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1 Introduction

In the following note we collect some results on diagram geometries ad-
mitting a flag transitive group of automorphisms. The geometries under
consideration are BUEKENHOUT-TITS geometries, i. e. connected, residually
connected geometries of finite rank, whose rank-2-residues are essentially fi-
nite classical generalized polygons, generalized digons and "circle-geometries”
(see [2)).

We are interested in the question whether the hypothesis on the rank-
2-residues and the flag transitive action of a group implies finiteness and
makes it possible to give a full classification.

In particular, for all geometries given, also their universal 2-covers are
determined.

Proposition (2.1) proves the non-existence of a certain ”parabolic sy-
stem” implicitly used in [13]. This result was independently obtained by A.
A. IvaNov (personal communication).

In section 3 we determine the semibiplanes with block size < 12 that
admit a flag transitive automorphism group. Proposition (3.10) answers
a question of JANKo/vaN TRUNG on the automorphism group of a certain
semibiplane. This result could also be derived in a different way from [4], p.
399. In addition to the known examples, an interesting family of geometries
with automorphism groups Gla(¢)/Z(S12(q)), ¢ odd, as well as geometries
with flag transitive group 2.L3(4) resp. Us(3) arise.

The method of proof is always the following: we derive a presentation
for the flag transitive group G from the action on the diagram geometry G.
By coset enumeration (we used CayLEY V3.7) we get the order of G and
hence the information needed to determine G and G.

In some proofs and examples, we work in the chamber systems of the
geometries; these are equivalent to the geometries, if certain conditions are
satisfied; compare [1], [11].
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2 A non-existence theorem

The first result shows basically that a certain flag transitive geometry with
the diagram O——O=—=0 where the rank-2-residue with the dia-
gram O=——0 is a triple cover of the Sps(2)-quadrangle, does not
exist. In terms of chamber systems, it reads as follows.

(2.1) ProposiTioN. There is no chamber system C(G; S; X1, X2, X3) with
S ~ Ds, X,' ol 24 (2 = 1,2,3), (Xl,Xg) jo-d L3(2), (X],X,?,) fad 3.A6, .XQX3 =
X3Xs.

ProoF: Assume C(G;S; X1, X2, X3) is a chamber system with the above
mentioned properties. We choose generators a,b,dy,ds,d3 of G that satisfy
a suitable set R of relations. By coset enumeration we show that

G = (a,b,dl,dg,d;; | R) ~ A7.

This is a contradiction to (X, X3) ~ 3.4 ¢ Ar.
First we introduce the relations and the results of the coset enumeration.
Let a,b,d;, d,d3 be generators and let 2 := (ab)?. Let

Rs = {az,b2,(ab)4}
R, = {d} did,b%z)}
R; = {d&,d%dj,z%a} for j=2,3.

An easy calculation shows that (a,b,d; | RsUR;) ~ 4 for i =1,2,3. Coset
enumeration yields the following presentations:

(a,b,dy,d3 | Rs U Ry U R3 U {(dhd3')*})
(a,b,d1,d2 | RsU Ry U Ry U {(d1d3')*})

3.A¢ (1)
Ly(2) (2)

R R

and finally:

(a,b,dy,dg,d3| RsU R U Ry U R3V {(drd5")%, (d1d5")?, [d2, d3]})
~ (a,b,dl,dz,d:; I RsUR1UR;UR3U {(d]dgl)s, (d]d'z—l)3, [dg,d:;](l}) .
jad A7 (3)
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Now we prove that G satisfies the relations in (3). Let P;; = (X;, X;) for
i,j € {1,2,3},i # j. Let a,b be involutions of G such that (a,b) = S, let
(z) := Z(S). There is a d; € X, such that a,b and d; satisfly Rg U R;.
For each d3 € X3 with d3 = 1 we have d3 € Ng((a, z)), as P;3 ~ 3.Ag has
02(Py3) = 1. So we can obviously pick d3 € X3, such that dj satisfies Ra.
So we can pick d3 € X3 satisfying R3, and using the isomorphism (1), we
may even choose d3 such that a, b, dy,d3 generate Pi3 and obey to relations
RsU Ry U Rz U {(d1d5')5}.

Consider Py;. By easy counting one verifies that there are precisely two
Frobenius groups F, F’ of order 21 in P2 containing d;. Since they are
self-normalizing in Pjs, we get F* = F' and (F N X;)* = F' n X, holds.
Suppose (F N X,)* = F' N X;. Then F N X3 and F' N X, are z-invariant.
That contradicts z € O2(X3). But now b, which leaves invariant two Sylow
3-subgroups of X,, must fix one of F N X3 or F'N X;. Hence we may choose
d; in, say, F N X3, to satisfy R,. By F = (d,d,), we know that dyd;! has
order 3 or 7. But inside P)2, using the isomorphism (2), we see that the
element d;d; ! must have order 3.

Obviously, P23 ~ (A4 x 3):2. An easy calculation in this group shows
that (d2,d3] € {1,a}. We end up with the relations of one of the groups in
(3), whence G is a homomorphic image of A7 by (3), a contradiction.

