4, 12 m, 1(12 m + 1), 12 m + 2; 12 m + 3, 12 m + 5);$$

 $(12 m + 5, 12 m, 12 m + 1(12 m + 4), 12 m + 2; 2, 3);$ and
 $(12 m + 5; 12 m + 4, 12 m + 3(12 m + 1), 12 m; 0, 12 m + 2).$
We are left with the non-packed graph:
 $(12 m + 1, 12 m + 5, 12 m + 3) \cup (12 m + 2, 12 m + 4).$

k = 7, 8, 10, 11.

Let K_{12m+k} be as in (6).

From Theorem 3.1 and Corollary 5 we have that $T_5 \mid K_{12m} \cup K_{k,12m}$. In Table 10 we have the packing and covering of K_k . Hence, the proof is completed.

Lemma 3.8.
$$P(7,T_6) = 3$$
, $C(7,T_6) = 5$.

Proof: The proof is easy by straight forward verification.

Theorem 3.9. The Main Theorem is valid for T_6 for all $n \ge 8$.

Proof: The proof will take case of several cases according to the various values of n:

Table 11

n	Packing	Remains for Covering
8	(1,2;0,3,4;5,6)	
	(2,4;1,3,6;0,7)	
	(3,4;7,1,1;2,5)	$(2,5,3) \cup (4,0,7)$
	(0,1;5,7,2;3,4)	
9	T_6 -decomposition (Theorem 3.1)	
10	(1,2;0,3,4;5,6)	
	(2,4;1,3,6;0,7)	
	(3,4;7,1,1;2,5)	(9; 0, 5, 8)
	(0,1;5,7,2;3,4)	
	(1,2;8,3,9;4,5)	
	(1,2;9,7,8;4,5)	
	(2,3;5,8,0;4,7)	
11	(1,2;0,3,4;5,6)	
	(2,4;1,3,6;0,7)	
	(3,4;7,1,1;2,5)	(0,10)
	(0,1;5,7,2;3,4)	• • •
	(1,2;8,3,9;4,5)	
	(1,2;9,7,8;4,5)	
	(1,2;10,9,8;0,5)	
	(2,9;5,3,10;6,7)	
	(5,8;10,4,0;7,9)	
12m, 12m+1		

12m+4, 12m+9 T_6 -decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (8). Then, using Corollary 1 and Theorem 3.1, we have the packing number leaving K_2 in (8) unpacked for the covering.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 1 and Theorem 3.1 we have that $T_6 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take some T_6 from the decomposition of $K_{3,12m}$, say, (0,1;12m,2,12m+1;3,4). Replace the edge (12m,0) by (12m,12m+2), so that we are left with the path (12m+2,12m+1,12m,0) unpacked, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

Since $K_{5,12m} = 2m(K_{2,6} \cup K_{3,6})$ we have by Theorem 3.1 and Corollary 1 that $T_6 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}$, $j=0,1,\ldots,4$. Take a tree from the decomposition of $K_{5,12m}$, say, (0,1;12m,2,12m+1;3,4), with the non-packed K_5 create the following trees:

$$(0,1; 12m, 2, 12m + 1; 12m + 2, 12m + 3)$$
 and $(3,4; 12m + 1, 12m, 12m + 4; 12m + 2, 12m + 3)$.

Now take the tree (0, 1; 12 m+2, 2, 12 m+3; 3, 4) and replace the edge (0, 12 m+2) by the edge (12 m, 12 m+2). Hence, the packing is completed and we are left with the non-packed graph $(12 m+4, 12 m+1) \cup (0, 12 m+2, 12 m+3, 12 m)$ for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1 and Corollary $1, T_6 \mid K_{12m} \cup K_{6,12m}$. Denote the vertices of K_6 by, $\{12m+j\}, j=1,2,\ldots,5$.

Take some trees from the T_6 -decomposition of $K_{6,12m}$, say, (0,1;12m,2,12m+1;3,4), (0,1;12m+1,5,12m+2;3,4) and together with the non-packed K_6 create the trees:

```
(0,1;12m,2,12m+1;12m+3,12m+4);
```

$$(0, 1; 12m, 12m + 2, 12m + 1; 3, 4)$$
; and

$$(0,1; 12m+1,5, 12m+2; 12m+3, 12m+4).$$

We are left with the path:

$$(12 m, 12 m + 1, 12 m + 5, 12 m + 4)$$
 for the covering.

k = 7.

