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ABSTRACT

Let G be a graph with minimum degree §. For each ¢ =

.6, let o;(G) (resp. o;(G)) denote the smallest in-
teger 'k such that G has an [z k]-factor (resp. a connected
[¢, k]-factor). Denote by G, a complete n-partite graph. In
this paper, we determine the value of o;(G,), and show that
0 < al( n) — @1(Gn) < 1 and o} (G, ) = a,(G ) for each
t=2,3,...,0.

AMS 1980 Subject Classification: 05C70

§1. Introduction

Let G be a simple graph with vertex set V(G) and edge set
E(G). We denote by dg (z) the degree of a vertex z of G. Let
a and b be integers such that 0 < a < b. A graph G is called
an [a, bl-graph if a < dg (z) < b for all z € V(G). A subgraph
F of a graph G is called an a,l{l actor of G if V(F) =
and a < dp(z) < b for all z € V(G). An [a, a]-factor of
also called an a-factor of G
Let A(G) and §(G) (or simply A and §) denote the max-
imum and minimum degree of G, respectively. We now intro-
duce the following new concepts. For 1 =1,2,...,6, let o;(G)
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(resp., @} (G)) denote the smallest integer k such that G has
an [¢, k]-factor (resp., a connected [¢, k]-factor). We call o; (G)
(resp. a}(G)) the #*! factor-indez (resp. the i*" connected
factor-indez) of G.
Evidently:
(a) 1< (G) <} (G) <A, foreachi=1,2,..,6;
(b) %(G) < @41(G) and o (G) < o}, ,(G), for each ¢ =
1,2,...,6 —-1;
(c) a graph G has an i-factor if and only if o;(G) = 1;
(d) a graph G is hamiltonian if and only if o} (G) = 2; and
(e) a graph G contains a hamiltonian path if and only if
a;(G) = 2.
Throughout
this paper, we write G, = K,(m;,m,,...,m,) to denote a
complete n-partite graph with n partite sets V;, V,,..., V,
such that |V;| = m; > 1, for each i = 1, 2,..., n. For the sake
of convenience, we assume that

ml sz S...Smn.

Let p denote the order of G,,. Then we have

p=Zm,- and §=46(Gn)=p—m,.

i=1

The problem of determining the exact values of o;(G) and
; (G) for an arbitrary graph G seems formidable. The pur-
pose of this paper is to determine o;(G») and o} (G,) of the
graph G,. For a real z, let |z| denote the greatest integer not
exceeding z and [z] denote the smallest integer not less than
z. Denote h = | (6 ~m,)/2] + 1 if 6§ > m,,. Then the main
results we obtain may be summarized in Table 1.

We further introduce a special class of G, for which the
exact value of o;(Gn) can be determined. Finally, we show
that o;(Gn) and o} (G, ) are almost identical in the sense that
0 < oj(Gpn) — 1 (Gn) £ 1 and ] (Gn) = ;(Gn), for each
t=2,3,...,6.

For te;minologies and notation not explained here, we re-
fer to [1].
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If |then fori= (Gn) =

6§ <m,|1,2,...,6 2]

if tp is even
if 7p is odd

) if p is even
t+1 if pisodd

,3)
if G, = Ks(1,3,3)

] if tp is even

6>mn 5a"h(lfh25) 141 lftplSOdd

h+2 ifhiseven

e
{
. 2{ if G, # Ks(1,3
{:
{

h+1 —h+1 ifhisodd
h+2,...,6—1 2(i - [21)
5 < 6+1 ifm,_y=m

§+s ifm,_1>m

s = [!J—mn!!mn_!-ml !]

n—-2
i=1 ™i

Table 1. Factor-Indices of Complete n-partite Graph

§2. Basic Results

We first state the following three results which will play key
roles in the subsequent sections.
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Theorem A (Dirac [2]). Let s be a positive integer. If G
is a graph of order p > 3 such that degyz > p/2 + s for each
z € V(G), then G has |s/2] + 1 edge-disjoint hamiltonian
cycles.

