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Abstract. Itis shown that the maximal number of pairwise edge disjoint trees of order
seven in the complete graph K, and the minimum number of trees of order seven,

whose union is K, are li"ﬁ-l)-J and [41"5-9-.'. n > 11, respectively. (]z] denotes
the largest integer not exceeding z and [z] the least integer not less than z).

1. Introduction.

Graphs in our context are undirected, finite, and have no multiple edges or loops.
We refer to [H] for the basic definitions.

We denote by P(n, H), the packing number , namely, the maximal number of
pair-wise edge disjoint graphs H, in the complete graph K,,, and by C(n, H), the
covering number , namely, the minimum number of graphs H whose union is K,,.

As usual |z] will denote the largest integer not exceeding z and [z] the least
integer not less than .

In [R1], [R2], and [R3], it was proved that:

(1) P(n,T) = %’-J and

@ C(nT) = [428|, forn > m,

where T was any tree of order less than equal six, e(T") is the number of edges of
T and np was a constant determined in the various cases.

It was asked in [R3] if (1) and (2) are true for all trees.

Our purpose in this paper is to answer that question in the affirmative for all
trees of order seven.

Definition: A graph H is said to have a G-decomposition if it is the union of edge
disjoint subgraphs each isomorphic to G. Wc denote this factby G | H. |

The G-decomposition problem, for H = K, is to determine the set of naturals
N(G), such that K, has a G-decomposition if and only if n € N(G).

Note that G-decomposition is actually an exact packing and covering.

In the proof of our problems of packing and covering, we make a great use of
the results obtained by Huang and Rosa [HRY], for the G-decomposition problem
in cases when G is a tree of order seven.

We denote H = UL, G; when the graph H is the union of t edge disjoint graphs
Gi,i=1,2,...,t.

The results of these problems which will be discussed in details in the remainder
of the paper, can be summarized in:
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Main Theorem (Packing and Covering).
@ P(n,T)=|%%1|,n> 11 and T any trec of order seven.
() C(n,T) = [%%1],n> 11 and T any tree of order seven. [

Remark: In the case 7 < n < 11 we shall give the exact values of the packing
and covering numbers for each tree in consideration.
The relevant trees to our problems are:

(i) T, the path of length six, which is denoted (z,y, z, u, v, w, s).
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(ii) T3,is denoted (z,y,2,w,s; u,v).
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(iii) 73, is denoted (z, y, z, w(s),u,v).

.

X Yy 2

(iv) Ty,is denoted (w; u,v,s,z — y,7).
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(v) Ts,isdenoted (z,y,2(w),u;v,9).
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(vi) T, is denoted (u,v; z, T, y; w, 8).
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(vii) Ty,isdenoted (z,y, 2z; u,v,w — 8).

(viii) T, is denoted (z,y, z; w(u),v(s)).
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(ix) Ty,isdenoted (z; z,y, w,u;v,3).
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(x) Tho.is denoted (z; y, 2z, w,u,v — 8).
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(xi) T, is denoted (z; y, 2z, w,u,v,s).

2. Preliminary results.

Notation: The vertex set of K, is defined to be Z,,, and addition of vertex labels
are done mod n.

Lemma2l. T;| K26,K36, i=4,6,10.

Proof: Let V(Kz6) = AU B where A = {o,b} and B = {0,1,2,3,4,5}. Let
V(K3¢) = AUB', where A' = AU {c} and B' = B. The T;-decomposition of
Kysand K3 i=4,6,10 is found in Table 1.

Table 1
The decomposition
Kig Ksg
Ts (a;0,1,2,3-5,4) (a;0,1,2,3-3,4)
(b;0,1,2,5—a,4) (50,1,2,5—¢,3)
(¢;0,1,2,4—q,5)
Ts (0,1;0,2,b;3,4) (Oll;aizib;3!4)
(0,1;5,5,0;3,4) (0,2;¢,5,a;3,4)
(0,5:5,1,¢:3,4)
To (a;0,1,2,3,4-b) (a:0,1,2,3,4-b)
(b;011’2)335—a') (b;0,1,2,5,4—C)
(c;0,1,2,3,5-0)

Corollary 1. T; | Kaa+386t for i = 4,6,10, «, B non-negative integers at least
one is positive and t a positive integer. |

Lemma2.2. T1,Ty | Ki¢ fort=3,4,5.

Proof: Let V(K36) = AU B where A = {a,b,c} and B = {0,1,2,3,4,5}.
Let V(Kag) = Ay UB; where A} = AU{d}and B, = B,and V(Ks¢) =
Az U B; where A; = AU {d,e} and B, = B. The T}, T;-decompositions of
K:6,t=3,4,5 are found in Table 2.
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Table 2

The decomposition
Ty T
K3,6 (b,2,0;0,1,3—6) (oiall)blz)cis)
(0,5,b;3,4,0—0) (1,c,4,b,5,a,2)
(0’4)0;2:511—5) (430)3)b)0sc’5)
K4,6 (b,2,0;0,1,3—0) (0,a,l,b,2,c,3)
(a,5,c,0,1,2-d) (0,5,5,c,4,d,3)
(03416;015,3—d) (b,3,0,2,d,1,0)
(b,l,d;0,5,4—0) (C,O,d,5,0,4,b)
KS,G (b,2,0;0,1,3—6) (0,0,1,[),2,6,3)
(03416;0)1’2'—6) (0,0,4,d,5,e,3)
(a,5,0;3,4,1-4d) (0,d,1,¢,5,a,4)
(b,0,d;2,5,3—e) (llel4,b13)a’2)
(61503;011!4—d) (3)d:2)e)01b)5)

Corollary 2. T1,T7 | K3a+ap+s,6t Where a, B, are non-negative integers at
least one positive and t a positive integer. 1

Lemma23. T3 | K;s fort=4,5,6.

Proof: Let V(K.¢) = AU B where A = {a,b,c,d, e, f} (according to the value
of t), and B = Zs. The T, -decomposition is found in Table 3.

Table 3
The decomposition
Kag Ksg Ke6
(0,a,1,5,2;¢,d) (a,0,b,2,¢;1,3) (¢,0,5,2;1,5)
(2,0’4,b,0;c,d) (c!4’d’5’e;2)3) (aizld’l)b;4!5)
(3$dll’c’5;a’b) (d)2)0)3,b;ll4) (C,4,d,5,e;l,3)
(5)d|4!c)3;a)b) (el4la!l!d;0!3) (e!4la|5’f;0’2)

(1,€,0,¢,5:6,b) (2,¢,1,a,3;b,d)

(4,£,3,¢,0;¢,¢)

Corollary 3. T3 | Ksa+sp+6+,60 Where a, B, are non-negative integers at least
one positive and t a positive integer. 1

Lemma24. T3,T | K¢ where t=3,4,5
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Proof: Let V(K3) = AU B where, A = {a,b,c}and B =Zs. Let V(Kag) =
A'UB where A' = AU{d}. Let V(Ksg) = CUB where C = A'U {e}. The
decomposition is in Table 4.

