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Abstract. We give necessary and sufficient conditions on the order of a Steiner triple
systemn admitting an automorphism , consisting of 1 large cycle, several cycles of
length 4 and a fixed point.

1. Introduction.

A Steiner triple system of order v, denoted S(v), is an ordered pair (X, B), where
X is a set of cardinality v, and B is a set of 3-subsets of X, called blocks, such
that any 2-subset of X is contained in a unique block. A Steiner triple system of
order v with a hole of size w, denoted S(v),, can be defined as follows:

Let X be a set of size v, X' C X, |X'] = w and B a set of 3-subsets of X,
called blocks. Then (X, X', B) is an S(v),, if

i. no 2-subset of X' is contained in any block; and

ii. all other 2-subsets of X are contained in a unique block.
An automorphism of an S(v), or an S(v),, is a permutation 7 of the set X that
preserves the blocks in B. a is said to be of type [#] = [m, m2, ... , W] if the dis-
jointcyclic decomposition of 7 has &; cycles of length . S0 Y iw; = v. A question
of concern has been that of given a particular automorphism type, does there exist
an S,(v)? A more general question is: for a particular automorphism type, does
there exist an S, (v),,? Then when possible, extend the S, (v),, to0 an Sx(v). For
[#]=11,¢0,...,0,1,0,...,0] and [0,0,1,0,...,0,1,0,0,0], necessary
and sufficient conditions have been shown for the existence of Sx(v)y, and Se(v)
[1]. In this paper, we give necessary and sufficient conditions for the existence of
Sx(v)y and Sg(v) when{#] =[1,0,0,¢,0,...,0,1,0,...,0].

2. Sx(v)w with [#] = [1,0,0,¢,0,...,0,1,0,...,0].
The automorphism has 1 fixed point, ¢ 4-cycles and 1 cycle of length d. Sov =
d+ 4t + 1. For the S;(v),, let:

X ={oo0,z1,y1,21,W1,... ,Tt, 91,2, wy,0,1,2,... ,d— 1}
X'= {oolzlnylpzlnwlt"- szhyhzhwt}
(m) = (00)(z1,91,21,w1) ... (Tt, 42, 2, w¢)(0,1,2,... ,d— 1)

Lemma2.1. Let(m):(0o,10,...,50—1) (01, 1},... ,81=1) ..., (O, 14,...,
sx—1) beapermutation of the v-elementset X = {0o, 19,... ,80—1,01,1,...,

ARS COMBINATORIA 36(1993), pp. 107-118



s1—1,...,06 1, ... 8¢ —1}. Let X' = {0y, 1,... 81 — ey Op, 1, ..n
8¢ — 1}, |X'| = w. Then if Sy(v)y, 0n X with hole on X' exlst.s' s, | 8o for each
1<i<k.

Proof: Leta; € {0;,1;,...,8;—1},1 < i < k. Then {09, a;} must be in a block
of the form {a;, 00,20 }. Apply 7 so times to get {a; + so,0p,Zo} as a block in
the Sy(v)w. Thena; = (a; + s0) (mod s;). Sos; | sp. [ ]

By the above lemma, 4 | d. So let d = 4 e. Since every 2-subset of X/X' must
appear in a block, each of the differences in the set S = {1,2,...,2¢} must be
in a difference triple. For each of the 4-cycles, either O or 2 odd differences are
required, hence, an even number of odd differences in S will be in blocks of the
form {z;,a,b}, z; € X', a,b,€ X/X'. The remaining odd differences in S must
occur in pairs in difference triples since any difference triple has 2 odd differences
or 0 odd differences. S contains e odd differences. If 27 odd differences are
removed, e — 2 7 must be even and so e must be even.

We have the following necessary conditions for the existence of an S,(v),, on
X with hole on X':

(1) d= 4eande must be even;
) t< [%-e_l, with strict inequality if e = 6,12, 14,18 or20 (mod 24);
(3) If3dividese,then3 | (2e -2t —2).
If 3 does not divide e, then 3 | (2e — 2t —1).
For a complete proof of 2. and 3. see [1). These necessary conditions are equiva-
lent to partitioning the set § = {1,2,...,2e - 1},e = ¢,d = v—4t — 1,into
sets A, B, and C such that
(1) A can be partitioned into difference triples (mod d);
(2) B is 2t-set of even number of odd numbers and an even number of even
numbers congruentto 2 (mod 4);
(3) C=forC= {%e}.
Given the partition of S into sets A, B, and C, form started blocks of the following
types:
Type I: For each a,b, c € A such that (a, b, c) is a difference triple, witha + b = ¢
ora+b+c=0 (mod 4¢),form {0,a,a + b}.
Typell: Foreachi,1 < 1 < t, take 2 numbers a and b from B, with a and b both
even or both odd.
Ifa,b =2 (mod 4) orifa = 3 (mod 4) and b = 1 (mod 4), take
{zi,0,a} and {z;,1,1+ b}.
Ifa,b=1 (mod 4) ora,b=3 (mod 4), take {z;,0,a} and {z;,2,2+b}.
Ifa—l (mod 4) and b= 3 (mod 4), ke {z;,0,a} and {z;,3,3 +b}.
Type IIl: IfC = {1e},form {0, £,%°
TypelV: {00,0,2e}.
For a proof that these blocks form an S, (v),, see [1].
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According to the necessary conditions, the following table gives values of e and
corresponding values of ¢ for which S = {1,2,...,2e— 1} must be partitioned.
The third column gives the range of ¢ since 0 < t < | 3¢], with strict inequality
fore=6,12,14,18 or20 (mod 24).