3 Semibiplanes

We now consider geometries with diagram

C 2

o——0—o0

that admit a flag transitive automorphism group. HUGHEs mentions in [6]
that a semibiplane corresponds to a geometry with the above diagram.

Throughout this section we fix the following notation: Let G be a connec-
ted geometry with diagram

0 1 2

that admits a flag transitive automorphism group G. Objects of type 0
resp. 1 resp. 2 are called points resp. lines resp. planes. Res(a) resp. G,
stands for the residue resp. the stabilizer of an object a € G. If G is finite,
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flag transitivity implies that the number of planes through a point is a
constant k, say. Let v be the number of points in g.

After some introductory general lemmas we determine all such geome-
tries with k& < 12. The first lemma gives a condition for the objects of type
0 and 2 of G to form a semibiplane.

In the proof of the lemma we use the following notion:

(3.1) DEFINITION. A geometry G is said to satisfy the axiom (LL) if and
only if the "shadow space” of G does not con tain multiple objects.

(3.2) LEMMa. Assume the stabilizer Gy, resp. G of a point p resp. plane z
acts primitively on the set of lines resp. points in Res(p) resp. Res(z). Then
either all planes and all points are incident or the truncation of G to points
and planes (= blocks) is a semibiplane on which G still acts flag transitively.

ProoF: Assume two planes z,y are incident to the same points. Let p be
one of them. The 2-transitive action of G, on planes in Res(p) implies that
all planes in Res(p) are incident to the same points and by connectivity of
G and flag transitivity of G all planes are incident to all points.

For the remainder of the proof, we assume that planes are determined
by the points in their residue, hence by their shadows. We have to show
that also lines are determined by their point shadows (i. e. G satisfies (LL)

).

Assume there are two lines {,!’ which are both incident to the points
p,q. Since G; C G{pq) and any element g mapping ! to I’ is contained in
G{p,q) but not in G|, we obtain that G| is properly contained in G ;) by
flag transitivity of G. But G(p,q) = Gi(Gp,q} N G,) by the transitive action
of Gi on {p,q}; hence G{pq} N Gy is a subgroup of Gy, properly containing
G, N Gi. Primitivity of G, on lines in Res(p) implies G, N G,q) = Gp, and
Gy leaves invariant the set {p,q}. Since G = (Gp,G1), there are only two
points in G, a contradiction. Hence if I,1' are incident to the same points
p,q we havel = 1.

The same argument shows that I = I follows also, if [, /" are incident to
the same planes z,y. We can now prove that the points and planes of G
form a semibiplane.

Let p,q be two points incident with some plane z. Then there is a line
I in Res(z) incident to p and g, and the second plane y in Res(l) is also
incident to p and g. Let z be another plane incident to p and ¢; then again
some line !' in Res(z) is incident to p and ¢, and by the above, [ = I'. Now
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z is one of z or y. Hence any two points that are incident to a plane, are
incident to exactly two planes.

The same argument shows that two planes that meet in at least one
point, meet in exactly two points.

Of course G acts still flag transitively on the truncation to points/planes.

The conditions of the next lemma are satisfied in an infinite family of
geometries with flag transitive groups Gla(q)/(—id), see (3.5).

(3.3) LEMMA. Assume the stabilizer G, of a point p acts as a Frobenius
group Fy(,_1) on theq planesin Res(p), ¢ an odd prime. Then the truncation
of G to points/planes is a semisymmetric A-design for some A > 2, A divides
k(k — 1), G is finite and 1 + 2,71 < v < 26-1(k - 2)/(522).

Proor: Clearly G; ~ G, ~ Fy(-1) and therefore we have G,z ~ Zy
generated by some element f of order ¢ — 1. Let Gy = (u) and Gz = (v)
and let a := ufr‘rl, b:= vfg;_l. Then G, = (a, f) resp. Gz = (b, f) and
f acts via some generators r,7* € GF(q)" on (a) resp. (b). Clearly, the
universal cover of G has a flag transitive automorphism group

H = {a,b, f|a%,b%, f971,ala~" /b=, [f 5 a, £ 55 b))

and H has an involutory automorphism 7 such that a™ = b and f7 = f*~'
hold. Clearly, 7 induces a polarity on G.

We show now that G is a semisymmetric design for some A > 2. Assume
two planes 7, #’ have the same point shadow, containing the point p, say.
Then the equivalence relation ~ on planes through p given by "m ~ n* iff
the point shadows of # and #n* are the same” has classes of size greater
that 1. By the 2-transitive action of G, on planes through p, all planes
through p have the same point shadow. By connectedness of G, all planes
have the same point shadow, and all points are incident to all planes. It
follows |G| = ¢%(q — 1), a contradiction.

Hence the truncation of G to points/planes yields a 1-design in the sense
of [8]. By transitivity of G on the sets of two collinear points there is a
constant A > 2 such that two distinct points of G are on 0 or A planes. Since
7 induces a polarity on G, two distinct planes of G are on 0 or A points.
Thus the truncation of G to points/planes is a semisymmetric design with
parameter A > 2.