Table 4
The decomposition
Ty T
K3.6 (2,6,5,6(0),4,0) (0,1,2;0,3;b,c)
(3,¢,2,a(1),0,b) (0,1,2;),5; a,¢)
(5,0,3,b(4),1,0) (0,1,2;¢c,4;a,b)
K4.6 (l)b)2)d(4);3)a) (0,1,2;0,3;1),0)
(1,d,5,b(3),4,c) (1,2,3;d,4;0,6)
(3,¢,2,0(1),0,b) (1,2,5;¢,0;b,d)
(4"1:516(1):0)‘1) (l,2,4;b,5;a,d)
Kse (0,8,1,5(2),3,¢) (0,1,4;3,5;4a,c)
(0,5,5,¢(2),1,¢) (1,2,4;4a,3;b,0)
(1,d,5,a(4),3,¢) (3,4,5:d,2;b,¢)
(5,e,4,d(3),2,0) (3,4,5;¢,15¢,d)
(5,4,c,0(d),¢,2) (a,d,e;0,c2,4)

Corollary 4. T3,Ty | K3a+apes,6t Where o, B, are non-negative integers at
least one positive and t a positive integer. ]

Lemma25. Ts, T | Kig where t = 3,4,5.

Proof: Let V(K3¢) = AU B where, A= {a,b,c}and B=Zs.Let V(Ka¢) =
A'UB where A' = AU{d}. Let V(Ks6) = CUB where C = A’ U {e}. The
decomposition is in Table 5.
Table §
The decomposition

Ts T3

Kig¢ (O,G, l(b))C;2|3) (0,0,1;[’(2),6(3))
(0,c,4(e),b;2,3) (0,5,5;a(3),¢(2))
(0,5,5(c),a;2,3) (0,¢,4;0(2),5(3))

Kag (0,a,1(b),c:2,3) (0,4a,1;5(2),¢(3))
(0,b,2(a),d; 2,3) (0,b,4;¢(2),d(1))
(0,¢,5(d),a;3,4) (0,4,3;4(2), b(5))
(0,d,4(c), 5 3,4) (0,¢,5;a(4),d(2))
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Table § continued

Ts Ty

Ksg (0,a,1(d),¢;2,3) (0,4a,1;5(2),¢(3))
(0,b,2(d),e; 1,3) (0,¢,4;d(3),e(5))
(0,¢,4(e),d; 1,5) (1,d,5;a(4),b(3))
(0,d,3(a), b 4,5) (1,e,2;a(3),¢(5))
(0,e,5(c),a;2,4) (2,d,0; b(4),e(3))

Corollary 5. Ts,Tg | Kaa+apssqst Where o, B,y are non-negatzve integers at
least one positive and t a positive integer. [ |

3. Proof of Main Theorem in the various cases.
Huang and Rosa [HR] proved the following:

Theorem 3.1. N(T;) ={n|n=0,1,4,9 (mod 12),i=1,2,...,10} and
N(Tiy) = {n|5=0,1,4,9 (mod 12),n> 12}. i

As a result of Theorem 3.1 we have to prove the Main Theorem for the listed
trees only in the cases:

(1) n=12m+k,k=2,3,5,6,7,8,10,11.
Theorem 3.2. The Main Theorem is valid for T\ forall n> 7.

Proof: The proof will take case of several cases according to the various values
of n. We use the well-known decomposition (see [H p. 89]) of K,,, n— odd, into
"‘T’ spanning cycles and for n— even into § Hamilton paths.

For n— odd the proof of the theorem follows immediately by cutting the P;-
paths from the suitable Eulerian tour, created by union of the above mentioned
spanning cycles, leaving a path of length less then seven, unpacked. We demon-
strate it with n= 11.

4
Kn=|J(0,144,244,104i,9+4,4+4,8+4i,5+4,7+1i,6+1).
=0

When nis even,putn— 1 =g¢ (mod 6) Let, K, = U?,o P;, where, P; =
(144,2+4i,n+43+4,n—1+4,...,%% +4{ %L +)  and addition is done
modulo n. Flrst we deal wnh n= 8

We give the construction for ¢ = 3, 5. For ¢ = 1 the construction is similar.

Let g= 3 From each of the paths P; delete the edges (1 + 1,2 + 1) and

24 + 1,2 + ), so that the remaining paths are P; decomposable. The union
of the rest of the edges results in a spanning cycle, a fact which completes the
proof in this case.
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Table 6

n Packing Remains for Covering
8 (1,7,6,5,4,3,2)
(2,1,4,7,5,0,6) (2,7,3,5)u(0,1)
(3,1,6,4,2,0,7)
(4,0,3,6,2,5,1)
9 T -decomposition (Theorem 3.1)
12m,12m+1

12m+4,12m+9 T)-decomposition (Theorem 3.1)

Letg = 5. Delete from each path P;, (1+1,2+14,n+14) and (%% + i, B2 + 4).
The remaining paths are P;-decomposable, and so is the union of the deleted
edges, excluding a path of length three. We demonstrate it for n = 18. After the
decomposition of P\{(1+ #,2+ i,n+ i)U (B + i, B2 + 1) }, weadd the fol-
lowing three P;-paths: (2,3,4,5,6,7,8,9), (10,11,12,13,14,15,16,17),
(17,18,2,1,3,5,7,9). The non-packed path is (2,4,6,8). This completes
the proof of the theorem. 1

Theorem 3.3. The Main Theorem is valid for T forall n>17.
Proof: The proof will take case of several cases according to the various values

of n:
Table 7
n Packing Remains for Covering
7 (0+1, 644, 144, 5+1, 241, 3+1,4+1),i=0,1,2 0,56)U(14)
8 (O+4, 7+, 141, 641, 241, 4+1,5+1),i=0,1,2
(2,3,4,1,5;0,7) (4,5,6;,0,7)
9 T -decomposition (Theorem 3.1)
10 (0+1, 644, 14+, 5+1, 2+41,3+4,4+i),i=0,1,2
(l)4l8l9)7;516)
(3,7,8,6,9:1,2)
(7,4,9,5,8,0,1) (9.0,5,6)
(9,3,8,2,7;0,1)
11 (041, 144, 1044, 244, 9+44; 5+¢,6+1),i=0,...,3
(4+,5+,3+,641,2+i; 7+41,8+1),1=0,1,2
(0,6,1,7,9;8,10) (0,10)

(9,0,5,10,8;6,7)
12,13 T3 -decomposition (Theorem 3.1)
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Table 7 continued

n Packing Remains for Covering

14 (04, 14+, 1344, 2+, 12:+; 6+i, T+ , =0, ..., 6
(9+, 10+, 8+i, 11+, 7+; 0+, 14),i=0,...,4 (5,13)
(2+i, T+, 8+, 6+i, 9+i; 4+i, 5+i) ,i=0, 1
(12,5,0,13,6;1,11)
15 (2+i, 14+, 3+, 13+, 4+i; 12+i,0),i=0,...,6
(9+, 7+, 1044, 6+, 11+i; 5+i,0),i=0,...,6
(1,2,3,4,5;6,12) 1,8 U299 uU(6,13)
(3,11,12,13,14;1,7)
(6,7,8,9,10; 11,3)

We have to prove the theorem in the cases of (1) form > 1.
k=2.
Let
(2) Kizms2 = Kia(m-1) U K14 12¢m-1) U K14, m > 2.
Then, using Theorem 3.1, Corollary 3, and Table 7, for n = 14 we have the
packing and the covering as well.
k=3.
Let
(3) Kizm+3 = Kizm-1) U Ki5,12(m-1) U K15, m 2> 2.
Then, using Theorem 3.1, Corollary 3, and Table 7, for n = 15 we have the
packing and the covering as well.
k=35
Let
@) Ki2mes = Kizm U Ks,12m U Ks.
We have by Theorem 3.1, and Corollary 3, that T5 | K12 U K5 12/m. Denote the
vertices of Ks by: {12m + j},7=0,1,...,4.

