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Abstract. An oriented (or ordered ) iriple means either a Mendelsohn or a transitive
triple. An oriented (or ordered) triple system of order v, briefly OTS(v), is a pair
(V, B), where V is a v-set and B is a collection of oriented triples of elements of V,
such that every ordered pair of distinct elements of V' belongs to exactly one member
of B. It is known that an OTS(v) exists if and only if v = 0, 1 (mod 3). An OTS(v)is
cyclic if it admits an automorphism consisting of a single cycle of length v; an OTS(v)
is rotational if it admits an automorphism consisting of a single fixed point and one
cycle of length v — 1. In this note we give some constructions of OTS(v)'s which allow
to determine the spectrum of cyclic and of rotational OTS(v)'s.

1. Introduction.

Let V be a finite set. In what follows an ordered pair of elements belonging to
B will always be an ordered pair (z,y) where z # y.
A Mendelsohn triple on V is a set of three ordered pairs of the form

[a,b,c] = {(a)b)l(b)c))(cla)};

observe that [a,b,c] = [b,c.a] = [¢,a,b].
A transitive triple on V is a set of three ordered pairs of the form

(a,b,¢) = {(a,b),(b,0),(a,c) }.

An oriented triple on V means either a Mendelsohn or a transitive triple on V.

In [8] such a triple is called ordered triple. But we like “oriented triple” better
than “ordered triple” to eliminate ambiguity with the usual notion of ordered triple.

An oriented (or ordered) triple system of order v, briefly OTS(v), is a pair
(V, B), where V is a v-set and B is a collection of oriented triples on V, called
blocks, such that every ordered pair of distinct elements of B belongs to exactly
one member of B.

In particular, if the triples in B are all Mendelsohn or all transitive then (V, B)
is a Mendelsohn triple system, MTS(v), or a transitive triple system, TTS(v), res-

pectively.
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If (V, B) is an OTS(v) then

_v(v=1)

thercfore a necessary condition for the existence of OTS(v)’sisv = 0, 1 (mod 3).
It is known ([7], [8), [9]) that the spectrum for OTS(v)’s and TTS(v)’s is the set of
ally =0, 1 (mod 3), and for MTS(v)’s is the setof allv = 0, 1 (mod 3), v # 6.
An OTS(v) is said to be cyclic if it admits an automorphism consisting of a
single cycle of length v.
In [3] and [5] it is proved that:

Proposition 1. A cyclic MTS(v) exists if and only if v = 1,3(mod6),v # 9, a
cyclic TTS(v) exists if and only if v=1,4,7(mod12).

A twofold triple system of order v ([1]) is a pair (V, B), where V is a v-set and
B is a collection of 3-subsets of V, with the property that every 2-subset of V
appears in exactly two triples.

In [3] it is observed that if one omits the direction in the blocks of an OTS(v)
then obtain a twofold triple system of order v and in [4] it is proved that a cyclic
twofold triple system of order v exists only if v = 0,1,3,4,7,9 (mod 12),v # 9.

From this it follows that if a cyclic OTS(v) exists then v = 0,1,3,4,7,9 (mod
12), v # 9. Further from Proposition 1 it follows that forv = 1,3,4,7,9 (mod 12),
v # 9, acyclic OTS(v) exists.

In this note we prove that also for v = 0 (mod 12) a cyclic OTS(v) can be con-
structed, therefore the spectrum of cyclic OTS(v)’s is the set of all v = 0,1,34,79
(mod 12), v # 9.

An OTS(v) is said to be rotational if it admits an automorphism consisting of
a single fixed point and one cycle of length v — 1.

In [2] it is proved that:

Proposition 2. A rotational MTS(v) exists if and only if v = 1,3,4(mod6),
v # 10.
It is casy to see that a rotational TTS(v) cannot exist. In the second part of this
note we prove that for v = 10 and for each v = 0 (mod 6) a rotational OTS(v) can
be constructed, for that @ rotational OTS(v) exists for every v =0, 1 (mod 3).