t=3k+n,n€Zs e=6s+m,mEZ¢ rangeoft

n m
0 2 8=0 (mod 4):0< k<3
s=1(mod 4): oskg”}”
s=2 (mod 4):0<k< 3] -1
s=3 (mod 4):1<k< |32
1 0 0<k<|32]/2
0 s=0 (mod 2):0 < k< 352
s=1 (mod 2):0 < k< el
4 0<k< (%)

3. Extending the S, (v),, to a Sy(v).

Sincev =1o0r3 (mod 6) for an S;(v), the only possible values of t aret = 0

or2 (mod 3), if the Sy(v),, is to be extended to an S,(v). Also, in order to
extend to an Sy(v), an Sy, (w) is needed with [m] = [1,0,0,“’4;‘,0,... ,01.
If an Sy, (w) exists, then an S,,y2 (w) exists with [(m)?1 =11, %‘—1,0, ... ,01,
which is areverse Steiner triple system and has been shown to existiffw = 1,3,9
or 19 (mod 24) [7]. Hence,t = %L resultsint = O or 2 (mod 6) for the
Sx(w). Ift =0 (mod 6), w = 1 (mod 24). By [4], a 2-rotational Steiner
triple system exists for w = 1 (mod 24). If & is 2-rotational, ¥ is of type
(1,0,0,%L,0,...,0] obtaining the desired automorphism. Ift = 2 (mod 6),
w=9 (mod 24) Agama2-rotat10nal Sx(w) exists forw =9 (mod 24) and
a" isof the form [1,0,0, 271,0,...1.

In conclusion, we have that a S,(w),[n] =[1,0,0,¢,0,...,0,1,0,...,0]
exists iff v = 1 (mod 24) andt =2 (mod 6) orv =9 (mod 24) andt =
0or2 (mod 6),t < [ = | with strict inequality if e = 6,12,14,18 or 20
(mod 24).

The size of ¢ varies with each value of e. In most cases as ¢ increases by 3, each
new partition of S is based on the previous partition. Hence, it is possible to set
up a recursion form based on varying sizes of ¢ corresponding to particular values
of s. SoforS = {1,2,...,2e—-1},0 < k < j, j as determined by the range of
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k for values of e, let:

Ao ={(=,y,2)|z,y,z€ A and (z, y, 2) is a difference triple (mod 4 ¢) }

By ={a1,4a2,...,02¢ Wwhere ay,... ,ay; are elements of §
satisfying the conditions of set B}

Co ={4e/3}or

Ag =Ar1/{(a1,b1,c1),(a2,b2,c2) withtheset{a1,b1,c1,02,b2,c2}
containing an even number of odds or an even number of numbers
congruent to 2 (mod 4) }

By =Bx-1U{a1,b2,01,02,b2,02}

Ci=Cofor0< k< j

We show here a partition of S = {1,2,...,2e—1}fort =1 (mod 3) and
e =0 (mod 6). The remaining partitions for each value of e and corresponding
values of ¢ are given in [1], hence, showing that the necessary conditions for the
Sx(v)y, are also sufficient.

For the partition of S,lete = 6s, t =3k+ 1and S = {1,2,...,12s - 1}.
There are 4 cases:

3s

s=0 (mod 4), t=3k+lfor0gkg-§-——l

s=1(mod 4), t=3k+1for0 <k< 33‘3 -1

s=2 (mod 4), t=3k+1for0 <k< % -1

s=3 (mod 4), t=3k+1for0 <k< Fzﬁ -1

Ci = @ forall k )
s=0 (mod 4).

A
Ao ={(14+2m, 125-2—-4m, 125—1-2m); m=2,3,...,3s-1,
(4,125-6, 125—2), (1,128—-4, 125-3), (4r,4(a,+3), 4(b,+5));
r=2,3,...,s with (a,, b,) as defined below }
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Bo ={3,125-1}
(a,, b)), r=2,3,...,8[15]

o (5.5-1). (33) (-1.3-1)

8 3s 8
(2) (I+m, T—m), m=1,2,...,—--1

4
() (s—1+m,2s—1—m); m= 1,2,...,}-1
(4 (ms—1-m)im=12,., 21

S5s 7s ]
(5) (T—1+m, T—m). m-l,2,...,z—l

This is based on Davies [3] using Theorem 2 with the case n=4m — 1.