Let K_{12m+7} be as in (6) for k = 7.

Using Theorem 3.1 and Corollary 1, $T_6 \mid K_{12m} \cup K_{7,12m}$.

Take as in the case k = 6. Then the unpacked path (12m, 12m + 1, 12m + 5, 12m + 4) with the star (12m+6; 12m, 12m+1, 12m+2, 12m+3, 12m+4, 12m+5) and the tree (0, 1; 12m+5, 2, 12m+3; 4, 5) create the following trees:

```
(0, 1; 12m + 5, 12m + 1, 12m + 6; 12m, 12m + 2); and
```

$$(4,5; 12m+3,2,12m+5; 12m+4,12m+6).$$

We are left with the non-packed graph:

 $(12m+3,12m+6,12m+4) \cup (12m,12m+1)$ for the covering.

k = 8, 10, 11.

Let K_{12m+k} be as in (6). We have from Theorem 3.1, and Corollary 1, that $T_6 \mid K_{12m} \cup K_{12m,k}$. From Table 11 we have the packing and covering of K_k . Hence, the proof of Main Theorem for T_6 is completed.

Theorem 3.10. The Main Theorem is valid for T_7 for all $n \ge 7$.

Table 12

n	Packing	Remains for Covering
7	(5,1,0;2,3,4-6) (5,4,2;3,1,6-0) (1,6,5;0,2,3-4)	(4; 1, 3, 6)
8	(5,1,0;2,3,4-6) (5,4,2;3,1,6-0) (1,6,5;0,2,3-4) (4,1,7;2,5,3-6)	(7;0,4,6)∪(1,3)
9	T_7 -decomposition (Theorem 3.1)	
10	(5,1,0;2,3,4-6)	
11	(5,4,2;3,1,6-0) (1,6,5;0,2,3-4) (4,1,7;2,5,3-6) (0,7,8;5,6,3-1) (4,7,9;0,5,8-2) (7,6,9;3,4,1-8) (5,1,0;2,3,4-6) (5,4,2;3,1,6-0) (1,6,5;0,2,3-4) (4,1,7;2,5,3-6) (0,7,8;5,6,3-10)	(8;0,4) ∪ (9,2) (2,10)
	(4,7,9;0,5,8-2) (7,6,9;3,4,1-8) (0,8,10;6,7,9-2) (3,1,10;0,5,4-8) T_7 -decomposition (Theorem 3.1) (5,1,0;2,3,4-6) (5,4,2;3,1,6-0) (1,6,5;0,2,3-4) (4,1,7;2,5,3-6)	

Table 12 continued

n

Packing

Remains for Covering

$$(0,7,8;5,6,3-10)$$

 $(4,7,9;0,5,8-2)$
 $(7,6,9;3,4,1-8)$
 $(0,8,10;6,7,9-2)$
 $(3,1,10;0,5,4-8)$
 $(11,8,12;9,10,13-3)$
 $(12,3,11;0,1,4-13)$
 $(12,1,13;5,7,10-11)$
 $(10,2,13;8,9,11-12)$
 $(13,0,12;3,7,2-11)$
 $(12,5,11;7,9,6-13)$

12m, 12m+1

12m+4, 12m+9 T_7 -decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (2).

Then, using Theorem 3.1, Corollary 2, and Table 12 for n = 14, we have the packing and the covering as well.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 2 and Theorem 3.1 we have that $T_7 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12m, 12m+1, 12m+2. Take some T_7 from the decomposition of $K_{3,12m}$, say, (12m+1,2,12m;0,1,3-12m+2). Instead of the edge (12m,3) put (12m,12m+2), so that we are left with the path (12m+2,12m+1,12m,3) unpacked, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

We have by Theorem 3.1 and Corollary 2 that $T_7 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$.

Take a tree from the decomposition of $K_{5,12m}$, say, (12m+1,2,12m;0,1,3-12m+2) and with the non-packed K_5 create the following trees:

$$(2, 12m+1, 12m; 0, 1, 12m+3-12m+2)$$
 and $(2, 12m, 12m+4; 12m+1, 12m+3, 12m+2-3)$.

Hence, the packing is completed and we are left with (3, 12m, 12m + 2, 12m + 1, 12m + 3) for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1 and Corollary 2, $T_7 \mid K_{12m} \cup K_{6,12m}$. Denote the vertices of K_6 by, $\{12m+j\}, j=0,1,\ldots,5$.