The remaining parts of the Lemma follow from Theorem 7.14 of [8].
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(3.4) REMark: For a semibiplane, i.e. A = 2, we obtain 1+ (’2‘) < v < 2F1
By p. 204 of [8] there is a unique semibiplane with v = 2k-1 for each k > 2.
We refer to this plane as the hypercube H(k) as in [16]. If, under certain
hypotheses on Gp, we can derive a unique presentation for the group G lifted
from G to the universal cover G of G, this geometry G is uniquely determined,
hence all possible geometries are projections of this particular G. Often it
is clear, that G is a semibiplane, and G projects onto the corresponding
hypercube. Then by the above, G is isomorphic to this hypercube.

(3.5) ExamMPLE: We now give the infinite family of geometries FF(q) with
Frobenius groups as a point stabilizers announced above.

Let G = Gly(g) with g odd and — be the natural homomorphism from G
onto G = G/{-id). Choose z,y € GF(q) such that zy = —2, A a generator
of GF(q)" and

=(31)(3) <3 2)

Set Go = (a,B), G1 = (5,%), Gz = (a,€). Obviously, G = (g,b,¢). Then
[6,2] = 1 and thus the chamber system (G; 1;(2), (@), (b)) has diagram

0 1 2

with object stabilizers gG; for i = 0,1,2.

(3.6) Lemma. For each g, ¢ odd prime power, the geometry F F(q) satisfies
(LL), hence the truncation to points/planes yields a semibiplane. Quotients
of FF(q) whose automorphism group is a proper quotient of G by a central
subgroup of G do not satisfy (LL).

Proor: Clearly, G acts transitively on lines and on 2-sets of collinear points.
We choose the 2-set {p, 7'} of collinear points to be the point p fixed by Go,
and its conjugate p’ = p%, such that {p,p'} C res(l) for the line [ fixed by
G,. We have to show that G, N Gy = (b), then the number of lines and of
2.sets of collinear points is the same, and (LL) holds. But this follows from
an easy calculation.

If we consider the quotient of the geometry F F(g) by a central subgroup
Z of Gly(q)/(~id) of order m > 1, the stabilizer in G/Z of p and p’ has 2m
elements, hence (LL) is not satisfied.
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It would be interesting to determine all geometries G with point stabilizer
a Frobenius group Fy(,_1), ¢ odd, and to check whether G always has to be
a quotient of FF(q) or the hypercube H(g). We have checked this above
for small values of ¢.

(3.7) ReMARK. For any object a € G let K, be the kernel of the action of
G, on Res(a). Then K, = K =1 for all points p resp. planes z in G.

ProoF: Let p,z be an incident point/plane-pair and g # p be an arbitrary
point in Res(z). Then there is a line { incident with both p and ¢q. K, fixes
I, so it also fixes q. So K, fixes every point in Res(z) and thus also every line
in Res(z),i. e. Kp C K;. A dual argument shows K; C K,. Connectivity
of G implies Kp = K, = 1.

Thus we assume without loss K, = K. = 1 for all points p resp. planes
zinG.

In the sequel, p,!,z is always a flag with stabilizer B := Gpis.

The next proposition treats the case Gp = A, or G, =~ I, actingon the
n planes of Res(p), n > 6. Note that (3.9) shows that (3.8) does not hold
for k = 5.

(3.8) ProposiTiON. Assume that G, acts transitively as A, resp. L, on
the n planes of Res(p), n > 6. Then one of the following holds

(i) G has 2*~! points and G ~ 2""': A, resp. G ~ 2"~ 1:3,.

(ii) n even, G has 2"~2 points and G ~ 2"~ 2: A, resp. G ~ 2"~2:%,,.
The truncation to points/planes gives a semi-biplane.

ProoF: First we assume that G, > An. Then Gpr ~ An-y, B ~ Ap-z and
Gz =~ A,.

It is well-known, see e. g. 1.19.8 in [9], that we can pick a;,...,an—4 € B,
an-3 € Gpz and a,_2 € G, such that G, = (a1,...,an-2) and the relations
R, = {a}}u{a?|i=2,...,n-2}U {(@;a;1)*|i=1,...,n -3}

U {(aiaj)zli,j =1,...,n—- 2*" _JI 2 2}
are satisfied. Similarly we can choose a,—1 € G; such that G, = (Gpz, @n-1)
and the relations

Ry := {aﬁ-h (an—lan—S)s} U {(aﬂ-lai)2 li=1,...,n— 4}
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are satisfied. Moreover, Gy = Ng,(B) ~ Gz = Ng, (B) ~ Zp_y. It is easy
to check that Gp = (a1,...,8n_4,@n-2) and Gz = (815 --,8n-4,8n-1). AS
Gi = GpiGz contains G,l of index 2, we get G| ~ 2,._2 X Z2 and thus
[@n-1,8n-2] € GiN Cg,(B) = 1. Thus G is an epimorphic image of

H:=(a1,...,8a-1|R1U R2 U {[@n-1,8n-2]}).

