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Abstract. A decomposition into non-isomorphic matchings, or DINIM for short, is a
partition of the edges of a graph G into matchings of different sizes. As a special case
of our results, we prove that if a graph G has at least (2x’ — 2)x' + 1 edges, where
X = x'(G), is the chromatic index of G, then G has a DINIM. In particular, the n-
dimensional cube, Qn, n > 4, has a DINIM. These results confimm two conjectures
which appeared in Chinn and Richter [3).

1. Introduction

Graphs in this paper are finite and have no multiple edges nor loops. We set
A = A(Q) to be the maximum degree of vertices. By V(G) and E(G) we
denote the vertex and the edge set of a graph G, respectively.

Given a graph G, a decomposition into non-isomorphic matchings, or DINIM
for short, is a partition of E(G) into sets E, B3, ..., E; such that, for each 1, E;
isamatching in G and if i # 7, then |E;| # | Ej|. The problem of having a DINIM
in a graph was raised by Pavol Hell and discussed by Chinn and Richter in [3],
where they proved that every sufficiently large 2-connected 3-regular graph has a
DINIM.

The subject was considered also by Buhler, Chinn, Richter and Truszczynski
(2],[4).

Pavol Hell, Chinn and Richter [3) raised several problems concerning DINIM.
Two of them we solve here, namely,

Conjecture 1: Is it true that the n-dimensional cube, Q,, n > 4 has a DINIM?

Conjecture 2: Is it true that for a given maximum degree of a graph G, there are
only finitely many graphs (having no isolated vertices), having no DINIM?

These two conjectures will be an easy consequence of our results on decompo-
sition into non-isomorphic independent sets.
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An edge-coloring of a graph G isamap ¢ : E(G) — C, where C is a set
of colors, such that no two edges with the same color have a common vertex.
The chromatic index x'(G) is the least number j of colors such that G can be
edge-colored with j colors. Similarly we define the chromatic number x(G) o
be the least number ; of colors such that G has a vertex-coloring, namely, no two
adjacent vertices has the same color, with j colors. A balanced t-coloring is a
vertex coloring, using ¢ colors, in which the color classes are almost of equal sizes.

2. Results and Proofs

We start with two simple but essential lemmas.

Lemma2.1. Leta; < a3 < --- < a, bepositive integers suchthat ay > 2n—1.
Then we can decompose a; in the following form: a; = b; + ¢; such that b; and
c; are non-negative integers satisfying b; # b;, ¢; # ¢;, b; # c;. (ie. all the
members of the decomposition are distinct).

Proof: Chooseb;=n—iandc¢;=a; —n+1. |

Lemma 2.2. Let a; <€ a2 < .-+ < ay be positive integers such that

) 0<an—a1 <1

(ii) eithera)y >2n—1o0ra;=2n—2anda,=2n-1.
Then the sequence admits a decomposition as in Lemma 2.1.
Proof: If (i) is satisfied witha; > 2n—1 then weare in the situation of Lemma 2.1
and we are through. So that we assume (i) is satisfied with a; = 2n— 2 and
as=2n—1.Fori=2,3,...,n— 1 denote b;_; = a;. Let m be the first place
such that j > m, b; = 2n— 1 (it might be that all the b’s are exactly 2n — 2).
Then we decompose the sets in the following way:

by — ({,2n-2 —14), i=1,2,....m—1,
and
by »(i+1,2n-2 —19), i=mm+1,...,n—-2,

where the arrow indicates the exact decomposition. One can see that this decom-
position with the integers a; and e, admits the required decomposition. 1

Lemma 2.3. Let a; < a2 < --- < a, be positive integers such that
(i) 0<a,—a1<1and

i Y rh,e>n2n-2)+1.
Then the sequence admits a decomposition as in Lemma 2. 1.

Proof: If a) > 2n— 1 then we have a decomposition as in Lemma 2.1. So we
may assume a; = 2n—2. Ifalsoe, = 2n—2 thenweget ) 1, a; = n(2n—2)
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a contradiction to (ii). Hence, a, = 2n — 1 so that by Lemma 2.2 we have the
required decomposition.
If a; < 2n— 3 then it follows that a, < 2n— 2 so that we get ) 1o a; <
(2 n— 2) a contradiction to (ii). Hence the Lemma is proved. |
The next result is of interest and will be useful in the sequel. It is also related
to some earlier work of Favaron [6].

Theorem 2.4. Let G be a K q,-free graph. Then,

(i) If A and B are two independent sets in G then A(AUB) <m— 1.
() x-1<AG) < (m=-1)(x—-D.
(iii) Let o and B be the maximum and the minimum sizes of a maximal vertex
independent set, respectively. Then, B < fo < (m —1) 8.

Proof:
(i) Consider a vertex of maximum degree in A U B. Since G is a K y,-free
graph and both A and B are independent, the result follows immediately.
(ii) The left hand side follows immediately. For the right hand side consider
the x coloring classes of G. Let v be a vertex that realizes the maximum
degree, A(G). By (i) v has at most m — 1 adjacent vertices in each color
class. Hence, A(G) < (m - 1)(x—1).
(iii) The proof uses similar arguments as in (ii). [ ]

Theorem 2.5. Letbea K 3 -free graph. Then there is a balanced x(G) -coloring
ofvV(G).

