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Abstract. We present a permutation group whose orbits classify isomorphism of cov-
ering projections of the complete graph with 4 vertices. Two structure theorems con-
cemning with this group are proved.

1. Introduction.

Let G be a simple graph. The graph H is called an r-fold covering of G if there
is an r-to-one epimorphism p: H — G, called the covering projection, which is
“local homeomorphic”, that is, which sends the neighbors of each vertex v of H
bijectively to the neighbors of p(v) of G.

Now let Aut (G) be the automorphism group of G. An isomorphism of cover-
ing projections of G is a commutatidve diagram

H H
e
G G

with an isomorphism ¢ and p € "j'lut (G); we write p ~g P.

During the last years one may observe a lot of interest in enumerative aspects
of topological graph theory. For example, Mohar counted the akempic triangu-
lations of the 2-spherc with 4 vertices of degree 3, which correspond to certain
coverings of the complete graph K4 with 4 vertices via duality [7, 8). Negami
counted embeddings of a 3-connected nonplanar graph G into a projective plane
by establishing a bijection between such embeddings and nonisomorphic planar
2-fold coverings of G [9]. Hong and Kwak counted regular 4-fold coverings of
an identity graph G [6]. Nonisomorphic concrete graph coverings are counted in
(5].

Nevertheless, the general counting problem for covering projections of G up to
isomorphism is unsolved except in the cases r = 2 [3] or trivial automorphism
group of G [4]. Our purpose is to present a permutation group, whose orbits cor-
respond to the isomorphism classes of r-fold covering projections of the complete
graph with 4 vertices K4. We will prove two structure theorems concerning this
permutation group.

But first let us state some general results.
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2. Permutation voltage assignments.

Let S, denote the symmetric group on the set {1,...,r}. Let V(G) and E(G)
be the set of vertices and edges of G, respectively. The arc set of the corresponding
symmetric directed graph will be denoted by A(G).

A permutation voltage assignment in S, for G is a mapping f: A(G) — S,
such that f(z,y) = f(y,z)~! for every edge [z,y] of G. The pair (G, f) is
called a permutation voltage graph. The set of the permutation voltage assign-
ments in S, for G will be denoted by F,.(G).

Given such a permutation voltage graph (G, f), we construct the derived graph
G as follows. Its vertex setis V(G) x {1,... ,7}; two vertices (z,1), (v, j) are
adjacent in G iff = and y are adjacent in G and f(z,y)({) = j.

In order to deal with covering projections it is admissible to restrict attention
to derived graphs of permutation voltage graphs. This was shown by Gross and
Tucker [1]; we present their main theorem.

Theorem 1. (1) Let f be a permutation voltage assignment for G in S,. Then
the natural projection py: Gy — G (sending vertex (u,1) of Gy to vertex u of
G) is an r-fold covering projection of G.

(2) Let p: H — G be an r-fold covering projection. Then there is an assign-
ment f of voltages in S, for G such that the covering projections p and py are
isomorphic with the trivial automorphism of G.

Permutation voltage assignments are a powerful tool to handle coverings (for a
general development of the theory see [2]). In particular, isomorphism of covering
projections can be classified by them. Two permutation voltage assignments f, f
in S, for G are said to be equivalent if there is a family (7, )uev(g) in SY(® and
p € Aut (G) such that

f(z,9) = m,f (p(2), p(p)) 77! )

for every edge [ z, y] of G; we write f ~¢ f. (Note that composition of permuta-
tions is read from right to left.) The permutations m, are to allow relabeling of the
fibers p~! (u). The equivalence class of f will be denoted by [ f], and the set of
equivalence classes by F,(G)/ ~¢. The following theorem can be found in [4].

Theorem 2. The equivalence classes of permutation voltage assignments for S,
in G are in one-to-one correspondence with the isomorphism classes of r-fold
covering projections of G.

Theorem 2 could be a basis for the enumeration of nonisomorphic covering
projections, but as far as we know, no good counting formula for this problem is
known.

It is natural to look for “simple” representatives of the equivalence classes of
permutation voliage assignments. The following theorem states their existence
(4].
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Theorem 3. Let T be a spanning forest of G, and let f be a permutation vollage
assignment in S, for G. Then there is an f € [ f] such that f(z,y) = (1) for
every edge [z,y] of T.