Take some tree from the T_7 -decomposition of $K_{6,12m}$, say, (12m+1,2,12m;0,1,3-12m+2).

Using that tree and the unpacked graph K_6 we create the following trees T_7 :

$$(12m+1,2,12m;12m+3,12m+4,3-12m+2);$$

$$(0, 12m, 12m + 5; 12m + 1, 12m + 2, 12m + 3 - 12m + 4)$$
 and

$$(1, 12m, 12m + 2; 12m + 1, 12m + 3, 12m + 4 - 12m + 5).$$

We are left with the non-packed star:

$$(12m+1;12m,12m+3,12m+4).$$

k = 7, 8, 10, 11.

Let K_{12m+k} be as in (6).

From Theorem 3.1 and Corollary 2, we have that $T_7 \mid K_{12m} \cup K_{k,12m}$. In Table 12 we find the packing and covering of K_k . Hence, the proof is completed.

Theorem 3.11. The Main Theorem is valid for T_8 for all $n \ge 7$.

Table 13

n	Packing	Remains for Covering
7	(0,1,2;3(6),4(5))	
	(0,3,4;1(5),6(2))	(2,0,5,3)
	(4,0,6;1(3),5(2))	
8	(0,1,2;3(6),4(5))	
	(0,3,4;1(5),6(2))	$(2,0,5,6) \cup (3,7)$
	(3,5,7;4(0),6(1))	
	(6,0,7;1(3),5(2))	
9	T_8 -decomposition (Theorem 3.1)	
10	(0,1,2;3(6),4(5))	
	(0,3,4;1(5),6(2))	$(1,3) \cup (2,7) \cup (6,8)$
	(2,5,8;9(3),7(0))	
	(3,5,7;4(0),6(1))	
	(8,1,9;0(2),5(6))	
	(8,2,9;6(0),7(1))	
	(9,4,8;0(5),3(7))	

```
11
                     (0,1,2;3(6),4(5))
                     (0,3,4;1(5),6(2))
                                                       (4, 10)
                     (2,5,8;9(3),7(0))
                    (3,5,7;4(0),6(1))
                     (7,2,10;3(8),6(9))
                    (8,0,10;1(3),9(4))
                    (8,1,9;0(2),5(6))
                     (8,2,9;6(0),7(1))
12,13
                    T_8-decomposition (Theorem 3.1)
14
                     (0,1,2;3(6),4(5))
                    (0,3,4;1(5),6(2))
                                                       (9, 12)
                    (2,5,11;8(3),7(0))
                    (3,5,7;4(0),6(1))
                     (5,8,9;12(6),13(11))
                    (8,1,9;0(2),5(6))
                     (8,2,9;6(0),7(1))
                    (11, 2, 12; 3(1), 4(10))
                     (11,4,13;2(10),3(9))
                    (11, 12, 13; 1(10), 7(2))
                    (12,1,11;3(10),9(6))
                    (12,5,13;8(0),10(9))
                    (13,0,12;8(7),10(6))
                     (13,6,11;0(10),9(4))
15
                     (0,1,2;3(6),4(5))
                    (0,3,4;1(5),6(2))
                                                       (8, 13, 10, 14)
                    (0, 11, 1; 12(2), 13(3))
                    (0, 12, 5; 13(2), 14(1))
                    (0, 13, 6; 11(5), 14(2))
                    (0, 14, 3; 11(2), 12(6))
                    (2,5,8;9(3),7(0))
                    (3,5,7;4(0),6(1))
                    (4,11,7;12(8),13(9))
                    (7,2,10;3(8),6(9))
                    (8,0,10;1(3),9(4))
                    (8,1,9;0(2),5(6))
                    (8,2,9;6(0),7(1))
                    (8, 11, 13; 12(10), 14(7))
                    (10,4,12;11(9),14(8))
                    (10, 11, 14, 4(13), 9(12))
12m, 12m+1
12m+4,12m+9
                    T_8-decomposition (Theorem 3.1)
```

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (2).

Then, using Theorem 3.1, Corollary 5, and Table 13 for n = 14, we have the packing and the covering as well.

k = 3.

Let K_{12m+3} be as in (3).

Using Corollary 5, Theorem 3.1, and Table 13 for n = 15, we have the packing and the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

We have by Theorem 3.1 and Corollary 5 that $T_8 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$.