Theorem B (Katerinis [4]). Let G be a graph of order p
and let k be a positive integer such that kp is even. If §(G) >
p/2 and p > 4k — 5, then G has a k-factor.

The following corollary follows immediately from Theorem
B.

Corollary. Let G be a graph of order p such that §(G) >
p/2. Thenfori=1,2,..., [(p+5)/4],

Ik if ¢p is even,
(G) = {i+1 if ip is odd.

In the remainder of this section, we shall obtain, for an
arbitrary graph G, an upper bound of o;(G), which will be

found useful in the sequel. To get an upper bound, we need
the following known result:

Theorem C (Kano and Saito [3]). Let k,r,s and ¢ be
integers such that 0 < k<r,s>0and ¢t > 1. If ks < tr, then
any [r,r + s]-graph has a [k, k + t]-factor.

As an immediate consequence of Theorem C, we have:

Corollary. Let k,r and s be integers such that 0 < k < r,
r>0,82>0, and let

. { [Bs] itks 20,

1 if ks =0.

Then any [r,r + s]-graph has a [k, k + t]-factor.

Theorem 1. Let G be a graph having a c-factor, where
0<c<é. Then

it [“‘?‘_A‘:‘ﬂ if A £ 8,

t+1 if A=6,

o (G) <
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foreacht=c¢+1,¢c+2,...,6.

Proof. Let F be a c-factor of G. Then for each ¢t =
c+1,c+2,...,06,

%(G) < ¢+ a;_.(G - E(F)).

Observe that G — E(F) is a [6 —¢,A — c]-graph. If we put

r=6—c,s=A—6and k =1~ ¢, then by the corollary to
Theorem C, we have

i—c+ [("'g)(_‘\c‘s)] if A # 6,

ai-c(G—E(F)) S{
t—c+1 if A=24.

The result thus follows.
Remark 1. If G is a graph, then by Theorem 1,

1A
when A # 6,
t+1 when A =4,

fori=1,2,...,6.

Remark 2. The bound given in Remark 1 can be
achieved. For instance,

0, (K3 (i, m3)) = [,in"—] ,

for each t = 1,2,...,m,.

§3. Complete n-Partite Graphs

The aim of this section is to determine the value of o;(G,) as
shown in Table 1. For a graph G and for any two subsets A
and B of V(G), let ec (A, B) denote the number of edges of G
joining a vertex of A to a vertex of B.

To begin with, we deal with the case when 6§ = § (Gn) £
my,.
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Theorem 2. If § < m,, then o;(G,) = [%“--l for any
i=1,2,...,6.

Proof. Let ¢ =1,2,...,6. Construct an [¢, k|-factor F of
G, with k = A(F) = [%‘-ﬂ-] by joining all vertices of V, to

-1
the vertices of U V; such that
t=1
degprz =1, for all z€V,,

-1
and |degpz —degpy| <1, for all z,y € "U V.
i=1

We note that the factor F satisfies

(A(F) —1)8 < Y (degrz |z € "911 Vi) < A(F)S,

—1
as there must be a vertex zin U V; such that degrz = A(F).
i=1

Since
n—1 .
Z(deng |z € egl Vi) = E degpz = im,,,
zZ€EVn
we have
(A(F) —1)6 < im, < A(F)$,
or

A(F) = [i':"] :

Now, we show that o;(G.) > [im, /8], for any i =
1,2,...,6. Suppose o; = o;(Gn) < [tm, /6] — 1. Let H be
any [¢, o;]-factor of G,. Then we have

tm,

)

imRSeH(Vn,nL—Jli")S&aiSﬁ([ ] -1) < im,,
i=1

which is impossible.

74



From now on, we consider in the remainder of this section
the case when 6§ > m,,.

The following theorem is an easy consequence of Theorem
B.

Theorem 3. If § > m,,, then fori =1,2,...,|(p + 5)/4),

_Ji if tp is even,
%(Gn) = {i+1 if ip is odd.

If 6 is much larger than m,,, then the following theorem
gives the exact value of o;(G,) for more i.