Let u := ay_2an_1. We show now that the relations By U Rz U {[an-1,an-2]}
imply that N := (u,u®n=3,ufn-3%—4 u“"-“'““‘,u‘"*’"‘“?) is an elemen-
tary abelian normal subgroup of order < 2n-1_ N is closed under a,, since
a) permutes u®n=3""92, 423721, y3n=3" ‘a1 and centralizes u, u%n-3, ydn-30n=4,

., U3n-3"783 since a,’ =a for alli,j =3,...,n—1. (u,udn-3,,  yon-3"02)
isan elementa.ry abelian normal subgroup in (ag, veer@net), since @2y...,8p-1
satisfy the diagram relations of

a; a3 Gn-3 @n-2

O—O—oo-—I——o
Qn-1

By (a1a2)® = 1 we get that a; interchanges u®~-2""% and u®r—2" a1, Smce
@185 = aja7! for j = 3,...,n — 1, it follows u®r=3" {8, = y3n-3-as81" for
i=1,2and j =3,...,n = 1. Thus N is also invariant under az,...,an_1.
It is only left to show that [u, utn-3"01] = [u, u®n-3" 1] = 1. This follows by
[a1,u] = 1. Obviously, the action of (a1,...,8n-2) = An on N is the action
of A, on the invariant hyperplane of the permutatlon module.

We now assume that G, > Z,. Then Gz~ Zn, Gpz 2 Zpg and B >
Tp-2. Thus there are involutions ay,...,a,-3 € B, @n—2 € Gpz and @n_y €
Gy that satisfy the diagram relations of the Coxeter diagram A,_;. We can
obvmusly pick an involution @, € G such that also ay,...,an-2,an satisfy
the diagram relanons of a d:agram A,-1, as indicated below Moreover,
Gp = Ng,(B) ~ = Ng,(B) ~ £,-2xZ3. As G contains Gy of index 2,
it follows G| ~ En_z sz x Zy. It is easy to check that {(a1,...,8n-3,8n_1) =
Ng,(B) and (ay,...,an-3,an) = Ng,(B). Thus [@n-1,84] € GiNCg,(B) =
1. ay,...,a, satisfy the diagram relations of the diagram D,

ay az Qp-2 Qn-1

Qn
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and G is a quotient of W(D,). The structure of W(Dy) yields the result.

Now we start the classification of G for fixed k, k¥ < 12. Semibiplanes
with k < 6 are well-known ([16]). The classification for k£ < 4 is easy: for
k = 3 we get only four points, for k = 4 we get either 7 points with group
L3(2) or H(3).

The next proposition treats the case k = 5.

(3.9) ProposiTioN. Assume that G, acts transitively as As ~ L4(4) resp.
Ts resp. Fyg on the five planes of Res(p). Then

(i) If Gp ~ As, G has 16 points and G = 24: As or G has 11 points and
G~ Lg(ll).

(ii) If G, ~ T5,  has 16 points and G =~ 24:Es.

(iii) If G, =~ Fyo, G has 12 points and G = Gly(5)/Z(S1y(5)) or G has 6
points and G = Ts or G has 16 points and G =~ 24: Fy.
The truncation to points/planes gives the unique biplane on 11 points resp. a
semibiplane on 12 points resp. the semibiplane H(5). The geometry with
v = 6 yields no semibiplanes.

Proor: We first assume that G, ~ L2(4). Then G, =~ Ly(4), Gpz ~ Ag,
B ~ 7. Obviously there are elements d € B, u € Gz such that a3 =u?=
(ud)3 =1.

Moreover, Gy = Ng,(B) ~ Gu = Ng,(B) = Za. So there are invo-
lutions 2; € Gy, t2 € Gz such that d%d = (tiw)® = 1fori = 1,2. As
Gi = GG containing Gy of index 2, we have G| ~ Z; x 3. So we have
[t1,t2) € GjU Cg,(B) = B.

Let H; = (d,u,1),13| 3,42, 13,83, (du)?, d" d, d"*d, (t1u)?, (tau)3, [t1, t2)d*)
for i = 0,1,2. Coset enumeration yields Ho ~ 24: A5, Hy ~ Hy La(11).
As G is a quotient of one of the H;, (i) holds.

Assume now G, = £5. Then G, = BG}, Gz = BG;. So G = B(G},G?)
holds. Clearly, L := (G}, Gz) is also flag transitive on G. Thus L ~ Ly(11)
or L ~ 2%: As. As there is no group containing Ly(11) of index 2 and
containing Is, (ii) follows.

Assume now Gp ~ Fy. As above it follows Gpr 2 14, B =1,Gp >
Glz s z; and G[ = GplG;-[ ~ ZQ X ZQ.

Let ¢, be the Involution in Gi; and f € Gy of order 4. Then it follows
1 # a := t.f? € O5(G;). Either ¢/ = a? or a/ = a® holds. We can assume
al = a2, since we can replace f by f~! in the second case. Let ¢, be the
Involution in Gyi. As above we obtain 1 # b:=t,f? € O5(G,). Our choice

137



of f is already fix, so we have to deal with the two cases b/ = b% and b/ = b3.
As Gi = (tp) X (tz), it follows in any case [af2,bf?] = 1.