Take a tree from the decomposition of $K_{5,12m}$, say, (0, 12m, 1; 12m+1(2), 12m+2(3)), and with the non-packed K_5 create the following trees:

$$(0, 12m, 12m + 2; 12m + 1(1), 12m + 3(12m + 4))$$
 and $(1, 12m, 12m + 4; 12m + 1(12m + 3), 12m + 2(3))$.

Hence, the packing is completed and we are left with $(2, 12m + 1, 12m, 12m + 3) \cup (1, 12m + 2)$ for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1 and Corollary 5, $T_8 \mid K_{12m} \cup K_{6,12m}$. Denote the vertices of K_6 by, $\{12m+j\}$, $j=0,1,\ldots,5$.

We do the same procedure as for k=5 with the additional tree (1,12m+2,12m+5;12m+1(2),12m+3(12m)). We are left with the non-packed path (12m+1,12m,12m+5,12m+4).

k = 7, 8, 10, 11.

Let K_{12m+k} be as in (6).

From Theorem 3.1 and Corollary 5, we have that $T_3 \mid K_{12m} \cup K_{k,12m}$. In Table 13 we find the packing and covering of K_k . Hence, the proof is completed.

Theorem 3.12. The Main Theorem is valid for T_9 for all $n \ge 7$.

Table 14

n	Packing	Remains for Covering
7	(0,2,3; 1,4; 5,6), (2,3,4; 0,5; 1,6)	
	(3,4,5; 2,6; 0,1)	(3; 4,5,6)
8	(0,2,3; 1,4; 5,6), (2,3,4; 0,5; 1,6)	
	(3,4,5; 2,6; 0,1), (4,5,6; 3,7; 0,1)	(7; 2,4,5,6)
9	T_9 -decomposition (Theorem 3.1)	
10	(0,2,3; 1,4; 5,6), (2,3,4; 0,5; 1,6)	
	(3,4,5; 2,6; 0,1), (4,5,6; 3,7; 0,1)	$(5,6,9) \cup (1,8)$
	(2,3,4; 9,7; 5,6), (0,5,6; 8,7; 2,4)	
	(2,3,4; 8,9; 0,1)	
11	(0,2,3; 1,4; 5,6), (2,3,4; 0,5; 6,10)	
	(3,4,5; 2,6; 0,1), (4,5,6; 3,7; 0,1)	(8,10)
	(2,3,4; 9,7; 5,6), (0,5,6; 8,7; 2,4)	
	(2,3,4; 8,9; 0,1), (2,3,4; 10,9; 5,6)	
	(0,6,7; 10,1; 5,8)	
1213	T_9 -decomposition (Theorem 3.1)	
14	(0,2,3; 1,4; 5,6), (2,3,4; 0,5; 6,10)	
	(3,4,5; 2,6; 0,1), (4,5,6; 3,7; 0,1)	(9,12)
	(2,3,4; 9,7; 5,6), (0,5,6; 8,7; 2,4)	
	(2,3,4; 8,9; 0,1), (2,3,4; 10,9; 5,6)	
	(0,6,7; 10,1; 5,8), (0,1,2; 11,3; 12,13)	
	(4,5,6; 11,12; 1,2), (4,5,6; 13,12; 0,7)	
	(4,5,6; 12,8; 11,13), (7,9,10; 11,13; 0,	1)
	(2,7,9; 13,10; 8,12)	•

12 m, 12 m+112 m+4, 12 m+9 T_9 -decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (2).

Then, using Theorem 3.1, Corollary 4, and Table 14 for n = 14, we have the packing and the covering as well.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 4 and Theorem 3.1 we have that $T_9 \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (3) are labelled 12 m, 12 m+1, 12 m+2. Take some T_9 from the decomposition of $K_{3,12m}$, say, (0,1,2;12m,3;12m+1,12m+2) and (0,1,2;12m+2,4;12m,12m+1) and together with the non-packed triangle create the trees (1,2,4;12m,3;12m+1,12m+2) and (0,1,2;12m+2,12m+1;12m,4) leaving the path (4,12m+2,12m,0) non-packed, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

We have by Theorem 3.1 and Corollary 4 that $T_9 \mid K_{12m} \cup K_{5,12m}$. Denote the vertices of K_5 by: $\{12m+j\}, j=0,1,\ldots,4$.