Proof: Let V},V3,...,V, be the color classes with cardinalities a; < a2 < -+ <
a,. Suppose a, — a; > 2. Consider the bipartite graph on the vertex set Vi UV,..
By Theorem 2.4(i) A (Vi UV,) < 2. Hence, the components of this graph consist
of paths and even cycles. Since ay — a; > 2, there must exist a path of odd
length in which the number of vertices from V, is greater by one then that from
V1. Interchange the colors on this path to reduce the difference between a, and
a;. Repeat this argument as long as neccesary. [ |

Theorem 2.6. Let G be a K 3-free graph such that |V(G)| > (2x —2)x + 1.
Then V(@) has a decomposition into independent sets of distinct orders.

Proof: By Theorem 2.5 G has a balanced x coloring of V(G). Since |V(G)| >
(2x — 2)x + 1, we may use Lemma 2.3 and the result follows. 1

Corollary. Let G be a graph such that |E(G)| > (2x' —2)x' + 1. Then G has
a DINIM.

Proof: Take the line graph of G , L(G). Then it is well known that L(G) is a
K, 3-free, and by Theorem 2.6 we are done. ]
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Remark 1: Using Vizing’s Theorem [8], (in the “worst” case, namely, x’' = A+1)
one may get a more tractable condition namely, if, | E(G)| > 2A (A + 1) + 1 then
G has a DINIM. In particular if A(G) < 3 and |[E(G)| > 25 then G has a
DINIM, a result which improves significantly that of [3]. |

Remark 2: Observe that in the n-dimensional cube, Q,, |E(Qu) | = 2™ ! nwhile
A(Q,) =n Bu,2™'n> 2n(n+ 1) + 1 forn > 5. Hence Q,,n> 5 hasa
DINIM. The case n = 4 was solved in [3].

Remark 3: The bounds of Theorem 2.6 and its corollary are tight as the following
extremal graphs show.

(i) For each x > 3 consider the graph G to be a disjoint union of 2 — 2
copies of K. Then |V (G)| = (2x —2)x, and we do not have the required
vertex-decomposition.

(ii) For each x' > 3 consider the graph G to be a disjoint union of 2x' — 2
copies of the star K . Then |[B(G)| = (2x' — 2)x', and we do not have
the required DINIM. ]

Theorem 2.7. Let G be a Ky m-free graph such that |[V(G)| > 1+ (2x —
2)(1+ (x—1)(m—1)). Then V(G) has a decomposition into independent sets
of distinct orders.

Proof: LetVy,V3,...,V, be the color classes with cardinalities 6y < a3 < --- <
ay. Suppose a; < 2x — 2. Recall '_I‘heorem 2.4(iii). Hence we may assume that
oy < (2x = 2(m — 1). Thus, T3 a; < (2x = D(1+ (x — D(m — 1)), a
contradiction to the order of V(G). Hence, a1 > 2x — 1 so that by Lemma 2.1
we are done. i

The next result is a general theorem conceming a vertex decomposition into
independent sets of distinct order.

Theorem 2.8. Let G be a graph such that [V(G)| > (A + 1)2A + 1. Then
V(G) has a decomposition into independent sets of distinct orders.

Proof: Let V;,Va,...,Va+1 be color classes with cardinalities a; < a2 < --- <
aa+1. Since we use A + 1 colors we may apply the deep Theorem of Hajnal and
Szemeredi [7] which claims that V/(G) has a balanced-A + 1-coloring. Since
V(G) satisfy the condition of the theorem we have the required decomposition
by Lemma 2.3. [ |

Remark 4: The bound of Theorem 2.8 is tight. Consider the graph G to be a
union of 2A copies of the complete graph Ka.1. Then |[V(G)| = 2A(A + 1)
and we do not have the required decomposition.

Remark 5: The notion of balanced-coloring is perfectly suitable to deal with ma-
troids (see e.g. [9]). By a “well known” theorem of Edmonds [5] the minimum
number of independent sets that cover the matroid M is given by the formula
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X(M) = max scu[ 47, where p(A) is the rank function of the matroid. More-
over this equality is satisfied by a balanced-x( M) -coloring. Hence by Lemma
2.3 if M is a matroid such that |[M| > (2x(M) — 2)x( M) + 1 then there is a
decomposition of M into independent subsets of distinct orders. [ |

The following theorem is a particular example of a result that belongs to both
Matroid Theory and Graph Theory.

Theorem 2.9. Let G be a graph with nonempty edge set. Then E(G) has a
decomposition into forests of distinct sizes.

Proof: The proof is by induction on the number of edges in G’ and in particular
we shall show that such a decomposition exists using at least §( G) forests.

For |E(G)| = 1 the claim is obvious. Let v be a vertex of minimum degree.
Consider three cases.

Case 1. G\\v is empty.
In this case it follows that G = K> and the result follows.
Case 2, §(G\v) > §(G).

In this case by the induction hypothesis E(G\v) has a decomposition into
forests of distinct sizes using at least 6( G) forests. Now we add each of the edges
incident with v to the §(G) largest forests and we are done.

Case 3. 6(G\v) < 8(G). |

In this case it follows that §( G\v) = §(G) — 1. Then by the induction hypoth-
esis we have a decomposition using at least §(G) — 1 forests of distinct sizes. If
this decomposition uses at least §(G) forests then we apply the same argument as
in Case 2. Otherwise there are exactly §(G) — 1 forests. Add to each of those
forests one edge incident to v. Then the sizes of the forests increase by one and
we have an additional forest of size exactly one coming from the remaining edge
incident to v. Notice that now the number of forests is §(G). [ |

Remark 6: One can see that in Theorem 2.9 the number of forests we need is
bounded by max iy 8( H) , a parameter of the graph that often appears in coloring
problems. In particular, for planar graphs 5 forests will suffice. |
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