Let H; = (a,b, f|a5,b% f4,afa3,b/b,[af?,bf%) for i = 2,3. Cavrey
yields Hi ~ 24: Fyo and H, ~ Gly(5)/Z(S1y(5)).

For k = 6 there are well-known semibiplanes with 16, 18, and 32 points
which have a flag transitive automorphism group ([10}).
The next proposition deals with this case £ = 6.

(3.10) ProrosiTion. Assume that G, acts transitively as As ~ PS5ly(5)
resp. &5 =~ PGly(5) on the six planes of Res(p). Then one of the following
holds:

(i) G has 18 points and G =~ 3.Ag resp. G ~ 3.Zg.

(ii) G has 6 points and G =~ Ag resp. G ~ .

(iii) G has 32 points and G =~ 2°: A; resp. G ~ 2°:Zs.

(iv) G has 16 points and G ~ 2%: A; resp. G ~ 2*: L.
The truncation to points/planes in (i) resp. (iii) resp. (iv) yields the semi-
biplanes S,(18) resp. H(6) resp. one of the three biplanes on 16 points in
the notation of Proposition 16 of [16].

Proor: We first assume that Gp ~ As. Then Gp; ~ Dyp and B ~ 7,. As
| Gpz : B| = 5, the representation of G on the points of Res(z) is also of
degree six. So G is isomorphic to a subgroup of £¢ and Gpz ~ D1p implies
Gz >~ A5.

We pick f € Gyzp, t € B such that the relations Ro := {f3,%2, f'f}
are satisfied. Then Ng,(B) ~ 2% ~ Ng,(B) and an easy calculation in
As shows that we can pick involutions sy, 32 such that (s;,t) >~ Ng,(B),
(s2,t) ~ Ng,(B) and s,f, s2f of order 3. Moreover, with the help of
CAYLEY one can verify that (f,¢,s| RoU{s?[t,s],(fs)%}) is a presentation of
51(2,5) and that the center is generated by the element ¢f2sf=2sf%s. Thus

z = Gp = (fit,si | Ro U R;) with R; = {s?,[t,s,-],(fs;)",tfzs;f""s.-fzsg}
fori=1,2.

Moreover, Ng,(B) = Gpi =~ Ng.(B) = Gy and Gt = GpGy containing
Gpi of index 2. Hence (s1,92,1) is a group of order 8 either dihedral or
elementary abelian. Thus either [s, 32]¢ or [s1,52] holds in G.

Let H; = (f,t,81,52 | RoU R1U Ra U {[31, 52)t'}) for i = 0,1. By coset
enumeration we obtain Hg ~ 25: A5 and H; =~ 3.A¢. We get Z(Hg) ~ 1,
since H; is a perfect group for i = 0,1. As G = (G;,G)) it follows that
G is an epimorphic image of one of these groups. Thus either G ~ 25: 45
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and v = 32 or G ~ 24: A5 and v = 16. If G is a quotient of H;, we obtain
G~3.A¢and v=18 0or G~ Ag and v = 6.

Now we assume that Gp, ~ E5. Then as above G, =~ Gz~ Zs,Gpz =~ Fpo
and B ~ Z4.

Again we can choose f of order 5 in Gy, and t of order 4 in B, whence
Gpz = (f,1); now Ng,(B) = Ng,(B) = Dg. This time, we can pick involu-
tions 83,82 in Ng,(B) — B resp. Ng,(B) — B such that s;f has order 3 for
i = 1,2. Coset enumeration yields G, = (f,¢,51| R1) and Gz = (f,t,82| Ra)
with R; = {f5,t%, f*f, s, (sif)3, it} for i = 1,2.

Moreover, G; = GpiGzi is a product of two Dg’s meeting in B. Hence
again G| = (s1,32,t) and [s1, 2] € (2)-

Furthermore, 1 = [s1,83] = [s1,32][1,52,582][s1,82] = [s1, s2,57] and
similarly 1 = [sz,81,81). Thus [s1,82] € (t?). Let H; = (f,ty81,82 |
R1 U Ry U [81,8])t2) for i = 0,1. Coset enumeration shows that H ~ 3.Z¢
and Hg ~ 25:35. Obviously G is an epimorphic image of H; fori=0or
1=2.

Gp contains a subgroup K isomorphic to As acting transitively on Res(p).
L = (KC) is also flag transitive and so L is isomorphic to one of the groups
determined above. So one of the following cases holds:

(i) G ~ 3.6 and v = 18.

(ii) G ~ Xg and v = 6.

(iii) G ~ 2°: 35 and v = 32.

(iv) G =~ 24:Zs and v = 16.

In (i), (iii) and (iv) the truncation to points/planes gives a semibiplane
by the Lemma.