Motivated by Theorem 3, we call such assignments which are trivial on the
arcs of a spanning forest T of G rooted at T'. The set of permutation voltage
assignments in S, for G that are rooted at T" will be denoted by Wr(G; T').

3. The case of K4.

From now on, we consider the complete graph K, with vertex set {0,1,2,3}.
Let T° be the spanning star of K4 centeredat 0. Define the mapping P?: F,( K4)
— W,(Ka; T?) by setting

£(9,0 f(z,9)£(0,3), if(z,y) & AT);
(n if (z,y) € A(T").
(Remember that composition of permutations is read from right to left.) It is easy

to see that f ~x, P2(f); therefore, P2( f) is a “simple” representative in [ f].
Now define a bijection A,: W,( K4;T%) — S2 by setting

PUH)(z,9) = { 3

A(g) = (9(1,2),9(2,3),9(3,1)) .

Then A, o P? is a mapping from F,(K4) onto S} that induces an equivalence
relation on S? from ~, in an obvious way.

The automorphism group of K, is Sa, considered as a permutation group of the
set {0,1,2,3}. Observe that Sy acts on F,( K4) via

o(f)(z,9) = fF(e™ (@), 07 (),
and that S, acts on W,( K4; T°) via conjugation:
7(f)(z,y) = wf(z,y)n"".
It is well known that S4 can be generated by the three transpositions
p1=(01), p2=(12), p3=(23).

Fori € {1,2,3}and % € S, define permutations of the elements of S as follows
(the permutations are not, in general, automorphisms of S3, except for 7):

n(e,B,7) = (™' afy,7v7"),
n(a,B,7) = (', 77", 871),
n(e,B,7) = (v, 87, a7"),
(@, B,9) = n(e, B, M7},

:= (war~!, wfn!, 'nfy'n‘l),
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and set
S= {Tl»ngﬁ}U{Tx I ™ E Sr}.

Consider the subgroups of the full symmetric group on the elements of S? given
by the following generating sets:

Gr=(8) H,={n,m,n}), Tr=({m|7€S}).

Clearly Z, is isomorphic to S, for = > 3, while it is of order one for r = 1,2.
It will turn out that the orbits of G, are the equivalence classes of 83 induced by
equivalence of permutation voltage assignments via the mapping A, o P?.

The proof of the following lemma is straightforward.

Lemmad. Let f € F.(K4) and (Ar o P?) (f) = (a, B,7).
(1) If f(z,y) = m f(z,y)n]" forevery [z,y] € E(Ka), then (A,0PP)(f) =
Twog_asﬂtq)- _
Q@) If f = 7 (f), then (A& o PYY(F) = (Tr0nn) (e, B, 7).
@) If f= 03" (f), then (A, o PPY() = n(a, B,7).
@) If f = o3 (f), then (8, o P2)(f) = 13(, B,7).
For (o, B8,7) € S2,let [(, 8,7)] denote the orbit of (e, B, ~) under G,.

Theorem 5. Themapping A,oP? establishes a bijection between F(Ka) [ ~x,
and S2 (G, .

Proof: Let f, f € F(K4) suchthat f ~, f. By (2) thereis a family (m,)uev(k.)
in SY(X4+) and p € S, such that
F(z,9) = mf (p(z), 0(9)) 77"

for every edge [z, y] of K4. We first have 10 show that (4, o P?)(f) and (A, o
P2)( f) are in the same orbit of G, We procecd by induction on £( ) , where £( )
is the smallest number of factors in a presentation of p by the generators 1, 3,
3. If£(p) = 1, then f(z,y) = m,f (pi(z) pi(y)) 77’ forsomei € {1,2,3}.
It follows by Lemma 4 that

(7o) (@, B,7) ifi=1,
(Tuo"?)(a,ﬁ,’Y) ifi=2,3.

Forp=! = oM@ oD D e {6 0y, 03} for1 < i < k+ 1, we have
[(4 0o PY(D] = [ ((Ar 0 P07 (N)]
= [(Ar 0 P?) (017 ... 0% M) (N)]
= [(Ar o)) ((02 ... 0% * DY ()]
= [(Ar o PY( )]

(A, 0 PO)(f) = { @
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by equation (4) and induction.
Conversely, let o € G,. We have to show that for any (a, 8,7) € S?