Take a tree from the decomposition of K5 12,53y, (12m,0,12m+1,1,12m+
2; 2, 3) and with the non-packed K5 create the following trees:

(12m,0,12m+1,1,12m+ 2;12m+ 3,12m + 4) and
(2m+3,12m+4,12m,12m+ 1,12m+ 2;2,3).

Hence, the packing is completed and we are left with the non-packed path (12 m+
2,12m,12m+3,12m+ 1,12m + 4).
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k=6.
Let

(5) K12m+6 = K12m U K¢, 12m U K.

Using Theorem 3.1, and Corollary 3, T3 | Kj2;m U K¢ 12m-

Denote the vertices of K¢ by, {12m + j},7=0,1,...,5.

Take some tree from the T’ -decomposition of K¢ 124, say, (12m,0,12m +

1,1,12m+ 2;2,3).

Using that tree and the unpacked graph K¢ we create the following trees T5:
0,12m,12m+1,12m+2,12m+ 3;12m+4,12m + 5);
0,12m+1,1,12m+2,12m + 4;,12m,12m + 5); and
(2m+4,12m+ 1,12m+3,12m,12m + 2;2,3).

We are left with the non-packed star:
(12m+5;12m,12m + 1, 12m + 2) for the covering.

k=17,8,10,11.
Let
6) Kizm+k = Kizm VU Kg12m U Ki.

From Theorem 3.1, and Corollary 3, we have that T3 | K12 U K¢ 12m. In Table
7 we find the packing and covering of K. Hence, the proof is completed. [ |

Theorem 3.4. The Main Theorem is valid for Ts forall n> 7.

Proof: The proof will take case of several cases according to the various values
of n:
Table 8

n Packing Remains for Covering

7 (0,2,6.4(5),1,3)
(0,1,2,3(4),5,6) (0,6,3) U (2,5)
(6,1,5,0(3).4,2)

8 0,2,6,4(5),1,3)
(0,1,2,3(4),5,6) (1,6,7;0,5)
06,3,7(4),2,5)
(7,1,5,0(3).4,2)

9  T3-decomposition (Theorem 3.1)

10 0,6,3,7(4),2,5)
(1,3,8,5(4),9.6)
4,8.9,1(0),2,3)
(7,1,5,0(3).4.2) (149U (0.38)
(8,1,6,7(5),0,9)
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Table 8 continued

n Packing Remains for Covering

(8,2,9,3(4),5,6)
9,7.8,6(4).2,1)
11 (0,6,3,10(1),7,2)
(1,3,8,54),9,6)
(1,4,9,10(2),8,0)
(3,7,4,10(0),6,5)
(4,8,9,100).2,3)
(7,1,5,0(3)4,2) 2,5
8,1,6,7(5),0,9
(8,2,9,3(4),5,10)
9,7,.8,6(4).2,1)
12,13 T3 -decomposition (Theorem 3.1)
14 0,6,3,10(1),7,2)
(1,3.8,5(4),9,6)
(1,4,9,10(2),8,0)
(2,5,11,4(12),13,3)
(3,7,4,10(0),6,5)
4,8.9,100,2,3)
(5,12,3,11(10),13,2)
6,13,7,12(0),8,11)
7,1,5,03)4,2) (11,12)
(7,11,6,12(10),13,5)
(8,1,6,7(5),0,9)
(8,2,9,3(4),5,10)
9,7,.8,6(4),2,1)
9,12,1,13(5),0,11)
(10,13,9,11(1),2,12)
12m,12m+1
12m+4,12m+9 T;-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.
k=2.

Let K12m+2 be asin (2).

Then, using Theorem 3.1, Corollary 4, and Table 8, for n = 14 we have the
packing and the covering as well.

43



k=3.

Let
() Kizmss = Kizm U K3,12m U K.

Using Corollary 4 Theorem 3.1 we have that T3 | K12m U K3 12m.
Suppose the vertices of A3 in (7) are labelled 12 m, 12 m+1, 12m+2. Take some
T3 from the decomposition of K3 12m,5ay,(2,12m+1,5,12m+2(0),4,12m),
and together with the non-packed triangle create the tree, (2,12m+ 1,5, 12m+
2(0),12m,4), leaving the path (4,12m+2,12m+ 1, 12m) non-packed, a fact
which proves the covering as well.
k=35.

Let Kyam+5 be as in (4).
We have by Theorem 3.1, and Corollary 4, that T3 | K12, U K5 12m. Denote the
vertices of Ks by: {12m + j},j=0,1,... ,4.

Take a tree from the decomposition of K5 12, 5ay,{0,12m,1,12m+1(2),3,
12m + 2) and with the non-packed K's create the following trees:

(0,12m,1,12m+ 1(12m+ 3),12m + 4,12m + 2) and
(2,12m+1,3,12m+ 2(12m+ 3),12m,12m + 4).

Hence, the packing is completed and we are left with (12m+2,12m+ 1, 12m,

12m + 3, 12m + 4) for the covering.

k=6.

Let K12m+6 be as in (5). Using Theorem 3.1, and Corollary 4, T3 | K12, U

K¢ 12m-

Denote the vertices of K¢ by, {12m + 5},7=0,1,...,5.

Take some tree from the T3 -decomposition of K¢ 12m, say, (0,12m,1,12m +

1(2),3,12m + 2).

Using that tree and the unpacked graph K¢ we create the following trees T5:
(2,2m+1,12m+4,12m(0),12m + 2,12m + 5);
(2m,12m+5,12m+3,12m+ 2(12m+4),3,12m + 1); and
(2m+5,12m+4,12m+3, 12m+ 1(12m + 2),1,12m).

We are left with the non-packed path:
(12m+3,12m,12m+ 1,12m + 5).
k=17,8,10,11.

Let K12 m+& be as in (6).

From Theorem 3.1, and Corollary 4, we have that T3 | K12 U Kj 12,. In Table
8 we find the packing and covering of K. Hence, the proof is completed. 1



Lemma 3.5. P(7,T4) =3,C(7,T4) =5.
Proof: The proof is easy by straight forward verification. 1
Theorem 3.6. The Main Theorem is valid for Ty forall n > 8.

Proof: The proof will take case of several cases according to the various values
of n:

Table 9
n Packing Remains for Covering
8 (0;4,5,6,1-2,3)
(3;0:4:5)6_1)7)
(4,1,5,6,7-1,0) (5;2,6,1-3)
(7;0,3,5,6-2,4)
9 T4 -decomposition (Theorem 3.1)
10 (0;4,5,6,1-2,3)
(3;0:4:5)6—117)
(4;1,5,6,7—1,0)
(7,0,3,5,6-2,4) (8:0,1,9)
(8;3,4,7,6-5,2)
(9;0,1,3,2-8,5)
(9;4,6,7,5-1,3)
11 (0;4,5,6,1-2,3)
(3;0,4,5,6-1,7)
(4;1,5,6,7-1,0)
(7;0,3,5,6-2,4)
(83,4,7,6-5,2) (0,8
(9;0,4,6,5-1,3)
(9;1,2,3,7-10,8)
(10;0,2,3,5-8,9)
(10;436)9)1’—8’2)
12m,12m+1

12m+4, 12m+9 Ty-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.
k=2.
Let
(8) Kizme2 = Ki2m U K2,12m U K>

Then, using Corollary 1 and Theorem 3.1, we have the packing number leaving
K in (8) unpacked for the covering.
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k=3.
Let K12m+3 be as in (7).
Using Corollary 1 and Theorem 3.1 we have that Ty | Ki2m U K3 12m.