For k = 7,8,9 there are several doubly transitive groups to be checked
as point stabilizers. However, it turns out that in most cases the universal
cover of G is the hypercube H(k) or a geometry with automorphism group
Gly(9)/2(S1:(q)), ¢ = 7,9, as described in (3.5). We omit details. The next
proposition deals with an exception.

(3.11) PRroPosiTION. Assume that G, acts transitively as L3(2) on the 7
planes of Res(p). Then G is a quotient of 26: L3(2) or Us(3).

Proor: As above we get Gpz ~ Z4, Gz = L3(2) and B ~ 1z x Z3.

We identify G, resp. G acting on Res(p) resp. Res(z) with L3(2) in
the action on the projective plane 7 of order 2, whose points and lines are
denoted by capital letters. Up resp. UL stands for the unipotent radical of
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the stabilizer of a point P resp. a line L. Without loss we can identify Gp:
with the stabilizer of a point in 7, say P. Gy is the stabilizer of a set of two
points {P, P’} and leaves the line L = PP’ invariant. Thus G fixes P”,
the third point on L. Let L # L a line through P”.

Then we can pick elements a, b, z,d, s € G, in the following way: {a,d) ~
T3 is the stabilizer in Gy of the line L”, and (a) := (a,d) N B # 1. This
choice is possible, since {a,d)NUp = 1. Choose b € Up~B. Asa €U, =B
{a,b) = Ds is the stabilizer of the flag (P, L). Then {a,b) > Dg and without
loss a,b,d,z satisfy the relations Rapa: := {@2,b%,d%, 22 d%d, (ab)*z, 24b}.
Now Gy normalizes { P, P}, hence fixes UL, and P”, hence a, the involution
in the center of the flag stabilizer of (L, P”). Pick an involution s € Gp. As
s ¢ Ur, we haves € U~ for the fixed point of s on L. Hence s € Upw, and
(s,d) ~ A4. Thus there is an element s € Gp that satisfies the relations
R, := {s?,[2,5]a,(ds)?}. By coset enumeration, (e,b,d,z| Rapd: U R,) is a
presentation for G,.

Now consider G;. As Gi; ~ Dg normalizes {a,z) and G; = GpGa,
Z(Gp) = Z(Giz) = (a). Hence we can choose an involution ¢ that centralizes
a. Again it holds (d,t) ~ A4 and thus ¢ satisfies R, := {12, [z, ]a, (dt)?}.

Now G = (a,2,3,1) and [s,t] € G} C (2, a) holds. Moreover, 1 = [t,s?] =
¢, s][t, s, s][t,s] = [¢,s,8] and snmllarly 1 =[s,t,t). Thus [s, t] € ().

Let H; := (a,b,2,d,8,1| Rap.a U R, U R U {[5, t)z}) for i € {0,1}. Then
G is an epimorphic image of one of the H;.

Coset enumeration shows Hg ~ 26:L3(2) and H, =~ Us(3).

(3.12) ProposiTION. Assume that G, acts transitively as Ag ~ La(9) on
the 10 planes of Res(p). Then G is a quotient of either 2°: Ag or 2.L3(4).

PrRoOF: Gpz =~ 32 : 4 is isomorphic to the normalizer of a 3-Sylow sub-
group in Ag. There are obviously elements d € B, e, f € G,z such that
the relations Ro := {d3,€3, f4,e/d"1,d/e} are satisfied. Moreover, Gpl =
NG,(B) ~ Gu = Ng,(B) ~ Dg. A simple calculation in Ag shows that
there are elements a;, i = 1,2, with ¢; € Ng,(B) and a; € Ng.(B)
that satisfy the relations R; := {a?,(fa:)?, (da.e)3 (ea;d)3, a;da;e®a;df} for

= 1,2. Moreover, G; = G,lG,g containing Gp of index 2. Therefore
|G';| = 16 and as in the previous proof we get [a1,a2] € Z(G)) = (f?).
Let H; = (a1,as, f,d,e] RgU Ry U Rp U {{e1,a2)f%) for i = 0,1. Coset
enumeration yields Ho ~ 29: Ag, H; ~ 2.L3(4).

The collinearity graphs of the geometries of (3.10) resp. (3.12) coincide
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with the collinearity graphs of geometries with diagram

C c
o—O0—=0 o—CG=

0 1 2 resp. 0 1 2
which are shown by BUEKENHOUT resp. WEIss [15] to have the same universal
covers respectively. The geometries have the same points and lines but
different objects of type 2, cliques of size 6 resp. 10 instead of 4.
Under the hypothesis that G, acts as Zg or Myo or PGl3(9) or Aut(As)
on the 10 planes of Res(p) we obtain the same geometries as above and G
is a quotient of a subgroup of 29: Aut(Ag) or 2.Aut(L3(4)).

(3.13) PropPosiTION. Assume that G, acts transitively as L,(11) on the 11
planes of Res(p). Then one of the following holds:

(i) G has 144 points and G =~ M.

(ii) G is a quotient of 21°: L,(11).
The truncations to points/planes give semibiplanes.