Take two trees from the decomposition of $K_{5,12m}$, say, (1,2,4;12m+2,0;12m+2,12m+4) and (1,2,3;12m+3,4;12m+1,12m+3) and with the non-packed K_5 create the following trees:

$$(1,2,12m+2;12m+3,12m;12m+1,12m+4);$$

 $(12m+1,12m+3,12m+4;12m+3,4;12m,12m+2);$ and
 $(2,4,12m+4;12m+2,0;12m+2,12m+4).$

Hence, the packing is completed and we are left with (1, 12m; 12m + 2, 12m + 1; 12m + 4) for the covering.

k = 6.

Let K_{12m+6} be as in (5). Using Theorem 3.1 and Corollary 4, $T_9 \mid K_{12m} \cup K_{6,12m}$. Denote the vertices of K_6 by, $\{12m+j\}$, $j=0,1,\ldots,5$.

We proceed the case k=5 so that with the non-packed graph left together with the star (12m+5; 12m, 12m+1, 12m+2, 12m+3, 12m+4) we get the additional tree (12m, 12m+3, 12m+4; 12m+5, 12m+2; 1, 12m+1).

We are left with the non-packed graph $(12 m+4, 12 m+1, 12 m+5) \cup (12 m, 12 m+2)$.

k = 7, 8, 10, 11.

Let K_{12m+k} be as in (6).

From Theorem 3.1 and Corollary 4, we have that $T_9 \mid K_{12m} \cup K_{k,12m}$. In Table 14 we find the packing and covering of K_k . Hence, the proof is completed.

Lemma 3.13.

- (i) $P(7,T_{10}) = 2, C(7,T_{10}) = 4.$
- (ii) $P(8,T_{10}) = 3$, $C(8,T_{10}) = 5$.

Proof: Since $\Delta(T_{10}) = 5$ one can easily check that $P(7, T_{10}) = 2$, and $P(8, T_{10}) = 3$. The covering, hence, is obvious.

Theorem 3.14. The Main Theorem is valid for T_{10} for all $n \ge 9$.

Proof: The proof will take case of several cases according to the various values of n:

Table 15

n	Packing	Remains for Covering
9	T_{10} -decomposition (Theorem 3.1)	
10	(0;4,5,6,7,1-2)	•
	(2;4,5,6,7,3-1)	
	(3;4,5,6,7,0-2)	
	(1;4,5,8,9,6-7)	$(1;2;3) \cup (0,9)$
	(7; 1, 4, 5, 9, 8-0)	• • • • • • • •
	(8; 2, 3, 4, 9, 6-5)	
	(9;2,3,4,6,5-8)	
11	(0;4,5,6,7,1-2)	
	(2;4,5,6,7,3-1)	
	(3:4.5.6.7.0-2)	
	(1;4,5,8,9,6-7)	
	(7; 1, 4, 5, 9, 8 - 0)	(1,3)
	(8; 2, 3, 4, 9, 6-5)	(-,-)
	(9;2,3,4,6,5-8)	
	(10; 3, 4, 5, 6, 0 - 9)	
	(10, 2, 7, 8, 9, 1-3)	
12m, 12m+1	(10, 2, 1, 0, 1, 1, 0)	

12m+4, 12m+9 T_{10} -decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (8).

Using Corollary 1 and Theorem 3.1, we have the packing number leaving K_2 in (8) unpacked for the covering.

k = 3.

Let K_{12m+3} be as in (7).

Using Corollary 1 and Theorem 3.1 we have that $T_{10} \mid K_{12m} \cup K_{3,12m}$.

Suppose the vertices of K_3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take some T_{10} from the decomposition of $K_{3,12m}$, say, (12 m; 0, 1, 2, 3, 4 - 12 m + 1). Instead of the edge (12 m, 0) put (12 m, 12 m + 2), so that we are left with the path (12m+2,12m+1,12m,0) unpacked, a fact which proves the covering as well.

k = 5.

Let K_{12m+5} be as in (4).

Since $K_{5,12m} = 2m(K_{2,6} \cup K_{3,6})$ we have by Theorem 3.1 and Corollary 1 that $T_{10} \mid K_{12m} \cup K_{5,12m}$.

Denote the vertices of K_5 by: $\{12 m + j\}, j = 0, 1, \dots, 4$.

Take one $K_{2,6}$ from 2m, say, with vertex sets $\{12m, 12m+1\}$ and $\{0, 1, 2, 3, 4, 5\}$. We have two trees T_{10} in the decomposition:

$$(12m; 0, 1, 2, 3, 4 - 12m + 1)$$
 and $(12m + 1; 0, 1, 2, 3, 5 - 12m)$.