Suppose the vertices of K3 in (7) are labelled 12m, 12m+ 1, 12m + 2. Take
some T}, from the decomposition of K3 12, say, (12m;0,1,2,3 —12m+1,4).
Instead of the edge (12m, 0) put (12m, 12m + 2), so that we are left with the
path (12m + 2,12m + 1, 12m, 0) unpacked, a fact which proves the covering
as well.
k=5.

Let Kj2m+s be as in (4).

Since Ks,12m = 2m(K3 6 U K3 ) we have by Theorem 3.1 and Corollary 1 that
T4 | K12m U Ks 12m. Denote the vertices of Ks by: {12m+j},7=0,1,... ,4.

Take a tree from the decomposition of K's 12,53y, (12m;0,1,2,3-12m+1,4)
and with the non-packed K5 create the following trees:

(12m;0,1,12m+1,12m+2 — 12m+ 3,12m+ 4) and
(12m+1;4,12m+2,12m + 3,3 — 12m,2).

Hence, the packing is completed and we are left with (12m+4; 12m+2, 12m+
1,12m — 12m + 3) for the covering.

k=6.

Let

(9) Kizme6 = Ki2mea UK2 12m U K24 U K>

Using Theorem 3.1, and Corollary 1, T4 | Ki2m+4 U K2 12m.

Denote the vertices of K2 4 by, {12m,12m+ 1}, {12m+2,12m+3,12m +
4,12m+ 5}.

Take some tree from the T4 -decomposition of K3 12, say, (12m;0,1,2,3 —
12m+ 1,4).

Using that tree and the unpacked graph K> 4 U K, we create the following trees
Ty:
(12m;0,1,12m+2,12m+ 5 —12m + 1,4); and
(2m+1,12m+2,12m+3,12m+ 4,3 — 12m, 2).
Hence, the packing is completed and we are left with the non-packed star:
(12m;12m + 1,12 m + 3,12m + 4) for the covering,
k=17.
Let
(10) Ki2me7 = K12mea U K312m U K34 U K3.
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Using Theorem 3.1 and Corollary 1,74 | K12m+4 U K3,12m. .

Denote the vertices of K3 4 by {12m,12m+1,12m+2}and {12m+3,12m+

4,12m+5,12m+6}.

Take two trees from the T -decomposition of K3 12, say, (12m;0,1,2,3 —

12m+1,49)and(12m+1;0,1,2,5 - 12m + 2,3).

Using those trees and the unpacked graph K3 4 U K3 we create the following trees:
(12m;0,1,2,12m+ 3 - 12m + 1,4);
(2m;12m+4,12m+5,12m+6,12m+1-5,12m+ 2);
(2m+2,12m+3,12m+4,12m+5,12m+ 1 - 3,12m);
(12m+1;0,1,2,12m+ 6 — 12m+ 2, 3). So the packing is completed.
We are left with the unpacked graph:

(12m+ 1;12m+ 4,12m + 5) U(12m, 12m + 2) which proves the covering
as well.

k=8,10,11.
Let K124+ 4 be as in (6). We have from Theorem 3.1, and Corollary 1, that T} |

K12m U K12m k. From Table 9 we have the packing and covering of K. Hence,
the proof of Main Theorem for T4 is completed. |

Theorem 3.7. The Main Theorem is valid for Ts forall n > 7.

Proof: The proof will take case of several cases according to the various values
of n:
Table 10

n Packing Remains for Covering

7 (0,1,2(3),4:5,6)
(1,4,3(0),6;2,5) (0,2)uU (3,5 U(L,6)
(3,1,5(2),0;4,6)

8 (0,1,2(3),4;5,6)
(0,7,3(4),1;5,6)
(1,4,7(2),6;0,5) (0,3,6,2,5)
(1,7,5(3),0;2,4)

9 Ts-decomposition (Theorem 3.1)

10 (0,1,2(3),4;5,6)
(0,7,3(4),1;5,6)

(1,4,7(2),6;0,5) (0,8,9u(2,5)
(1,7,5(3),0;2,4)
(1,8,3(0,9;5,7
(4,8,2(6),9,0,1)
(4,9,6(3),8;5,7)

47



Table 10 continued

n Packing Remains for Covering
11 (0,1,2(3),4;5,6)
(0,7,3(4),1;5,6)
(1,4,7(2),6;0,5) (2,10)
(1,7,5(3),0,2,4)

(2,5,10(4),3;8,9)
(3,0,10(1),9;5,8)
(4,8,2(6),9;0,1)
(4,9,6(3),8,5,7)
(9,7,10(6),8;0,1)

12,13 Ts-decomposition (Theorem 3.1)

14 (0,1,2(3),4,5,6)
(0,3,13(6),10;1,9)
(0,7,3(4),1,5,6)
(0,9,13(1),2;6,8)
(0,10,11(6),9;5,8)
(1,4,7(2),6;0,5) (2,10)
(1,7,5(3),0,2,4)
(2,5,10(4),3;8,9)
(4,9,6(3),8,5,7)
(8,0,12(5),10;6,7)
(9,7,11(5),8; 1,10
(10,2,11(3),12;6,7)
(11,1,12(2),13;4,5)
(12,4,11(0), 13;7,8)

12m,12m+1

12m+4,12m+9 Ts-decomposition (Theorem 3.1)

We have to prove the theorem in Ihe cases of (1) form > 1.
k=2.
Let Kjam+2 be as in (2).

Then, using Theorem 3.1, Corollary 5, and Table 10, for n = 14 we have the
packing and the covering as well.

k=3.
Let K12 me3 beasin (7).
Using Corollary 5 and Theorem 3.1 we have that T | K12m U K3 ,12m.-
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Suppose the vertices of K3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take
some T’s from the decomposition of K3 12m,5ay, (0,12m,1(12m + 1),12m +
2;2,3). Then together with the non-packed triangle we consider the tree: (12m+
1,1,12m(0), 12m + 2;2,3), leaving the path (1,12m + 2,12m + 1,12m)
unpacked, a fact which proves the covering as well.

k=S5

Let K12.45 be as in (4).

We have by Theorem 3.1 and Corollary S that T5 | K12 U K5,12m. Denote the
vertices of Ks by: {12m + j},7=0,1,... ,4.

Take a tree from the decomposition of Ks 12m, 52y, (0, 12m, 1{12m+1),12m+
2;2,3), and with the non-packed K5 create the following trees:

(0,12m,1(12m+ 1),12m+2;12m+ 3,12m+ 4) and
(12m+4,12m+3,12m+ 1(12m),12m + 2;2,3).

Hence, the packing is completed and we are left with
(12m+1,12m+4,12m; 12m + 2,12m + 3) for the covering.

k=6.
Let K12m+6 beas in (5). Using Theorem 3.1 and Corollary 5, T5 | K12:UK6 12m-
Denote the vertices of K¢ by, {12m + j}, j=0,1,...,5.

Take some tree from the T's -decomposition of K 12m, say, (0,12m,1(12m +
1),12m+ 2;2,3).

Using that tree and the unpacked graph K¢ we create the following trees Ts:
(12m+4,12m,1(12m+ 1),12m+ 2;12m + 3,12m + 5);
(12m+5,12m,12m+ 1(12m + 4),12m+ 2;2,3); and
(2m+512m+4,12m+ 3(12m+ 1),12m;0,12m + 2).