Theorem 4. Let § > m, and h = [(6 —m,)/2] + 1.
Then
(1) for: =1,2,...,h,

) if 1p is even,

o (Gn) ={

t+1 if ipis odd;
(2)

@41(Gn) {
=h+1 ifhisodd;

(3) fort =h+2,...,6,
a;(Gn) < 2(i — [R/2]).

Proof. Since |(6§ —m,)/2] = h—1 and p = m, + 6,
we have § > p/2 + (h — 1). By Theorem A, G, has [h/2]
edge-disjoint hamiltonian cycles.

We now prove (1). Let ¢ be an integer with 1 < ¢ < h.
If ip is odd, we may take the edge sum of (¢ + 1)/2 of these
hamiltonian cycles. It follows that o;(Gn) = ¢ + 1. On the
other hand, if 1 is even, we take the edge sum of /2 of these
hamiltonian cycles; and if ¢ is odd and p is even, we take the
edge sum of (i — 1)/2 of these hamiltonian cycles plus a 1-
factor. Thus o;(Gn) =1 if ip is even.

We next prove (3). Let ¢ = h 4 2,...,6, and let the edge
sum of the [h/2] hamiltonian cycles be denoted by F. Then
we have

<h+2 ifhiseven,

o;(Gn) <2 [g] + oy e (Ga — E(F)).
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Note that G,, — E(F) is a graph with §' = § (G’,, — E(F)) =
6 —2[h/2] and A’ = A(G, — E(F)) = A — 2[kh/2]. Also
A'-6=A-6=m, —m,.

If m, > m,, then since ¢ — 2[h/2] > 1, we have by Theo-

rem 1,
X h (s —2[21)(mn — m,y)
(G,.—E(F))g:—z[;]+[ 5= 2[h] 1

It can be checked that m, —m; < m, —1 < §—2[h/2]. Thus,

wrsen fioafi] =24

If m, = m,, by Theorem 1 again, we have

a,.(c:,.)gz[g]+(i—2m)+1=i+1
(T
asi>h

2.
Fina-.hy, we prove (2). If h is odd, we may take the edge
sum of the [h/2] hamiltonian cycles and we have a;,, {(G,) =
h + 1. Assume that k is even. If m,, > m,, then as shown
above, we have

%icar

tnsr(Gn) <2 (h+1— [g]) —h+2.

If m, = m,, then
ah+1(Gn) S (h+ 1)+1 = h+2.

The proof is now complete.

Remark. The upper bound in Theorem 4 is sharp. For
instance,

o (o (8- [ ) =2 ).
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for any i with ¢ > h if h is even, and for ¢ > h + 1 if h is odd.

By Theorem 3, one can obtain the exact value of &;(G»)
for any positive integer i, ¢ < |(p + 5)/4]. If h is larger, then
Theorem 4(1) gives the exact value of a;(G,) for more ¢. In-
deed, whatever the value of h is, the exact values of o;(Gr),
for ¢ = 1,2,3,4, can be determined as shown below.

Theorem 5. If § > m,,, then

_J1 if pis even,
(1) 1 (Ga) = {2 if p is odd;
(2) 02(Gn) = 2;

_ |3 ifpiseven,
(3) e5(Gn) = {4 if p is odd;

_ |4 if G# K;(1,3,3),
(4) a.,(G,.) - {6 if G = Ks%1;3:3g°

Proof. Since § > m,, (1) and (2) follow immediately from
Theorem A. Note that (3) follows immediately from Theorem
3,if p>7 If p <7, then it can easily be checked that
@3(Gn) = 3 when p = 4 or 6, and as(G,) = 4 when p = 5.
We now give a proof of (4).

If 6—m, >4, then § > p/2+2. So by Theorem A, G, has
two edge-disjoint hamiltonian cycles. Therefore a,(Gr) = 4.
If §—m, < 4,then we consider three cases. Before we proceed,
let us agree on the following notation:

We denote the vertices in U;‘___‘llVi by v; such that if 1 <
i<j<év;€V,andv; €V, then k >I. Thus v, € Vo,
and Vs € Vl.