2. Cyclic OTS(v)’s.

First, we give some simple observations on the structure of a cyclic OTS(v).
Using standard representations of cyclic designs as sets of difference blocks, a

cyclic OTS(v), (Z,, B), is equivalent to a partitioning of the set {1,2,... ,v—1}

into m-difference triples and ¢-difference triples; an m-difference triple is a triple



(a,b, ¢} = (b,¢c,8) = (¢c,a,b), where |[{a,b,c}] =1or3anda+b+c=0;
a t-difference triple is a triple (a,b, c), with ¢ + b — ¢ = 0. The m-difference
triples give the Mendelsohn triples of (Z,,, B) and the t-difference triples give the
transitive triples of (Z,, B).
Theorem 1. If v = 0(mod12) then a cyclic OTS(v) exists.
Proof: First consider the case v = 12. Let M be the set of the two m-difference
triples (4,4,4) and (8,8,8), and let T be the set of the three t-difference triples
(1,10,11), (2,5,7) and (3,6,9). The set M U T is a partitioning of {1,2,... ,11}
and, therefore, a cyclic OTS(12) exists.

Now, we study the case v = 12h, b > 2. Consider the following set of m-
difference triples: .

M= {(4h,4h,4h),(8h,8h,8h)}.
Further, consider the following t-difference triples:

& =(2i—1,10h—i+1,10h+i), i=1,2,...,h h+2,h+3,...,2h—1
&, =(2i,6h—i,6h+4), i=1,2,.,2h—1;

let

Ty={di:i=1,2,.,hh+2,h+3,.,2h—1},
T ={d:i=1,2,...,2h-1}

and let
T=TUTU{(2h+1,4h—1,6h),(9h,11h+1,8h+1)}.

It is easy to verify that M U T is a partitioning of the set {1,2,... ,v—1} and,
therefore, a cyclic OTS(v) exists for every v = 0 (mod 12),v > 24. 1

From the previous Theorem it follows that a cyclic OTS(v) exists if and only if
v=0,1,34,79 (mod 12),v # 9.

3. Rotational OTS(v)’s.

We observe that a rotational OTS(v), (Z,—, U{z}, B), where z is the fixed point,
exists if and only if there is 2* €Z,_; and a partitioningof {1,2,... ,v-2}—{z*}
into m-difference triples and t-difference triples; 2* give all the blocks (Mendel-
sohn triples) which contain the fixed point z.
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For v = 10, the m-difference triple (3,3,3) and the two ¢-difference triples
(1,4,5) and (2,6,8) give a partitioning of the set {1,2,...,8} — {7}, hence a
rotational OTS(10) exists.

Theorem 2. If v = 0(mod6) then a rotational OTS(v) exists.
Proof: Letv = 6h, h > 1. We consider the following ¢-difference triples:

d; =(2i—1,3h—i,3h+i=1), i=1,2,...,h
&, =(2i,5h—i—1,5h+i=1), i=1,2,... h—1.

LetT) = {di:i=1,2,...,h}, b = {di:i=1,2,... ,h-1}andletT = TTUT3.
Observe thatif h=1thenT; = @.
It is easy to verify that T is a partitioning of the set {1,2,... ,6 A—2}—{5h—1}
and, therefore, a rotational OTS(v) exists for every v = 0(mod 6). 1
From Theorem 2 it follows that for every v = 0,1 (mod 3) a rotational OTS(v)
exists.

References

1. K.N. Bhattacharya, A note on two-fold triple systems, Sankhya 6 (1943),
313-314.

2. C.J. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 26,n.1
(1986), 5-9.

3. CJ. Colbourn and M.J. Colbourn, Disjoint cyclic Mendelsohn triple systems,
Ars Combinatoria 11 (1981), 3-8.

4. M.J. Colbourn and C.J. Colbourn, Cyclic block designs with block size 3,
Europ. J. Combinatorics 2 (1981), 21-26.

5. M.J. Colbourn and C.J. Colbourn, The analysis of directed triple systems by
refinement, Annals Discrete Math. 15 (1982), 97-103.

6. MLJ. Colbourn and R.A. Mathon, On cyclic Steiner 2-designs, Annals of Dis-
crete Math. 7 (1980), 215-253.

7. S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. The-
ory Ser. A 14 (1973), 310-318.

8. C.C. Lindner and A. Penfold Street, Ordered triple systems and transitive
quasigroups, Ars Combinatoria 17 A (1984), 297-306.

9, N.S. Mendelsohn, A natural generalization of Steiner triple systems, in “Com-
puter in Number Theory”, Academic Press, New York, 1971, pp. 323-338.

68