We are left with the non-packed graph:
(2m+1,12m+5,12m+3)U(12m+ 2,12m + 4).
k=7,8,10,11.

Let Kj2m+x be as in (6).

From Theorem 3.1 and Corollary 5 we have that Ts | Ki2, U Kg120m. In Table
10 we have the packing and covering of K. Hence, the proof is completed. 1

Lemma38. P(7,Ts) =3,C(7,Ts) =5.
Proof: The proof is easy by straight forward verification. 1
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Theorem 3.9. The Main Theorem is valid for T forall n> 8.

Proof: The proof will take case of several cases according to the various values

of n:

10

1

12m,12m+1

Table 11
Packing Remains for Covering
(1,2;0,3,4:5,6)
(2,41,3,6;0,7)
(3,47,1,1;2,5) (2,5,3)u(4,0,7
(0,1;5,7,2;3,4)
Te¢-decomposition (Theorem 3.1)
(1,2;0,3,4;5,6)
(2,41,3,6;,0,7)
(3,4,7,1,1;2,5) (9;0,5,8)
(0,1;5,7,2;3,4
(1,2;8,3,9;4,5)
(1,2,9,7,8:4,5)
(2,3;5,8,0;4,7
(1,2;0,3,4;5,6)
(2,41,3,6;0,7)
(3,47,1,152,5) (0,10)
0,1;5,7,2;3,4)
(1,2;8,3,%4,5)
(1,2,9,7,8;4,5)
(1,2,10,9,8;0,5)
(2,9:5,3,10;6,7)
(5,8,10,4,0;7,9)

12m+4,12m+9 Ty-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.

k=2

Let K12m+2 be as in (8). Then, using Corollary 1 and Theorem 3.1, we have the
packing number leaving K, in (8) unpacked for the covering.

k=3.

Let K12 m+3 be asin (7).
Using Corollary 1 and Theorem 3.1 we have that T | Ki2m U K3 ,12m-
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Suppose the vertices of K3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take
some T from the decomposition of K3 j2m,say, (0,1;12m,2,12m+ 1;3,4).
Replace the edge (12m,0) by (12m, 12m + 2), so that we are left with the path
(12m+2,12m+ 1, 12m, 0) unpacked, a fact which proves the covering as well.
k=S5
Let K12m+s be as in (4).
Since K5 12m = 2m( K26 U K3 ¢) we have by Theorem 3.1 and Corollary 1 that
Ts | K12mU Ks,12m. Denote the vertices of Ks by: {12m+j},7=0,1,... ,4.
Take a tree from the decomposition of K's 12m,8ay,(0,1; 12m,2,12m+1; 3, 4),
with the non-packed K5 create the followmg trees:
(0,1;12m,2,12m+ 1;12m + 2,12m + 3) and
3,412m+1,2m,12m+4,12m+2,12m+ 3).

Now take the tree (0, 1; 12m+2,2, 12m+3; 3,4) andreplace theedge (0, 12 m+
2) by the edge (12m, 12 m + 2). Hence, the packing is completed and we are left
with the non-packed graph (12m+4,12m+ 1) U(0,12m+2,12m+3,12m)
for the covering,.
k=6.
Let K12m+6 beasin (5). Using Theorem 3.1 and Corollary 1,T¢ | K12mUKé 12m-
Denote the vertices of K¢ by, {12m + j},7=1,2,...,5.
Take some trees from the T -decomposition of K¢ 12,,5ay,(0, 1; 12m, 2,12 m+
1;3,4),(0,1;12m+ 1,5,12m+ 2; 3,4) and together with the non-packed K¢
create the trees:

(0,1;12m,2,12m+ 1;12m + 3,12m + 4);

(0,1;12m,12m+2,12m + 1;3,4); and

(0,1;,12m+1,5,12m+ 2; 12m+ 3,12m + 4).

We are left with the path:

(12m,12m+ 1,12m + 5,12 m + 4) for the covering.
k=17.
Let Ki2m+7 beasin(6) fork= 7.
Using Theorem 3.1 and Corollary 1, Ts | K12m U K7,12m.
Take as in the case k = 6. Then the unpacked path (12m,12m + 1,12m +
5,12m+4) withthestar (12m+6;12m,12m+1,12m+2,12m+3,12m+
4,12m+5) andthetree (0,1; 12m+ 5,2,12m + 3; 4, 5) create the following
trees:

(0,;12m+5,12m+1,12m+ 6; 12m,12m + 2); and

(4,5 12m+3,2,12m+5;12m+4,12m + 6).

We are left with the non-packed graph:

(12m+3,12m+6,12m + 4) U(12m, 12m + 1) for the covering.
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k=8,10,11.

Let K12+ be as in (6). We have from Theorem 3.1, and Corollary 1, that Ts |
K12m U K12m. From Table 11 we have the packing and covering of K. Hence,
the proof of Main Theorem for T is completed. |

Theorem 3.10. The Main Theorem is valid for Ty forall n> 7.

Proof: The proof will take case of several cases according to the various values
of n:
Table 12

n Packing Remains for Covering

3,4
1,6 —0) (4;1,3,6)
2

4

6

—4) (7,0,4,6)U(1,3)
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(3,1,10;0,5,4 —8)
12,13  Ty-decomposition (Theorem 3.1)
14 (5,1,0;2,3,4-6)

(5v4»2;3)1)6_0)
(1,6,5;0,2,3-4)
(4:137;2)5’3_6)
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Table 12 continued

n Packing Remains for Covering
(0,7,8;5,6,3—-10)
(4s7|9i0)5)8—2)
(7,6,9;3,4,1-8)
(0,8,10;6,7,9-2) (5,12)
(3,1,10;0,5,4-8)
(11,8,12;9,10,13-3)
(12,3,11;0,1,4—13)
(12,1,13;5,7,10-11)
(10,2,13;8,9,11-12)
(13,0,12;3,7,2-11)
(12,5,11;7,9,6—-13)

12m,12m+1
12m+4,12m+9  Ty-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.

k=2,

Let Ki2m+2 be as in (2).

Then, using Theorem 3.1, Corollary 2, and Table 12 for n = 14, we have the

packing and the covering as well.

k=3.

Let Kiam+3 beasin (7).

Using Corollary 2 and Theorem 3.1 we have that T7 | K12, U K3 121m-

Suppose the vertices of K3 in (7) are labelled 12 m, 12 m+ 1,12 m+ 2. Take some

T from the decomposition of K3 12m, 53y, (12m+1,2,12m;0,1,3-12m+2).

Instead of the edge (12m,3) put (12m, 12m + 2), so that we are left with the

path (12m + 2,12m + 1,12m,3) unpacked, a fact which proves the covering

as well,

k=5.

Let Kj2m+s be as in (4).

We have by Theorem 3.1 and Corollary 2 that T | K12 U K5 12m. Denote the

vertices of Ks by: {12m + j},j=0,1,...,4.

Take a tree from the decomposition of Ks 12m, say, (12m+1,2,12m;0,1,3 —

12 m + 2) and with the non-packed K5 create the following trees:
(2,12m+1,12m;0,1,12m+ 3 — 12m + 2) and
(2,12m,12m+4;12m+ 1,12m + 3,12m+ 2 - 3).
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Hence, the packing is completed and we are left with (3,12m,12m+2,12m +
1,12m + 3) for the covering.

k=6.