Using these trees and the unpacked K_5 we create three new trees T_{10} :

$$(12m; 0, 1, 2, 12m + 4, 12m + 2 - 12m + 3);$$

$$(12m; 3, 4, 5, 12m + 3, 12m + 1 - 1)$$
; and

$$(12m+1;2,3,5,12m+2,12m+4-12m+3).$$

We are left with the unpacked graph,

$$(12m+1;0,4,12m+3) \cup (12m+2,12m+4),$$

which can be covered by one tree T_{10} .

Hence, the covering is also proved.

k = 6.

Let K_{12m+6} be as in (9). Using Theorem 3.1 and Corollary 1, $T_{10} \mid K_{12m+4} \cup K_{2,12m}$.

Denote the vertices of $K_{2,4}$ by, $\{12 m, 12 m+1\}$ and $\{12 m+2, 12 m+3, 12 m+4, 12 m+5\}$.

Take some tree from the T_{10} -decomposition of $K_{2,12m}$, say, (12m; 0, 1, 2, 3, 4 - 12m + 1).

Using that tree and the unpacked graph $K_{2,4} \cup K_2$ we create the following trees T_{10} :

$$(12m; 0, 1, 2, 3, 12m + 1 - 12m + 2);$$

$$(12m; 12m+2, 12m+3, 12m+4, 12m+5, 4-12m+1).$$

We are left with the star: (12m+1; 12m+3, 12m+4, 12m+5) unpacked.

Hence, the covering is proved as well.

k = 7.

Let K_{12m+7} be as in (10).

Using Theorem 3.1 and Corollary 1, $T_{10} \mid K_{12m+4} \cup K_{3,12m}$.

Denote the vertices of $K_{3,4}$ by $\{12m, 12m+1, 12m+2\}$ and $\{12m+3, 12m+4, 12m+5, 12m+6\}$. Take two trees from the T_{10} -decomposition of $K_{3,12m}$, say, (12m; 0, 1, 2, 3, 4 - 12m+1) and (12m+2; 0, 1, 2, 3, 5 - 12m+1).

Using those trees and the unpacked graph $K_{3,4} \cup K_3$, we create the following trees:

```
(12m; 0, 1, 2, 3, 12m + 1 - 12m + 3);

(12m; 12m + 3, 12m + 4, 12m + 5, 12m + 6, 4 - 12m + 1);

(12m + 2; 0, 1, 2, 3, 12m + 1 - 12m + 4);

(12m + 2; 12m + 3, 12m + 4, 12m + 5, 12m + 6, 5 - 12m + 1).

So the packing is completed. We are left with the unpacked graph:

(12m + 1; 12m + 5, 12m + 6) \cup (12m, 12m + 2),

which proves the covering as well.
```

k = 8, 10, 11.

Let K_{12m+k} be as in (6).

We have from Theorem 3.1 and Corollary 1 that $T_{10} \mid K_{12m} \cup K_{12m,k}$. From Table 15 we have the packing and covering of K_k . Hence, the proof of Main Theorem for T_{10} is completed.

Lemma 3.15.

- (i) $P(7,T_{11}) = 1, C(7,T_{11}) = 6$,
- (ii) $P(8,T_{11}) = 3, C(8,T_{11}) = 7,$
- (iii) $P(9,T_{11}) = 5, C(9,T_{11}) = 8,$
- (iv) $P(10,T_{11}) = 7$, $C(10,T_{11}) = 9$.

Proof: The proof of (i) - (iii) is easy and follows immediately. It is easy to see that $P(10, T_{11}) = 7$. In order to see that $C(10, T_{11}) = 9$ observe that the seven stars T_{11} in the packing of K_{10} leave three vertices, say, x, y, z, which are not the centers of any star. So that the triangle (x, y, z) is left non-packed. Hence, $C(10, T_{11}) = 9$.

The following is obvious:

Lemma 3.16.
$$T_{11} \mid K_{s,12t}$$
, for all s, t positive integers.

Theorem 3.17. The Main Theorem is valid for T_{11} for all $n \ge 11$.

