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Abstract

The automorphism group of a graph acts on its cocycle
space over any field. The orbits of this group action will be
counted in case of finite fields. In particular, we obtain an
enumeration of non-equivalent edge cuts of the graph.

1 Introduction

We consider simple graphs G = (V, E), that is, multiple edges and
loops are not permitted. An edge cut of G is a subset L of E (possibly
empty), such that L consists of all edges that have exactly one vertex
in a given subset S of V; we write L = (§,V \ §).

Two edge cuts Ly, L, are called equivalent, if there is an automor-

phism of G' that maps L; onto L;. We pose the problem to count
the non-equivalent edge cuts of G.

More generally, let IF; be the field of ¢ elements. For a given
graph G = (V, E) let A be the arc set of the corresponding symmetric
digraph. Let C%(G; IF,) be the set of functions f:V — IF,, and let
CY(G; IF,) be the set of alternating functions of G, i.e. functions
F : A — IF; such that F(¢,j) = —F(j,1) for every arc (i,5) € A.
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The sets C°(G; IF;) and CY(G; IF,) form vector spaces over IF'g.
Now consider the mapping

§:C(G; IFy) — CI(G;IF,,)

defined by
§(f)(4,5) = f(&) - £(4) - (1)
Then 6 is a vector space homomorphism. The image of § is the

cocycle space of G over IF,. The automorphism group I’ of G acts
on C%(G; IF,) and C}(G; IFy) via

v(£)E) = fF(rG)) , v(F)E,5) = FOyT @), GE) ()

fory € T, f € C%G; IF,) and F € CY(G; IFy). Since every v € T
commutes with §, it follows that I' acts also on the cocycle space
im(6) by (2). Cocycles that are in the same orbit are called equiva-
lent.

Cocycle spaces of graphs are classical objects in graph theory.
They appear as spaces over finite fields ( e.g. [4] ) as well as spaces

over complex numbers ( e.g. [2] ), and they play an important role
for graphical duality ( e.g. [1] ).

Cocycles are well studied; however, they have not been counted
up to equivalence that is induced by the automorphism group of the

base graph. The purpose of this paper is to establish this enumera-
tion.

If g is a power of 2, then every member of IF, is self-inverse with
respect to addition; hence we may imagine C!(G; IF,) as the space
of all functions F : E — IF,. The edge cuts of G are precisely the
sets F~1(1) for ¢ = 2 and F € im(6). So the problem of counting
non-equivalent edge cuts of G can be solved by counting the cocycle
orbits of G over IF; under the automorphism group T.

2 Strategy for counting non-equivalent co-
cycles

First let us develop a concept for the enumeration of cocycle equiv-
alence classes. By Burnside’s lemma, we have to count the cocycles

120



that are fixed under any given automorphism v of G. For v € T we
introduce the mapping

vy : CY(G; IF) — CY(G; IFy)

by setting
vy(F) = 7(F) ~ F

for F € CY(G; IF,). It is easy to see that v, is a vector space homo-
morphism, and the set of fixed cocycles we are looking for is

N,(G; IFy) := ke(vy) N im(6) .
Next define the homomorphism
py : CUG; IFy) — CYG; IF,)

by setting
pr(f)=7(f)- f
for f € C°(G; IF;). Since v commutes with §, the diagram

é
CYG;IF) —— CYG;IF,)

oy Vny . 3)

CGiIFy) — CYG;IF,)
)
is commutative. The preimage of N.,(G; IFy) under § is
C(G;IFy) := ke(vy 0 6) = ke(6 o py) .

From dim C,(G;[F';) we will obtain dim N,(G;IF,;), and dim C,(G;[F;)
can be calculated from the dimension of the space

M, (G; IFy) := im(py) N ke(8) .
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3 Enumeration

The automorphism 7 decomposes into pairwise disjoint vertex cycles
o, (the subscript v suggests that v is to be understood as a vertex
permutation).

We start with a criterion for f € C%G;IF,) to be a member of
M,(G; IF,).