Let K12m+6 beasin (5). Using Theorem 3.1 and Corollary 2, T | Ki2mUK6 12m-

Denote the vertices of K¢ by, {12m + j},7=0,1,...,5.

Take some tree from the T3 -decomposition of K¢ 12m, say, (12m+1,2,12m;0,

1,3-12m+2).

Using that tree and the unpacked graph K¢ we create the following trees T5:
(12m+1,2,12m;12m+3,12m+ 4,3 — 12m + 2);
0,12m,12m+ 5;12m+1,12m+2,12m+ 3 — 12m + 4) and
(1,12m,12m+2;12m+ 1,12m+3,12m+4 — 12m + §5).

We are left with the non-packed star:
(12m+1;12m,12m + 3,12m + 4).

k=17,8,10, 11.
Let K12 m+k be as in (6).

From Theorem 3.1 and Corollary 2, we have that Ty | Ki2, U K 1254, In Table
12 we find the packing and covering of K. Hence, the proof is completed. 1

Theorem 3.11. The Main Theorem is valid for Ty forall n> 7.

Proof: The proof will take case of several cases according to the various values
of n:
Table 13

n Packing Remains for Covering

(0,1,2;3(6),4(5))
(0,3,4;1(5),6(2)) (2,0,5,3)
(4,0,6;1(3),5(2))

8 (0,1,2;3(6),4(5))
(0,3,4;1(5),6(2)) (2,0,5,6)u(3,7)
(3,5,7;4(0),6(1))
(6,0,7;1(3),5(2))

9 Ts-decomposition (Theorem 3.1)

10 (0,1,2;3(6),4(5))
(0,3,4;1(5),6(2)) (1,3)u(2,7U (6,8
(2,5,89(3),7(0))
(3,5,7;4(0),6(1))
(8,1,9;0(2),5(6))
(8,2,9;6(0),7(1))
(9,4,8,0(5),3(7)
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11

12,13
14

15

12m,12m+1
12m+4,12m+9

(0,1,2;3(6),4(5))
(0,3,4;1(5),6(2))
(2,

(3,5,7:400),6(1))
(7,2,10;3(8),6(9))
(8,0,10; 1(3),9(4)
(8,1,9,0(2),5(6))
(8,2,9;6(0),7(1))

1

3,4

5,8,9(3),7(0))
]

2,1

0

’
)

Ts -decomposition (Theorem 3.1)

(0,1,2;3(6),4(5))
(0,3,4,1(5),6(2))
(2,5,11;8(3),7(0))
(3,5,7:4(0),6(1))
(5,8,9;12(6), 13(11))
(8,1,9;0(2),5(6))
(8,2,9:6(0),7(1))
(11,2,12;3(1),4(10))
(11,4,13;2(10),3(9))
(11,12,13;1(10),7(2))
(12,1, 11;3(10),9(6))
(12,5,13;8(0),10(9))
(13,0,12;8(7), 10(6))
(13,6,11;0(10),9(4))
(0,1,2;3(6),4(5))
(0,3,4;1(5),6(2))
(0,11,1;12(2), 13(3))
(0,12,5;13(2), 14(1))
(0,13,6; 11(5), 14(2))
(0,14,3;11(2), 12(6))
(2,5,8,9(3),7(0)
(3,5,7;4(0),6(1))
(4,11,7;12(8),13(9))
(7,2,10;3(8),6(9))
(8,0,10; 1(3),9%(4))
(8,1,9,0(2),5(6))
(8,2,9;6(0),7(1))

(8,11,13; 12(10), 14(7))

(10,4,12;11(9), 14(8))

(10,11, 14; 4(13),9(12))

Ts -decomposition (Theorem 3.1)
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We have to prove the theorem in the cases of (1) form > 1.
k=2, )
Let K12 m+2 be asin (2).
Then, using Theorem 3.1, Corollary 5, and Table 13 for n = 14, we have the
packing and the covering as well.
k=3.
Let K12 m+3 be asin (3).
Using Corollary 5, Theorem 3.1, and Table 13 for n = 15, we have the packing
and the covering as well.
k=5
Let K12.m+s be as in (4).
We have by Theorem 3.1 and Corollary 5 that T | K12m U Ks,12/. Denote the
vertices of K5 by: {12m + j},7=0,1,...,4.
Take a tree from the decomposition of K's 12, Sy, (0, 12m, 1; 12m+1(2), 12 m+
2(3)), and with the non-packed K5 create the following trees:

(0,12m,12m + 2; 12m + 1(1), 12m + 3(12m + 4)) and
(1,12m,12m + 4;12m + 1(12m + 3), 12m + 2(3)).

Hence, the packing is completed and we are left with (2,12m+ 1,12m, 12m +
3) U(1,12m + 2) for the covering.

k=6.

Let Ki2m46 beas in (5). Using Theorem 3.1and Corollary 5, Tg | K12,mU K6 12m-
Denote the vertices of K¢ by, {12m + j},7=0,1,...,5.

We do the same procedure as for £ = S with the additional tree (1,12m +
2,12m + 5;12m + 1(2),12m + 3(12m)). We are left with the non-packed
path(12m+ 1,12m,12m + 5,12m + 4).

k=178,10,11.

Let K12 m+x be as in (6).

From Theorem 3.1 and Corollary 5, we have that T | K12m U Ki,12m. In Table
13 we find the packing and covering of K. Hence, the proof is completed. 1
Theorem 3.12. The Main Theorem is valid for Ty forall n> 7.

Proof: The proof will take case of several cases according to the various values
of i
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Table 14

n Packing Remains for Covering
7 (0,2,3; 1,4, 56), (2,34, 0,5; 1,6)
(34,5;2,6;0,1) (3;4,5,6)
8 (0,2,3; 1,4; 5,6), (2,3,4;0,5; 1,6)
(3,4,5:2,6;0,1), (4,5,6;3,7; 0,1) (7:2,4,5,6)
9 Ty -decomposition (Theorem 3.1)
10 (0,2,3; 1,4, 5,6), (2,3,4;0,5; 1,6)
(3,4,5;2,6;0,1), (4,5,6; 3,7, 0,1) (5,6,9) U(18)
(2,3,4;9,7; 5,6), (0,5,6; 8,7; 2,4)
(2,34;8,9;0,1)
11 (0,2,3; 1,4; 5,6), (2,3,4;0,5; 6,10)
(3,4,5;2,6;0,1), (4,5,6; 3,7;0,1) (8,10)

(2,3,4;9,7;5,6), (0,5,6; 8,7; 2,4)
(2,34:8,9;0,1), (2,3,4;10,9; 5,6)

(0,6,7; 10,1; 5,8)

1213 Ty ~-decomposition (Theorem 3.1)

14 (0,2,3; 1,4; 5,6), (2,3,4;0,5; 6,10)
(34,5;2,6;0,1), (4,5,6;3,7;0,1) (9,12)

(2,3,4;9,7;5,6), (0,5,6; 8,7, 2,4)
(2,3,4;8,9;0,1), (2,3,4; 10,9; 5,6)
(0,6,7; 10,1; 5,8), (0,1,2; 11,3; 12,13)
(4,5,6; 11,12; 1,2), (4,5,6; 13,12;0,7)
(4,5,6;12,8; 11,13), (7,9,10; 11,13; 0,1)
(2,7,9; 13,10; 8,12)

12m12m+1

12m+4,12m+9 Ty-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.
k=2.
Let K12m+2 be as in (2).