Table 16

n	Packing	Remains for Covering
11	(0; 5, 6, 7, 8, 9, 10), (1; 0, 2, 3, 8, 9, 10)	
	(2;0,3,7,8,9,10), (3;0,4,5,8,9,10)	
	(4;0,1,2,5,8,9), (5;1,2,6,7,8,9)	(8,9)
	(6;1,2,3,4,8,9), (7;1,3,4,6,8,9)	
	(10, 4, 5, 6, 7, 8, 9)	
17	(0;5,6,7,8,9,10), (1;0,2,3,8,9,10)	
	(2;0,3,7,8,9,10), (3;0,4,5,8,9,10)	
	(4;0,1,2,5,8,9), (5;1,2,6,7,8,9)	
	(6; 1, 2, 3, 4, 8, 9), (7; 1, 3, 4, 6, 8, 9)	
	(9; 8, 12, 13, 15, 16), (10; 4, 5, 6, 7, 8, 9)	
	(11;0,1,2,3,4,5), (11;6,7,8,10,12,13)	(11; 9, 14, 15, 16)
	(12;0,1,2,3,4,5), (12;6,7,8,10,13,14)	
	(13;0,1,2,3,4,5), (13;6,7,8,10,14,15)	
	(14; 0, 1, 2, 3, 4, 5), (14; 6, 7, 8, 10, 15, 16)	
	(15;0,1,2,3,4,5), (15;6,7,8,10,12,16)	
	(16; 0, 1, 2, 3, 4, 5), (15; 6, 7, 8, 10, 12, 13)	

We have to prove the theorem in the cases of (1) for $m \ge 1$.

k = 2.

Let K_{12m+2} be as in (8). Then, using Theorem 3.1 and Lemma 3.16 we have the packing, leaving the edge K_2 non-packed, for the covering.

k = 3.

Let K_{12m+3} be as in (7). Then by Theorem 3.1 and Lemma 3.16 we have that $T_{11} \mid K_{12m} \cup K_{3,12m}$. Now take three stars T_{11} of that decomposition, say, (12m;0,1,2,3,4,5), (12m+1;0,1,2,3,4,5), (12m+2;0,1,2,3,4,5). In the first star we replace the edge (12m,0) by (12m,12m+1), in the second star we replace the edge (12m+1,0) by (12m+1,12m+2), and in the third star we replace the edge (12m+2,0) by the edge (12m+2,12m). Hence, the packing was not changed and we are left with the non-packed star (0;12m,12m+1,12m+2) for the covering.

k = 5.

Let $K_{12m+5} = K_{12(m-1)} \cup K_{17,12(m-1)} \cup K_{17}, \ m \ge 2$.

From Theorem 3.1, Lemma 3.11, and Table 16 for n = 17, we have the packing and the covering, as well, in this case.

k = 6.

Let, K_{12m+6} be as in (5). Using Theorem 3.1 and Lemma 3.16 we have, $T_{11} \mid K_{12m} \cup K_{6,12m}$

Denote the vertices of K_6 by, $\{12 m + j\}$, $j = 0, 1, \dots, 5$.

We take some stars of that decomposition and change some of their edges creating new stars in a way that the packing is not changed but leaving the necessary nonpacked star for the covering. The arrow denotes the new star obtained from the old one.

$$(12m; 0, 1, 2, 3, 4, 5) \rightarrow (12m; 12m + 1, 1, 2, 3, 4, 5)$$

$$(12m + 1; 0, 1, 2, 3, 4, 5) \rightarrow (12m + 1; 12m + 2, 1, 2, 3, 4, 5)$$

$$(12m + 2; 0, 1, 2, 3, 4, 5) \rightarrow (12m + 2; 12m, 1, 2, 3, 4, 5)$$

$$(12m + 3; 0, 1, 2, 3, 4, 5) \rightarrow (12m + 3; 12m, 1, 2, 3, 4, 5)$$

$$(12m + 4; 0, 1, 2, 3, 4, 5) \rightarrow (12m + 4; 12m, 1, 2, 3, 4, 5)$$

$$(12m + 5; 0, 1, 2, 3, 4, 5) \rightarrow (12m + 5; 12m + 2, 1, 2, 3, 4, 5)$$

$$(12m; 6, 7, 8, 9, 10, 11) \rightarrow (12m; 12m + 5, 7, 8, 9, 10, 11)$$

$$(12m + 1; 6, 7, 8, 9, 10, 11) \rightarrow (12m + 1; 12m + 3, 7, 8, 9, 10, 11)$$

$$(12m + 2; 6, 7, 8, 9, 10, 11) \rightarrow (12m + 2; 12m + 3, 7, 8, 9, 10, 11)$$

$$(12m + 3; 6, 7, 8, 9, 10, 11) \rightarrow (12m + 3; 12m + 5, 7, 8, 9, 10, 11)$$