AN, By) ~ia A7 (ea, B,) - ®)
If p € S, this follows from the equations
A‘," o = 'P,? o«p,-oA,,"1 (1€{1,2,3)},
A7'on =m0 (me Sy,

which can be verified directly from the definitions.

We now conclude that equation (5) is true by induction on the minimal number
of factors in a presentation of p by the generators in S. |

By Theorem 5, it suffices to count the orbits of the permutation group G, to
compute the number of r-fold covering projections of the graph K. In principle,
this can be done by Burnside’s lemma; unfortunately, the enumeration fails on the
unknown members of G,. Indeed we can not solve the counting problem, but we
can present some structures of the group G,.

4. Two structure theorems for G,.
Let (o, 8,7) € S3. Then

nn(e,B,7) = (B,7,) ©6)

and
(nm) (e, 8,7) = ala, B, .
Define 01,072,035 € H, by

o1 = (nn)?
o2 = (nm) N (nn)(nn)
o3 = (nn) 2 (nn) (nn)?.

Then, for every (ay,a2,a3) € Ss andi € {1,2,3},
oo, 00, a3) = ai(an, a2, 03) 05, )
and forevery 7 € S,,
0iTx = TnOi. @®

Now set V, = {{01,02,03}). Note that V, V, are of order one since S, S are
commutative.
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Theorem 6. V, isnormalin H,,and forr > 2, H,/V, = Ss.

Proof: For r = 1, there is nothing to show. Thus, assume that r > 2. We first
show that V), is normal in H,. It suffices to show that

naj'r,-'l €V,

foralli,; € {1,2,3}. The following Table 1 presents all these relations; the

values are easy to check. The table is to be understood that the element of ith row

and jth column is 70, 7!

Table 1
| 1 2 3
1 o 1 010203 O3 !
2 oy o3! oy
3 o3 ! ay ! oy

Next we have to prove that , /V, & Sy. Set
T4 =TINNITT3.
Then(a, B,7) = (Bay, B!, 471). Sincen = nnunn,.H, = ({n,nn)}).
The members of the group H,/V, are cosets { = (V,, { € H,; thus, the set
{72,73,74} generates H,/V,.
The symmetric group S; is generated by
X2=(12), X3=(23), X4=(34),
together with the relations
X} = (XX1)® = (X2Xa)' = (1) (i=2,3,47=2,3).
We show that these relations are satisfied by 72, 73, T4. Clearly,
T3=T3=75=1.

For (@, 8,7) € S2,

(mm)*(a,8,7) = (Bn)%(a,8,7) = (o, 8,7)

by (6), hence, (7273)> = 1.
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Furthermore,

(mnm)*(a,8,7) = (nm)*(1,.Bv "' B71)

=(nm)(v'a7'g7,8,BaB7)
(Bap~,B,8187")
o2(a,B,7)

and

]

(7274)2(avﬂ;’7) (hn)(ﬁ_la-lﬂ_l,%ﬁ) =(a,ﬂ,'7)

what implies (7374)® = (7274)2 = 1.

We conclude that the agreement
”(Xt) =7; (1€ {1:233})

constitutes a group epimorphism Sy — H,/V;.
Table 2 establishes the complete isomorphism.

i| x@ LA 7Na, 8,7)

1 m i {a,8,7)

2| (12 n (et y" 87"
3| 23) ™ (v"87a™)
41 (34) ™ (Bay,87%,77")
] (13) TyT2T3 (87,07, 97"
6 (14) TaTAT(TaT2 (e}, 18a,97")
7 (24) T4TaTe (a8 a9))
8| (123) a7y (1,0,8)

9| 132) N (B.1,0)