Then, using Theorem 3.1, Corollary 4, and Table 14 for n = 14, we have the
packing and the covering as well.

k=3.
Let K12,4+3 beasin (7).
Using Corollary 4 and Theorem 3.1 we have that Ty | K125, U K3,12m.
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Suppose the vertices of K3 in (3) are labelled 12 m, 12 m+ 1, 12 m+2. Take some
Ty from the decomposition of K3 12, say, (0,1,2;12m,3;12m + 1,12m +
2) and (0,1,2;12m + 2,4;12m, 12m + 1) and together with the non-packed
triangle create the trees (1,2,4; 12m, 3; 12m+1,12m+2) and (0,1, 2; 12m+
2,12m + 1; 12m, 4) leaving the path (4, 12m + 2, 12m, 0) non-packed, a fact
which proves the covering as well.

k=5.

Let Kjam+s be as in (4).

We have by Theorem 3.1 and Corollary 4 that Ty | K12m U K 125 Denote the
vertices of K5 by: {12m + j},7=0,1,... ,4.

Take two trees from the decomposition of Ks 12,52y, (1,2,4; 12m+2,0; 12 m+
2,12m+4) and(1,2,3; 12m+3,4; 12m+1, 12 m+3) and with the non-packed
Ks create the following trees:

(1,2,2m+2;12m+3,12m; 12m + 1,12m + 4);
(2m+1,12m+3,12m+4;12m+ 3,4;12m,12m + 2); and
(2,4,12m+4,12m+2,0;12m+2,12m + 4).

Hence, the packing is completed and we are left with (1,12m; 12m+2,12m +
1; 12m + 4) for the covering.

k=6.

Let K12+ 6 beas in (5). Using Theorem 3.1and Corollary 4, Ty | K12, UK6 12m.
Denote the vertices of K¢ by, {12m + j},7=0,1,...,5.

We proceed the case k = 5 so that with the non-packed graph left together with
thestar (12m+ 5;12m,12m + 1,12m + 2,12m + 3,12m + 4) we get the
additional tree (12m,12m + 3, 12m+4;12m+ 5,12m+ 2;1,12m + 1).

We are left with the non-packed graph (12m+4,12m+1,12m+5) U (12m,
12m+ 2).

k=17,8,10,11.

Let K124k be as in (6).

From Theorem 3.1 and Corollary 4, we have that Ty | K12, U K 12. In Table
14 we find the packing and covering of K. Hence, the proof is completed. [ |

Lemma 3.13.

D P(7,Tw)=2,0(7,Tw) =4.
(ii) P(8,T0) =3,C(8,Ty) =5.

Proof: Since A(To) = S onecaneasily checkthat P(7,Tyo) = 2,and P(8,Tyo)
= 3, The covering, hence, is obvious. ]
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Theorem 3.14. The Main Theorem is valid for Tyo foralln> 9.

Proof: The proof will take case of several cases according to the various values
of nt
Table 15

n Packing Remains for Covering
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12m,12m+1
12m+4,12m+9 Tjo-decomposition (Theorem 3.1)

We have to prove the theorem in the cases of (1) form > 1.
k=2,
Let K12 m+2 be as in (8).
Using Corollary 1 and Theorem 3.1, we have the packing number leaving K in
(8) unpacked for the covering.
k=3.
Let K12443 beasin (7).
Using Corollary 1 and Theorem 3.1 we have that Tyo | K12, U K3 12m-

Suppose the vertices of K3 in (7) are labelled 12m, 12m + 1, 12m + 2. Take
some To from the decomposition of K3 12m,say,(12m; 0,1,2,3,4 —12m+1).
Instead of the edge (12 m, 0) put (12m, 12m + 2), so that we are left with the
path (12m + 2,12m + 1, 12m,0) unpacked, a fact which proves the covering
as well.
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k=5.
Let Ky2m+s be as in (4).

Since Ks 12m = 2m( K2 6 U K3 6) we have by Theorem 3.1 and Corollary 1 that
Tio | Ki2mVU Ks,12m.

Denote the vertices of K5 by: {12m + j},7=0,1,... ,4.

Takeone K3 ¢ from 2 m, say, with vertex sets {12m, 12m+1}and {0,1,2,3,4,5}.
We have two trees T} in the decomposition:

(12m;0,1,2,3,4 —12m+ 1) and (12m + 1;0,1,2,3,5 — 12m).

Using these trees and the unpacked Ks we create three new trees Tyo:
(12m;0,1,2,12m+4,12m+ 2 — 12m + 3);
(12m;3,4,5,12m+3,12m+ 1 —1);and
(12m+1;2,3,5,12m+2,12m+ 4 — 12m + 3).

We are left with the unpacked graph,
(2m+1;0,4,12m+3)U(12m+2,12m + 4),
which can be covered by one tree T'p.

Hence, the covering is also proved.
k=6.
Let Kj2m+6 be as in (9). Using Theorem 3.1 and Corollary 1, Ty | Kiam+a U
K3 12m.

Denote the vertices of K3 4 by, {12m,12m+1}and {12m+2,12m+3,12m+
4,12m+5}.

Take some tree from the T30 -decomposition of K2 12m, say, (12m;0,1,2,3,4 —
12m+ 1).

Using that tree and the unpacked graph K 4 U K, we create the following trees
Tio:

(12m;0,1,2,3,12m+ 1 - 12m + 2);
(2m;12m+2,12m+3,12m+4,12m+ 5,4 — 12m+ 1).
We are left with the star: (12m + 1;12m + 3,12m + 4,12m + 5) unpacked.

Hence, the covering is proved as well.

k=17.
Let Ky3m+7 be as in (10).
Using Theorem 3.1 and Corollary 1, Tyo | Kiam+s U K3,12m-

Denote the vertices of K3 4 by {12m,12m+1,12m+2}and {12m+3,12m+
4,12m + 5,12m + 6 }. Take two trees from the T o -decomposition of K3 12,
say,(12m;0,1,2,3,4 — 12m+ 1) and (12m + 2;0,1,2,3,5 - 12m + 1).



Using those trees and the unpacked graph K3 4 U K3, we create the following
trees:
(12m;0,1,2,3,12m+ 1 — 12m + 3);
(2m;12m+3,12m+4,12m+5,12m+ 6,4 — 12m + 1);
(12m+2;0,1,2,3,12m+ 1 - 12m + 4);
(12m+2;12m+3,12m+4,12m+5,12m+ 6,5 — 12m+ 1).
So the packing is completed. We are left with the unpacked graph:
(2m+ 1;12m+5,12m+ 6) U(12m, 12m + 2),
which proves the covering as well.

k=8,10,11.
Let K13 m+k be as in (6).
We have from Theorem 3.1 and Corollary 1 that Tyo | K12mU K12 m . From Table

15 we have the packing and covering of K. Hence, the proof of Main Theorem
for T is completed. [ |

Lemma 3.15.

@ P(7,Tm)=1,0(7,Ty) =6,
(i) P(8,Tn)=3,C(8,Tu)=1,
i) P(9,Tn) =5,C(9,Tu) =8,
@{iv) P(10,Ty) =7,C(10,T11) =9.