ProoF: As above we get Gpr ~ As, B ~ L3. We can choose a,b € B and
¢ € Gp such that a® = b? = (ab)® = 1 and [a,¢c] = ¢ = 1. An easy
calculation in As shows that (bc)® = (abc)® = 1 and (a,b,c) = Gp, hold.
Let Rgp. := {a?,b?,¢?,(ab)?,[a, c],(bc)®, (abc)®}.

As Gy = Ng,(B) = Cg,(B) = D1z, we can pick di € G such that
d? = [dy,a] = [d1,b] = 1. It follows from the structure of L2(11) that either
(cdy)® = 1 or a(cd;)® = 1 hold. Wlog we can assume (cd;)® = 1, since we
can replace a,b,c,d; by a’ = a,b’' = b%,¢’ = ¢,d} = df in the second case.

Similarly we can pick d; € G such that d} = [d3,a] = [d3,] = 1.
Now we have to consider the two cases (cd2)® = 1 and a(edz)® = 1. As
Gy = {(a,b,d1), Gzt = (a,b,d3) and G = GpiGnt = T3 X Ly X Ty, we obtain
[dy,d2) € BNC(B) = 1. Let R; := {d?,[d;,a},[d;,b]} for i = 1,2 and
H; = (a,b,c,dy,d2| Rape U Ry U RpU {[dy, d3], (d1)?, (cd2)?a’}) for i = 0, 1.

Coset enumeration yields H; ~ M2 and Hg ~ 2!0: L,(11). It should
be mentioned that {a,b,c,d; | Rasc U Ry) is a well-known presentation for
Ly(11), see e. g. [5].

The case k = 12 yields no interesting new result. Checking L2(11), M1y
and M, as point stabilizers showed that the universal cover of G is the
hypercube H(12).
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4 The diagram § I 2 3

This diagram corresponds to a geometry of the Higman-Sims group (2] where
Res(0,3) is a projective plane of order 4. Here we will look at geometries
with this diagram where Res(0,3) is a projective plane of order 2. This
is the only other possible order ¢ of a projective plane occuring in this
case, as merely projective planes of order 2,4, and 10 can have a one-point
extension (Lemma 4.1 in [8]). In fact, it is known that geometries with this
diagram satisfying the intersection property correspond to semisymmetric
3-designs, and such geometries are known ([7], [12], 14]). We are interested
in geometries with flag transitive automorphism groups — for ¢ = 4 this
property implies the intersection property. For ¢ = 2, this is not obvious
and we give a "natural” proof of the corresponding classification without
referring to results on semisymmetric 3-designs.

The geometry treated in the following proposition is the special case n =
3in 59 of [3). The presentations in the proof are needed for the construction
of the defining relations of the automorphism group of the geometry with
the above diagram. The result itself can be obtained as an easy consequence
of the subgroup structure of £g without using coset enumeration at all.

(4.1) ProposiTiON. Let G be a geometry with diagram

C
o———C0O0—O0

0 1 2

such that Res(0) is a projective plane of order 2. Let G be a flag transitive
automorphism group G. Then one of the following holds

(i) Go ~ F3 and either G ~ 23F; or G =~ L3(2).

(il) Go jad L3(2) and G ~ 23L3(2).
PROOF: Assume the same notation as in the previous proofs. G is obviously
a one-point-extension of a projective plane of order 2. So there are exactly
8 points, i. e. objects of type 0, in G, hence Ko = 1. Gp acts as a flag
transitive automorphism group of a projective plane of order 2, therefore
G =~ Fy, B=1o0rG =~ L3(2), B~ Dg. Obviously, G2/K, ~ A4 or
G2/ K3 ~ £4. As K C B, it follows K; = 1 in case Go ~ F2; and K ~ 22
for Go ~ L3(2).

We first assume Go =~ F3;. Then Go N Gy = {e), Go N G2 = (d) with
dB=e3=1,as|GoNG2: B| =|GoNGy: B|=3. A simple calculation in
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Fy; shows that we can choose d, e such that (de)” = ded?¢? = 1. Obviously,
Gy ~ A4, |G1 N Ga| = 2. Let (u) = G1NGz. Then (ud)® = 1. As
|G1:G1NGo| = 2,|G1]| = 6. If Gy is abelian, it holds [u,€] = 1, otherwise
G ~ T3 and (ue)? = 1. Let

R(u,d,e) = {u? ¢ d% (ud)’, (de)?,ded’e?,[u,e]}
R(u,d,e) = {u?,€ d% (ud) (de)’, ded?e?, (ue)?}.

The terms R(z,y, z) or R(z,y,z) will be used for sets of relations of z,y,2
such that z resp. y resp. z take the roles of u resp. d resp. e in the expressions
a_,.bove. Coset enumeration yields {u,e,d| R(u,d,e)} = 23: Fy; and (u,e,d|
R(u,d,e)) ~ L3(2).