$$(12m + 4; 6, 7, 8, 9, 10, 11) \rightarrow (12m + 4; 12m + 1, 7, 8, 9, 10, 11)$$

$$(12m + 5; 6, 7, 8, 9, 10, 11) \rightarrow (12m + 4; 12m + 1, 7, 8, 9, 10, 11)$$

$$(0; 12m, 12m + 1, 12m + 2, 12m + 3, 12m + 4, 12m + 5)$$

$$(6; 12m, 12m + 1, 12m + 2, 12m + 3, 12m + 4, 12m + 5)$$

We are left with the non-packed star (12m + 4; 12m + 2, 12m + 3, 12m + 5), for the covering.

k = 7.

Let K_{12m+7} be as in (6). From Theorem 3.1 and Lemma 3.16 we have $T_{11} \mid K_{12m} \cup K_{7,12m}$. Denote the vertices of K_7 by $\{12m+j\}$, $j=0,1,\ldots,6$. Take the star (12m;12m+1,12m+2,12m+3,12m+4,12m+5,12m+6), so that we are left with a non-packed K_6 . From here we continue as in the case k=6.

k = 8.

Let K_{12m+8} be as in (6). From theorem 3.1 and Lemma 3.16 we have $T_{11}|K_{12m} \cup K_{8,12m}$. Denote the vertices of K_8 by $\{12m+j\}$, $j=0,1,\ldots,7$. Take the stars (12m;12m+1,12m+2,12m+3,12m+4,12m+5,12m+6), (12m+7;12m,12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5), and (12m+6;12m+1,12m+2,12m+3,12m+4,12m+5).

7, 12m + 1, 12m + 2, 12m + 3, 12m + 4, 12m + 5), so that we are left with a non-packed K_5 . From here we continue as in the case k = 5, where for m = 1 we have K_{17} and its packing and covering as in Table 11.

k = 10.

Let K_{12m+10} be as in (6). From Theorem 3.1 and Lemma 3.16 we have that $T_{11} \mid K_{12m} \cup K_{10,12m}$. In addition we pack K_{10} with the stars:

```
\begin{array}{c} (12\,m;\,12\,m+4\,,\,12\,m+5\,,\,12\,m+6\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+1;\,12\,m,\,12\,m+2\,,\,12\,m+3\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+2;\,12\,m,\,12\,m+3\,,\,12\,m+6\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+3;\,12\,m,\,12\,m+5\,,\,12\,m+6\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+4;\,12\,m+1\,,\,12\,m+2\,,\,12\,m+3\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+5;\,12\,m+1\,,\,12\,m+2\,,\,12\,m+4\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \\ (12\,m+6;\,12\,m+1\,,\,12\,m+4\,,\,12\,m+5\,,\,12\,m+7\,,\,12\,m+8\,,\,12\,m+9) \end{array}
```

We are left with the non-packed triangle (12m+7,12m+8,12m+9). We take three stars T_{11} from the above decomposition, say, (12m+7;0,1,2,3,4,5), (12m+8;0,1,2,3,4,5) and (12m+9;0,1,2,3,4,5). We replace the edges (12m+7,0) by (12m+7,12m+8), (12m+8,0) by (12m+8,12m+9), (12m+9,0) by (12m+9,12m+7), so that we are left with the non-packed star (0;12m+7,12m+8,12m+9) for the covering.

k = 11.

Let $K_{12\,m+11}$ be as in (6). From Theorem 3.1 and Lemma 3.16 we have that $T_{11} \mid K_{12\,m} \cup K_{11,12\,m}$. In Table 16 we find the packing and the covering of K_{11} . Hence, the proof is completed.

Acknowledgement.

I would like to thank the referee for his comments especially those concerning Theorem 3.2.

References

- [H] F. Harary, "Graph Theory", Addison Wesley, 1972.
- [HR] C. Huang and A. Rosa Decomposition of complete graphs into trees, Ars Combinatoria 5 (1978), 23–63.
- [R1] Y. Roditty, Packing and covering of the complete graph G of four vertices or less, J. Combinatorial Theory (Ser A) 34 (1983), 231–243.
- [R2] Y. Roditty, Packing and covering of the complete graph I: The forests of order five, Int. J. Math.& Math. Sci. 9 (1986), 277-282.
- [R3] Y. Roditty, Packing and covering of the complete graph II: The trees of order six, Ars Combinatoria 19 (1985), 81-94.