Proof: The proof of (i) - (iii) is easy and follows immediately. It is easy to see
that P(10,T1;) = 7. In order to see that C(10,T1;) = 9 observe that the seven
stars Ty, in the packing of Ko leave three vertices, say, z, y, 2, which are not
the centers of any star. So that the triangle (z,y, z) is left non-packed. Hence,

C(10,Ty) = 9. 1
The following is obvious:
Lemma 3.16. T\ | K,,12¢, for all s,t positive integers. |

Theorem 3.17. The Main Theorem is valid for Ty, forall n > 11.

Proof: The proof will take case of several cases according to the various values
of n:

61



Table 16

n Packing Remains for Covering
11 (0;5,6,7,8,9,10), (1;0,2,3,8,9,10)
(2;0,3,7,8,9,10), (3;0,4,5,8,9,10)
(40,1,2,5,8,9, (5;1,2,6,7,8,9) (8,9
(6:1,2,3,4,8,9), (7:1,3,4,6,8,9)
(10; ’ ’6)7)8)9)
17 (0,5,6,7,8,9,10), (1;0,2,3,8,9,10)
(2;0,3,7,8,9,10), (3;0,4,5,8,9,10)
(4,0,1,2,5,8,9), (51,2,6,7,8,9)
(6;1,2,3,4,8,9), (7;1,3,4,6,8,9)
(9;8,12,13,15,16), (10;4,5,6,7,8,9)
(11;0,1,2,3,4,5), (11;6,7,8,10,12,13) (11;9,14,15,16)
(12;0,1,2,3,4,5), (12;6,7,8,10,13, 14)
(13;0,1,2,3,4,5), (13;6,7,8,10,14,15)
(14;0,1,2,3,4,5), (14;6,7,8,10,15,16)
(15;0,1,2,3,4,5), (15;6,7,8,10,12,16)
(16;0,1,2,3,4,5), (15;6,7,8,10,12,13)

We have to prove the theorem in the cases of (1) form > 1.
k=2,

Let K1244+2 be as in (8). Then, using Theorem 3.1 and Lemma 3.16 we have the
packing, leaving the edge K, non-packed, for the covering.

k=3.

Let K12m+3 be as in (7). Then by Theorem 3.1 and Lemma 3.16 we have that
Tn | Ki2m U K3,12m. Now take three stars Ty of that decomposition, say,
(12m;0,1,2,3,4,5),(12m+1;0,1,2,3,4,5),(12m+2;0,1,2,3,4,5).
In the first star we replace the edge (12m,0) by (12m,12m + 1), in the sec-
ond star we replace the edge (12m + 1,0) by (12m + 1,12m + 2), and in
the third star we replace the edge (12m + 2,0) by theedge (12m + 2,12m).
Hence, the packing was not changed and we are left with the non-packed star
(0;12m,12m + 1,12m + 2) for the covering.

k=5.
Let Kiames = Kigm—1) U K17,12¢m-1y U K17, m > 2.

From Theorem 3.1, Lemma 3.11, and Table 16 for n = 17, we have the packing
and the covering, as well, in this case.
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k=6.

Let, K12m+s be as in (5). Using Theorem 3.1 and Lemma 3.16 we have, T1; |
Kiom U K6 12m

Denote the vertices of K¢ by, {12m + j},7=0,1,...,5.

We take some stars of that decomposition and change some of their edges creating
new stars in a way that the packing is not changed but leaving the necessary non-
packed star for the covering. The arrow denotes the new star obtained from the
old one.

(12m;0,1,2,3,4,5) = (12m;12m + 1,1,2,3,4,5)
(12m+1;0,1,2,3,4,5) - (12m+1;12m+ 2,1,2,3,4,5)
(12m+2;0,1,2,3,4,5) - (12m+ 2;12m,1,2,3,4,5)
(12m+3;0,1,2,3,4,5) - (12m+3;12m,1,2,3,4,5)
(12m+4;0,1,2,3,4,5) = (12m+4;12m,1,2,3,4,5)
(12m+5;0,1,2,3,4,5) - (12m+5;12m+2,1,2,3,4,5)

(12m;6,7,8,9,10,11) - (12m;12m + 5,7,8,9,10,11)
(12m+1;6,7,8,9,10,11) - (12m + 1;12m + 3,7,8,9,10,11)
(12m+2;6,7,8,9,10,11) - (12m + 2;12m + 3,7,8,9,10,11)
(12m+3;6,7,8,9,10,11) - (12m + 3;12m + 5,7,8,9,10,11)
(12m+4;6,7,8,9,10,11) - (12m+ 4;12m + 1,7,8,9,10,11)
(12m+ 5;6,7,8,9,10,11) —»(lim+ 512m+1,7,8,9,10,11)
(0;12m,12m+1,12m+ 2,12m+3,12m+4,12m+ 5)
(6;12m,12m+ 1,12m+2,12m+3,12m+ 4,12m + 5)

We are left with the non-packed star (12m + 4;12m+ 2,12m + 3,12m + §),
for the covering.

k=17.

Let K12m+7 be as in (6). From Theorem 3.1 and Lemma 3.16 we have T, |
K12m U K7,12m. Denote the vertices of K7 by {12m+j},5=0,1,...,6. Take
the star (12m; 12m + 1,12m+ 2,12m + 3,12m + 4,12m + 5,12m + 6),
so that we are left with a non-packed K. From here we continue as in the case
k=6.

k=8.

Let K12m+g beas in (6). From theorem 3.1 and Lemma 3.16 we have T4 | K12.m U
K3 12m. Denote the vertices of Kg by {12m + j},j = 0,1,...,7. Take the stars
(12m;12m+ 1,12m+2,12m+3,12m+4,12m+ 5,12m + 6), (12m +
7:12m,12m+1,12m+2,12m+3,12m+4,12m+5),and (12m+6; 12m+
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7,2m+1,12m+2,12m+ 3,12m + 4,12m + 5), so that we are left with a
non-packed Ks. From here we continue as in the case k = 5, where form = 1
we have K7 and its packing and covering as in Table 11.

k=10.

Let K12m+10 be as in (6). From Theorem 3.1 and Lemma 3.16 we have that 7y; |
K2 U K10,12,m. In addition we pack Ko with the stars:

(2m; 12m+4,12m+5,12m+6,12m+7,12m+ 8,12m +9)
(2m+512m,12m+2,12m+3,12m+7,12m+8,12m+9)
(2m+2;12m,12m+3,12m+6,12m+7,12m+ 8,12m +9)
(2m+3;12m,12m+5,12m+6,12m+7,12m+8,12m +9)
(Zm+412m+1,12m+2,12m+3,12m+7,12m+8,12m+9)
(2m+512m+1,12m+2,12m+4,12m+7,12m+8,12m+9)
(2m+6,12m+1,12m+4,12m+5,12m+7,12m+ 8,12m+9)

We are left with the non-packed triangle (12m + 7,12m + 8,12m + 9). We
take three stars T7; from the above decomposition, say, (12m+7;0,1,2,3,4,5),
(12m+38;0,1,2,3,4,5) and (12m+9;0,1,2,3,4,5). We replace the edges
(12m+7,0) by (12m+7,12m + 8),(12m+ 8,0) by (12m + 8,12m+ 9),
(12m +9,0) by (12m + 9,12 m + 7), so that we are left with the non-packed
star (0; 12m+ 7,12m + 8,12 m + 9) for the covering.

k=11.
Let Ky2m+11 be as in (6). From Theorem 3.1 and Lemma 3.16 we have that T} |

K12mUK11 12mm. In Table 16 we find the packing and the covering of Ky;. Hence,
the proof is completed. |
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