Lemma 1 Let f € CO(G;IF,). Then f € M, (G;IFy) iff it satisfies
the following two conditions:

(1) The function f is constant on the components of G.
(2) For every vertez cycle g, of ¥, Lieq, f(z)=0.

Proof. It is easy to see that ke(§) consists of all functions f €
C°(GIF,) that are constant on the components of G. Thus it suffices
to show that the members of im(u.,) are exactly the functions f €
C°(G; IF,) that satisfy Condition (2).

Let o, be a vertex cycle of 7 of size s, and let i € 0,,. If f = p,(g)
for some g € C%G; IF,), then we have

g(v= () — (175 (6)) = F(r7RA))

for k=0,...,8 — 1. We obtain Condition (2) by summing up these
equations.

Conversely, define for i € V recursively

g(r*VE)) == g(yHE) + F(F))

Condition (2) guarantees the consistency of this procedure. So g is
well defined, and f = p,(g). o

Clearly, the automorphism group I of G acts not only on vertices
but also on components of G. The number of component cycles of
4 € T will be denoted by w(v). Let o, be a component cycleof I'. A
vertex cycle g, of v is called associated to o, if o, permutes vertices
of components in o,. Now let k() be the number of component
cycles o, of v that have an associated vertex cycle o, such that

A

m#o (mod p) ,
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where p is the field characteristic of IF';. Note that Eﬂ is always
an integer. It indicates how many vertices of o, are contained in a
component of a,,.

Lemma 2 dim M. (G; IFg) = w(y) — k(7) -

Proof. Let f € M,(G;IF,). Since f € ke(d), we may imagine
f as a function on the components of G by setting f(H) = f(¢) for
some component H of G' and vertex ¢ of H.

Now let o, be a component cycle of 4, and let 7, be an associated
vertex cycle. Then, by Conditions (2) and (1) of Lemma 1,

|ow |
0=Zf(w)=la—"12f(ff)- (4)
-'L'GO’V w Heau
If Z: = 0 (mod p) for every associated vertex cycle o,, then we
have glo! possible choices for f on the vertices of components con-
tained in o,. But if f%} # 0 (mod p) for some associated vertex

cycle o, then f can be chosen only in gl°“I=1 ways on these vertices
by Equation 4. The assertion follows by taking the product of these
numbers over all component cycles o,, of 7. o

We will denote the number of vertex cycles of 4 by v(7).
Lemma 3 dim C(G; IFy) = w(7) — &(7) + v(v) .

Proof. Set u, = p, | C4(G; IF,). Clearly dim(ke(p,)) = v(7),
since ke(u,) consists of all f € C%(G; IF,) that are constant on the
vertex cycles of 7. An easy calculation shows that ke(ul) = ke(,).
Now the proof can be completed by the dimension formula for By
and Lemma 2. o

Now let & be the number of components of G.
Lemma 4 dim Ny(G; IFg) = w(y) = k(y) +v(y) -k .

Proof. Set ' = § | C,(G;IF,). Again it is easy to see that
ke(8') = ke(6). We conclude that dim(ke(8’)) = k, since ke(é) con-
sists of all f € C%(G; IF,) that are constant on the components of G.
Now the proof can be completed by the dimension formula for §’ and
Lemma 3. m]
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Theorem 1 The number of non-equivalent cocycles of G over IFy is

1

w(¥)—&(¥)+v(7)
74 -
II‘Iq ~yer

Proof. It follows from Lemma 4 that the number of cocycles of
G over IF that are fixed by y € ' is
guM=rN+v(-k

The theorem follows from this by Burnside’s lemma. (]

4 Non-equivalent cocycles of complete graphs

As an application of Theorem 1, let G = K, be the complete graph
with n vertices. Then we have k = 1 and T' = §,,, the symmetric
group on the n vertices. For every 7y € S, we have w(y) = 1, hence
|ow| = 1 for the only component cycle of 7. We conclude that

K(7) = 0 if|o,|=0 (mod p) for every vertex cycle g, of 7,
TV=1 1 otherwise.