10| (124) | mmnre [(ef 17" 9)
| 142) | nmnre [(ere7'377Y)
12| (134) |nrunnnn]fr a3y
13| 143) | nrnn [(@'87'77a,7)
14] (2349) Tty (1B, 7 'a™'3)
15| (243) T (f~'y7'a™", 8,0)
161 (1 2)(3 4) T (v'a"'p71,1.3)
17| (1 3)(2 4) [ smamarimare | (B, 870" a™Y)
18| (1 4)(2 8) | nrsmamamams | (a8 a)
19((1234) | mmn (v fan, 7)
2|(243)| mmm (eyfya=', 87')
121 (1324) | mmnnn | (87 a13,07")
2[1(1342) T3TaT2 (A" 77", Bav)
23| (1423) | mamnmn | (7,07, vf0)
24[(1432)| mmn (1ha,77',0"")

Table 2
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The second column contains the elements of Sy, denoted by X ¢?, the third one
representatives ¢ of the cosets p( X ), and the fourth column describes the
action of 7 on (a, B,7) € S3.

Now let (@, 8,7) € S?. The members of V, preserve the conjugacy classes of
a, B, 7. Using the fourth column of Table 2, it is easy to check that no permutation
70,2 < i < 24, has this property. This implies that y is injective and in fact an
isomorphism, |
Theorem 7. G, = H, x I,.

Proof: It follows directly from Equation (8) that
op = Qo

forevery o € H, and g € Z,. Since the union of the generating sets of }, and Z,
is a generating set of G,,

H, I, =G,.
Thus, we only have to show that

H.NZL = {1}. )

Forr = 1,2, the assumption is trivial, since Z, = {1}. Now let > 2. Every
o € I, preserves the conjugaqy classes of all (&, B,7) € S3. We remarked in the
proof of Theorem 6 that no 79,2 < 4 < 24, has this property, hence, for all such
(i)
™Y,
™Y, NI, = 0.

Thus, in order to prove Equation (9) it suffices to show that

V.NZI ={1}.
Let{ € Y, NZ,. Since { € V,, there is a presentation
(=04...05, (01,...,im € {1,2,3}). (10)
On the other hand,
(=" (1)

for some 7 € S, since ¢ € Z,. Now choose any « € S,. We conclude from (10)
together with (7) that

(a,0,0) = a™(o,a, )™

and from (11) that

=(a,0,0)
Ha,a,a) = 1(a,a,a)x!.

It follows that man~! = « for every a € S,, hence, 7 = (1) since r > 2, which
proves the theorem. 1
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Corollary 8. Letr > 2. Then

24 ifr=2,
|G+ = |Sal- [Z]- [Ve| = { 24r1|V,| ifr>3.

The group G, consists precisely of the elements 79 of Table 2. In this case we
can use our results to count the 2-fold coverings of K, up to isomorphism. It is
easy to check that the number of fixed points of 7¢9 is

-8 ifi=1,
—4 if2<i<T7orl6 <1< 18,
-2 otherwise.

Using Burnside’s lemma, we obtain that the number of 2 -fold covering projections
of K4 is 3. These are well known [10]: the trivial one; the 3-dimensional cube;
and the following “hybrid”™:

This approach given here is easier than the use of the formula of [3, Theorem
34].

Note that there are four “obvious” equivalence class representatives in this case:
(0,0,0),(1,0,0),(1,1,0), and (1,1, 1). What is surprising is that (1,0,0)
and (1, 1,0) are equivalent via 7y

95



References

L. J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation volt-
age assignments, Discrete Math, 18 (1977), 273-283.

2.J.L. Gross, T.W. Tucker, Topological graph theory, in “Wiley Interscience
Series in Discrete Mathematics and Optimization”, John Wiley & Sons, 1987.

3. M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988),
437444,

4. M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Dis-
crete Math. 98 (1991), 175-183.

5. M. Hofmeister, Concrete graph coverings projections, Ars Combin. 32 (1991),
121-128.

6. S. Hong, J.H. Kwak, Regular fourfold coverings with respect to the identity
automorphism, J. Graph Theory (to appear).

7. B. Mohar, Akempic triangulations with 4 odd vertices, Discrete Math. 54
(1985), 23-29,

8. B. Mohar, The enumeration of akempic triangulations, J. Comb. Theory Ser.
B 42 (1987), 14-23.

9. S. Negami, Enumeration of projective-planar embeddings of graphs, Dis-
crete Math. 62 (1986), 299-306.

10. D.A. Waller, Double covers of graphs, Bull. Australian Math, Soc. 14 (1976),

233-248.

96