A=A [{(1+4k,123—-2 -8k, 125—1—-4k),
(3+4k,123-8k—6,123—-4k-3)}
Bi=Br1U{1+4k,125—2 -8k, 125—1-4k,

3+4k,125—-8k—6,123—-4k-3}

s=1 (mod 4),s > 13.

Ao ={(142m,125-2 -4m,125-1-2m); m=2,3,... 351,
(4,125-6,125-2),(8,125- 16,123 - 8),
(12,125-24,125-12),(1,125 — 4,123 — 3),(47,4(a, + 3),4(b, + s)) ;

r=4,5,...,s with (ay, b,) as defined below }
Bo ={3,12s -1}

Forl<k< |3 -1:

A=A /{(1+ 4k, 1252 —8k,125 -1 —4k),
(3+4k,125—-8k—6,125 -4k - 3)}
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By=Bi_ 1 U{1+4k,12s—1—-4k,125-2 — 8k,
3+4k,12s-4k—3,125—8k—6}
(ar,b,), r=4,5,...,8

Q)] (8—9 —-m, ﬂ+m) 'm=0,1,..., s—13

2 2 4
s—9 3s-3 s—13
) ( - —m,—2—+m).m_o,..., -
35—13 3s-3 s—13
(3)( ) +m),m-0,..., 2 -1
5s—17 7s—-15 s—13
@ (2 -m ) ime0,.o 5
3s-7 3s-11 7s5-19
) (&,23_5),(3_3, - )( A T )
35-7 5s-13 s—=3 3s-11
9 ] 4 ] 2) 2

s=7 35-9
(6) (T+m, —2-—+2m> ym=0,1.

This is based on Simpson [6] using a hooked sequence {4,5,... ,4+m—1},
m=3-3.

Ao ={(4,6,10),(1,8,9),(2,5,7)}
Bo ={3,11}

Ao ={(1,56,57),(4,54,58),(8,40,48),(12,24,36),

(16,28,44),(20,32,52),(1+2m,125-2-4m,125—-1-2m);
m=2,...,3s—1}

Bo ={3,59}

Forl1 < k< 6:
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A =Ae1/{(1+4k,58—8k,59 —4k),(3+ 4k,54 —8k,5T—4k)}
By =BrU{1+4k,59 —4k,58—8k,3+4k,57 -4k, 54 -8k}

§=9

Ao={(1+2m,125-2m,12s—-1-2m);m=2,...,33-1,
(4,106,102),(1,105,104),(8,92,100),(12,52,64),(16,80,96),
(20,48,68),(24,60,84),(28,44,72), (32,56, 88),(36,40,76) }

By ={3,107}

Forl1 < k< 12:

Ag=Ag-1/{(1+ 4k, 106 -8k,107 —4k),(3+ 4k,102 -8k, 105 -4 k) }
By =By  U{1+4k,107 -4k, 106 —8k,3+ 4k,105 -4k, 102 -8k}

s=2 (mod 4),s>10

Ao={(1+2m,125-2-4m,125-1-2m);m=3,...,3s-1,
(8,125—12,125-4),(4,125—10,125-6),(5, 125—8,125—3),
(1,125-2,125—1), (47,4(ay, + 3),4(b, + 5)) ;
r=3,...,s with(a,,b,) as defined below }

By ={3,12s -5}

Ay =40/ {(1,125-1,125-2),(7,125—14,125-7)}

Bi=ByU{1,12-1,125-2,5,125—14,12 -7}

For2 <k<|32)-1:

A=A/ { (4k+3,125—8k—6,125—4k-3),
(1+4k,125-2-8k,1235—-1-4k) }
Bi=Bi_1U{4k+3,125—8k—6,125-4k—3,1+ 4k
125-2-8k,123—-1-4k}
(er,by),r=3,...,s
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(1) (3;2 -2-m,¥+2+m>;m=o,...,3;—2—3
2 (3;2 —-m, 3(84-2)+1+m) ym=0,... ,8;2 -2
©) (3(82_2)—1—171, 3(82_2)+2+m>;
m=0, ,3;2-2
(4) (5(34"2) —m,7(’4“2) +2+m) :m=0..., S;Z -2
s—2 3(s=2) 7(s-2)
(5) <T+l,s-—l),( =~ +1),

s-2 3s-2) s=2 3(s-2)
(2—1, 3 +1),(2, 3 )

Omit (1) if s = 10.
This is based on Simpson [6] using a perfect sequence {3,... ,3+m — 1},
m=s—2.