Casel. 6 —m, = 1.

Since & > 4 (otherwise oy (G, ) is not defined), m, > 3. If
m, = 3, then G,, is one of K; gl, 3,3), K3(2,2,3), K4(1,1,2,3)
or K;(1,1,1,1,3), and all of them satisfy o, (G,) = 4 except
a,(Ks(1,3,3)) = 6. If m, > 4, then we let

n-1
H = (Gn — {46)) ~ {sv € E(Gu) | 5, € U Vi}.
Note that H = K, (m,,m,). Since rn, > 4, H has a 4-factor

F.
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Let the vertices v; and v, be adjacent to two distinct
vertices a and b of V,, in F', respectively. We now delete the
edges vy e and v, b from ' and join v; to v,, v3, @ and b. This
is possible because v; and vs (resp., v; and v;) are in different
partite sets of G,,. This shows that a,(G,) = 4.

Case 2. 6§ —m, =2.

Since § > 4, m, > 2. f m,, = 2, then G, is K3(2,2,2),
K,(1,1,2,2) or K5(1,1,1,1,2). The 4*® factor-index for these
graphs is four. If m, =3, then G, is K;(2,3,3), K,(1,1,3,3),
K,4(1,2,2,3), K;(1,1,1,2,3) or K4(1,1,1,1,1,3), and all of
them satisfy o, (G,) = 4. If m,, > 4, then we let

H = (Gn — {v6-1,%}) ~ {zv € E(Gy) | 2,y € "0’ V;}.

Note that H has a 4-factor F' because H is the complete bi-
partite graph K, (m,,m,) and m,, > 4. We will construct a
4-factor of G,, from F'.

Let the vertex v; be adjacent to two distinct vertices a and
b of V,, and the vertex v, be adjacent to two distinct vertices
¢ and d of V, in F'. (The vertices a or b may be the same as ¢
or d.) We now construct a 4-factor F of G, from F' by joining
Vs-1 to vy, vz, a and b; v; to v; ,v;, ¢ and d, and remove
the edges vy @, v;b, v;¢ and v, d from F' (see Figure 1). This
construction is possible because v;_, and v, or v, (resp., v,
and v, or v;) are in different partite sets of G,. This shows
that Oy (Gn) =4.

Case 3. § —m, = 3.
If m, =1, then G, = Kj and clearly a,(G,) = 4. %f

m =
then G, is Ki(1,2,2,2), K5(1,1,1,2,2) or Ks(1,1,1,1,1,2)
and these
graphs satisfy oy &?n) = 4. I m, = 3, then G, is
one of K3(3,3,3), 4(1,2,3,3), K4(2,2,2,3), K (1,1,1,3,3),
K;5(1,1,2,2,3), 6(1,1,1,1,2,3{ or K7(1,1,1,1,1,1,3). It is
not difficult to check that the 4*" factor-index of these graphs
is also four. If m,, > 4, then we let

n-—1
H= (Gn - {"aavs-n”a—z}) - {xy € E(Gﬂ) Ia:,y € ‘,gl V,}
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s aRAinnl

4 deleted edges of F'.

Figure 1.

We note that H has a 4-factor F', and we will construct a

4-factor F of G, from F' as follows. Let the vertex v; be
adjacent to two distinct vertices @ and b of V,,, the vertex v,

be adjacent to two distinct vertices ¢ and d of V,, and the
vertex vz be adjacent to two distinct vertices e and JFoiV, in

F'. (Some of the vertices a,b,¢,d,e and f may be the same.)
Remove the edges vy a, v, b, vz¢, v2d, vse and v f from F' and
join v;_, to vy, vy, @ and b; vs_, to vy, vs, ¢ and d; and finally
join v; to v,, vs, € and f (see Figure 2).

Since v;_, and v, or v, (resp., v;_,; and v, or vs, and v
and v, or vs) cannot be in the same partite set of G,, such a
factor F exists. This again shows that a,(G,) = 4.