Now, by Theorem 1, the number of non-equivalent cocycles of K,

over IF, is
1 v 1 v
ﬁzqh)'i_—q-n!zqm’ (5)

where the first sum extends over all ¥ € S, such that |o,| = 0
(mod p) for every vertex cycle o, of v, and the second sum extends
over the remaining permutations in S;.

For v € S, define v,(y) to be the number of vertex cycles of v of
length , 7=1,...,n. The cycle indezx of S, [9] is the polynomial
1
Z(Sn;s) = o > s'l"(") ...sem0n)
" YESn

where s = (81,82, 53,...). Set 1 =(1,1,1,...) and for r € IN define
1[r) = (21, z2, Z3,...) by setting

pimd 1 if r is a divisor of ¢ ,
'7 1 0 otherwise .
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A"| 2 3 4 5 6 7 8
2] 2 2 3 3 7 1 5
3l 2 4 5 7 10 12 15
41 4 5 11 14 24 30 45
518 7 14 2 42 66 99
7| 4 12 30 66 132 246 429
8| 8 15 50 99 232 420 835
9| 5 21 55 143 339 715 1430
11| 6 26 91 273 728 1768 3978
13| 7 30 140 476 1428 3876 9690
16|16 51 276 969 3504 10659 30954
17| 9 57 285 1197 4389 14206 43263
1910 70 38 1771 7084 25300 82225
23 (12 100 650 3510 16380 67860 254475
25|13 117 819 4755 23751 105183 420732

Table 1

Then it follows from Expression 5 by a short calculation that the
number of non-equivalent cocycles of X', over IF, is

%(Z(Sn; q-1)+(¢g—1)Z(Sn;q-1[p])) ,

where, as usual, the number p is the field characteristic of IFy. From
this formula we obtained Table 1. The cycle indices of small order
symmetric groups are tabulated in [5).

5 Cohomology

In the language of cohomology, the mapping §:C%(G;IFy)—~C(G;IF,)
defined by Equation 1 is a coboundary operator that gives rise to an
exact sequence

0 = HO(G; IF)5C(G; IF,) €N (G ) 51 (G IF,) — 0. (6)
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The space H%(G; IF,) = ke(é) is the 0-cohomology space of G, and
the space H'(G; IF,) = CY(G; IFy)/im(8) is the 1-cohomology space
of G. The members of H!(G; IF,y) are sometimes called switching
equivalent classes. They have been enumerated up to isomorphism
for ¢ = 2 in [11] and later on for arbitrary prime powes ¢ in [7].

Now consider IF; as a finite vector space over its prime field, IF:,,
say. Then the action of GL,(IF,) on H'(G; IFy) via left multipli-
cation describes isomorphism of regular graph covering projections
that stem from ordinary voltage assignments with voltage group IF',,
hence there is a link to topological graph theory. The corresponding
isomorphism classes are counted in [8]; for an introduction to this
theory we refer the reader e.g. to [6] or to the famous textbook [3].

6 A related problem

As already remarked in the last section, the mapping 6 : C%(G; IF,) —
CY(G; IF,) defined by Equation 1 is a coboundary operator. We
define a boundary operator

8 :C\(G; IFy) — CYG; IFy)

by setting
F)i)= Y, F(i,j).
(i.7)eA

The kernel of 8 is the well known cycle space of G over IF;. Cycle
space and cocycle space are orthogonal subspaces of C!(G; IF,). As
on the cocycles, the automorphism group I' of G acts on the cycle
space of G over IF,. Call two cycles of G over IF, equivalent, if
they are in the same orbit of this action. Similar as in the preceding
sections we pose the problem to count the non-equivalent cycles of G
over IF,. If ¢ = 2, this problem is the enumeration problem for non-
equivalent even subgraphs of G, i.e. graphs with only even degrees.
Robinson [10] solved this problem for complete graphs; but, as far as
we know, the general case of arbitrary finite fields and graphs is still
unsolved.
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