s=2
Ao ={(4,14,18),(8,12,20),(5,21,16),(1,22,23),
(7,10,17),(9,6,15),(11,13,2)}
Bo ={3,19}
A, ={(4,14,18),(8,12,20),(5,21,16),(1,22,23),

(7,10,17}
B ={3,29,9,6,15,11,13,2}
Az ={(4,14,18),(8,12,20),(5,21,16)}
B, ={3,19,9,6,15,13,11,2,7,10,17,1,22,23}

s=6

Ag={(1+2m,125-2-4m,12-1-2m);m=3,4,... ,3s-1,
(4,62,66),(8,28,36),(12,48,60),(16,40,46),
(1,71,70),(20,32,52),(24,44,68),(3,64,67)}

By ={3,69}

A1 =40/ {(1,70,71),(7,58,65)}

By =Byu{1,70,71,7,58,65}
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For2 < k< 8:

Ar=Ap1/{(4k+3,66—8k,69—4k),(1+4k 708k, 71-4k)}
Bi=Bi_ U{4k+3,66—8k 694k, 1+4k 708k, 71 -4k}

s=3 (mod 4), s> 11

Ao={(14+2m,12-2-4m,12-1-2m);m=3,...,3s-1,
(1,125-2,123-1),(4,125-10,125-6),(8,125-12,125-4),
(5,125—8,125-3),(4r,4(a, + 8),4(d, + 3)) ;

r = 3,...,swith (a,, b,) as defined below }

By ={3,12s -5}

Ay =40/ {(1,125-1,125-2),(5,125-14,125-7)}

B, =By U{1,125-1,1258-2,5,125—-14,123-7}

For2 <k< |3 -1

Ap=Ap_/{(4k+3,125—-8k—6,123-4k-3),
(1+4k,125—-2—-8k,12s—1—-4k}

By =Br1U{4k+3,125—8k—6,125—4k—3,1+ 4k,
128—-2-8k,12s—1—-4k}
(ay,b),r=3,...,s

(1) (m,s—1—m); m=1, 3‘;—3
5(s—3)
(2) ( +1, 2 3)
3) <— +1+ m,3(8—3)+2—m);m=l,...,3;3—1

(4) ( = +1,3(32_3)+4)
3(s—3), 3(s—3)
(5) ( +2, 3 )and( > +2)

5(s—3) 7(s—3) o s—3
(6)( 4 3m, = +3—m),m-l,...,—4 -2
') (s—1+m,2s—3—m);m=1,...,"’4"3.
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This is based on Theorem 1, case iii., form =4k + 1 in [2].

s=3

Ay = {( 4,18,22),(8,24,32),(12,16,28),(7,20,27),
(1,34,35),(3,30,35),(5,26,31),
(1+2m,125-2-4m,125—-1-2m); m=5,6,7,8}

Bo ={9,29}

A =40/{(1,34,35),(3,30,33)}

By =By U {1,35,34,3,33,30}

Ay =A,/{(13,10,23),(15,6,21)}

B, =B, U{13,23,10,15,21,6}

Ag={(1+2m,125-2-4m,12-1-2m);m=3,...,3s-1,
(4,74,78),(8,72,80),(5,76,81),(12,40,52),(16,48,64),
(20,36,56),(24,34,58),(28,32,60),(1,82,83) }

By ={3,79}

Ay =Ao/{(1,82,83),(7,70,77)}

By =B, U{1,83,82,7,77,70}

-

For2 <k<9:

Ap=Ai1/{(1+4k, 12 -2 -8k, 125—1—4FK),
(4k+3,12-8k—6,12—-4k-3) }

Bi=Bi_1 U{1+4k, 12528k,
12s—1-4k,4k+3,125—8k—6,125—4k-3}

References

1. R.S. Calahan, Automorphisms of Steiner triple systems with holes, Ph.D, The-
sis (1990), Auburn University, Auburn, AL,

2.).C. Bermond, A.E. Brouwer, A. Germa, Systems De Triplets Et Differences
Associees, Problémes Combinatories Et Theorie Des Graphs 260 (1976),
35-38.

3. R.O. Davies, On Langford’s problem (I), Math Gaz. 43 (1959), 253-255.

116



4. K.T. Phelps and A. Rosa, Steiner triple systems with rotational automor-
phisms, Discrete Math. 33 (1981), 57-66.

5. A. Rosa, Poznamka O cyklickych Steinervoych systemoch trojic, Math, Fyz,
Cas. 16 (1966), 285-290.

6. J. Simpson, Langford sequences; perfect and hooked, Discrete Math. 44 (1983),
97-104,

7. L. Teirlinck, The existence of reverse Steiner triple systems, Discrete Math,
6 (1973), 301-302.

117