The proof is now complete. p

§4. Connected Factor-Index

The theory of (i, k]-factor has been developed by Tutte [6,7,8]
and Lovész [5]. They obtained a necessary and sufficient con-
dition for a graph to have an [¢, k]-factor. However, the prob-
lem of determining the exact value of o} (G) is difficult. For
example, a graph contains a hamiltonian cycle if and only if
o} (G) = 2, and the problem of findii.g a hamiltonian cycle in
a graph is NP-complete.
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deleted edges of F'.

Figure 2.

It follows by definition that o;(G) < o] (G), for any graph
G and for each ¢ = 1,2,...,6. In this final section, we shall
show that if we confine ourselves to G,, then a; (G,) and

@;(Gn) are indeed identical for all ¢, except possibly when
t=1

Theorem 6. Let G, = K, (m;,m3,...,m,). Then
2 if 6 > m,,

[—n_s—m +6_1.| if § < my;
(2) o} (Gn) = 0;(Gy), for each i = 2,3,...,6.

Proof. (1) If 6§ > m,, then a}(G,) = 2 by Theorem A.
Assume § < m,. We first construct a connected [1, k]-factor
F with k = A(F) = [(m, + 6 —1)/6] and then show that
@} (Gn) cannot be less than this value. To construct F, we
take a path P of G,, which begins with a vertex in V,, with

the successive vertices alternately in U;‘;llV,- and V,, until P
contains all the vertices of U= 'V;. (This is possible because
m, > 6.) If6§ < m, < §&+1, then F is the path P with
k=2={[(m,+6-1)/6]. H m, > 6+ 1, then we get the
connected factor F by joining all the vertices in V,, — V(P) to

(1) of(Gn) = {
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the vertices in U 'V; such that

degpz =1, for each z €V, —V(P),

and |degpz —degpy| <1, for all z,y€ "l:l: Vi
=
Thus F satisfies

(A(F) - 1)5 < Y (degrz |2 €U Vi) < A(F)S,

-1

as there must be a vertex z in 'TUI V; such that degp z = A(F).
=

But

Z(degpz | z € nL—JlV,-) = Z(degF:c lzeV,)=m, +6—1.
i=1

S (A(F) = 1)6 < mp +6 — 1 < A(F)S,

i A(F) = [-"-'"—i’&&—'l] .

To show that o} (G,) is never less than A(F), we suppose the
contrary and let F' be a connected (1, aj ]-factor of G,. Then

m,+6—1

1B < b < 8(| ™

]—1)<mn+6—1.

Since F' is connected,
|E(F')| > m, +6 — 1.
Thus we have
m, +6—1<|E(F')|<m,+6-1,

which is impossible.
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(2) Let ¢+ = 2,3,...,6, and let F be an [i, o; (G, )]-factor
of G,. If F is connected, then o} (Gp) = ;(Gp). Assume
that F is not connected and let C; and C; be any two of
its components. We need only to show that it is possible to
modify F to get an [f, a;(Gy )|-factor in which C; and C, are
connected.

Let ab and zy be non-bridge edges of C, and C,, respec-
tively. (Such edges exist since C; and C, are not trees.) We
consider the following two cases:

Case 1. b and y are in the same partite set of G,,.
In this case, ¢ and y cannot be in the same partite set,

because a and b are adjacent. Similarly, b and z cannot be in
the same partite set because z and y are adjacent. So we can

delete the edges ab and zy from F and add the edges ay and
bz to it. Since ab and zy are not bridges, C; and C, are now
connected. (See Figure 3.)

Figure 3.

Case 2. b and y are not in the same partite set of G,,.

In this case, we can assume, by Case 1, that a and z are
not in the same partite set. But then we can remove the edges

ab and zy from the factor and add the edges az and by to it.
Since ab and zy are not bridges, C; and C; are now connected.
]
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Remark 1. By comparing Theorem 9(1) with Theorems
2 and 5(1), we see that 0 < o7 (Gn) — o (G,) < 1.

Remark 2. The inequality in Theorem 1 also holds for
a; (G), for any graph G having a connected c-factor.

Remark 3. Theorem 2 also holds for o} (G,), for any
t=2,3,...,6.
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