Let now be Go ~ L3(2). Then B =~ Dg, GoNG1 =~ L4 ~ GoNGa. There
are a,b € B with a? = 6% = (ab)* = 1. Let z := (ab)?. Now we use the
presentation of L3(2) from the proof of result 1. We can find dy € GoN Gy,
d; € GoNGy such that d3 = d} = d3d; = djdy = bhz = zha = (dd7')P =1
As IG; :GoNG,| =2, we obtain G1 >~ L4 x 2. Let (u) = Z(Gl)

We show now (ud;)® = 1. As u ¢ GoN Gy = Iy, it follows u ¢ K.
|G1: GiNGz| =3, hence u € G N Gy ~ Dg x 2. If u is not contained in
03(G2), u acts nontrivially on both four groups that are covered by O(G2).
This contradicts u € G; N G2. Thus u € 02(G>) and (u, u"?,u‘@) is a da-
invariant submodule of O2(Gz). As there is no 3-dimensional submodule of
02(G?) and wu%u is invariant under dz, we obtain (udy)? = vuftuh = 1.
Let

S(u,dy,dg) := {a?,b% (ab)®,d3,d3, u?, d}dy,d}dy,
b z, 2%a, (did3 )3, (ud2)?}).
The term $(z,y,2) will be used below in a similar fashion as the expres-

sions R(z,y,2) and R(z,y,2) defined above. Coset enumeration yields
(a, b, u, dl, dg I S(u,d,, dz)) >~ 232L3(2),

We now consider the rank-4 cases of diagram 60 and 60’ of (3].

(4.2) ProposiTion. Let G be a geometry with diagram
C >
o, —O— —O O
0 1 2 3
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and flag transitive automorphism group G. Let Res(0,3) be a projective
plane of order 2. Then G is an epimorphic image of one of the following
groups:

(i) 27: Fy, 24: L3(2), A7, if G acts as F; on Res(0,3)

(i) 27: L3(2), As, if G acts as L3(2) on Res(0,3).

ProoF: Ko = K3 = 1 as above.

Assume that G acts as Fy; on Res(0,3). This implies G123 = (u),
Go,1,2 = (v) with u, v involutions. Then | (u,v)| = 4 and so [¢, v] = 1. Gene-
rating elements d, e for Gq,2 ~ F; are chosen as in the previous proof. There
are three cases that can arise for the universal cover of G depending on the
structure of Gg and G3. Let Gg =~ G3 =~ 23: F3). From the previous result it
follows that wlog u, v, d, e satisfy the relations R(u,d,e) and R(v,e,d). Note
that the roles of d and e are interchanged in the second set. Coset enumera-
tion yields (u,v,d, e | R(u,d,e)UR(v, e,d)U{[u,v]}) ~ 27: F3;. Next we treat
the case that one of Gg and G is of type 23: F; and the other of type L3(2).
Assume Gg =~ 23: Fy;. Then u, v, d, e satisfy wlog the relations R(u,d,e) and
R(v,e,d). We obtain (u,v,d,e| R(u,d,e)U R(v,e,d)U {[u,v]}) = 24: L3(2).
We now consider Gg =~ G3 ~ L3(2). Then, by coset enumeration, G is an
epimorphic image of {u,v,d,e| R(v,d,e)u R(v,e,d)U {[u,v]}) ~ A7.

Now let G act as L3(2) on Res(0,3). Then G123 =~ Dgx2, Goa,2 = Dgx2
and | Go,1,2G1,23| = 32. Asin the previous result we get G1,3 > Go,2 = 4 X
2. Let (u) = Z(G1,3) and (v) = Z(Go,z)- We choose similar presentations
for Go3 ~ L3(2) as above. Then it follows that either [u,v] = 1 or [u,v] = 2,
as G 2/(2) is abelian. Wlog we can assume that a,b, dy, d2, u, v satisfy the
relations S(u,d;,d;) and S(v,d3,d;). Coset enumeration yields

(a,b,dy,d3, u,v| S(u,dy,d2) U S(v,dz,d1) U {[u,v]}) 27:L3(2)
(a,b,dy,d2,u,v| S(u,dy,d2) U S(v,d2,d;) U {{v,v]z}) Asg.

R

R

This proves the result.

The two geometries occuring in (4.2) are well-known bi-affine spaces
([14]). An easy description of them is as follows.

(4.3) Exampres: We will now give descriptions of the geometries of the
previous result.
Let V be a 4-dimensional vector space over GF(2).

1. Objects of type i for i = 0,1,2,3 are all i-dimensional affine subspaces
that do not contain 0. Incidence is defined by containment.
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This provides a geometry Gy5 on 15 points, i. e. objects of type 0.
Obviously, Gl4(2) ~ Ag acts flag transitively on G5 and A7 is a flag
transitive subgroup.

2. Let 0 # v € V. Let A, be the set of all translates of linear subspaces
of V that contain {0,v}. The objects of type i of Gy are all affine
i-dimensional subspaces of V' except elements of A,. This leads to a
geometry Gig with 16 points. Obviously, an affine group 24:23L3(2)
containing the translations of V' and the point stabilizer of v in GI(V)
acts on Gig. 27:Fy and 29L3(2) act as flag transitive subgroups.
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