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Abstract. The A -subgraph G, of a simple graph G is the subgraph induced by the
vertices of maximum degree of G. In this paper, we obtain some results about the
construction of a graph G if the graph G is Class 2 and the structure of G is particularly
simple.

1. Introduction

In this paper, we consider simple graphs (that is graphs which have no loops or
multiple edges). An edge-coloring of a graph G is a map ¢: E — B, where B
is a set of colors and E(QG) is the set of edges of G, such that no two incident
edges receive the same color. The chromatiic index, x'(G) of G is the least value
of | B| for which an edge-coloring of G exists. A well-known theorem of Vizing
[5] states that, for a simple graph G,

A(G) £X'(G) LA(G) +1 O)

where A(G) denotes the maximum degree of G. Graphs for which x'(G) =
A(G) are said to be Class 1, and otherwise they are Class 2.

A graph G is critical if it is Class 2, connected and for each edge e of G,
xX'(G/e) < x'(G).

Let G be the subgraph of G induced by the vertices of maximum degree. A
graph G is said to be overfull if it satisfies |E(G)| > AP ||[V(&)|/2] + 1. If
there is equality here then G is called just overfull. Obviously, if G is overfull,
then G is Class 2. A cycle C is a 2-regular connected graph. Let N(Ga) denote
the set of vertices in V(G) — V(Ga) which are adjacent (in G) to vertices in Ga .
Let (@) and A(G) denote the minimum and maximum degree of G.

In this paper, we prove the following conclusions:

Theorem 1. Let G be a Class 2 connected graph, and let G, be a family of
vertex-disjoint cycles. Then

() G iscritical,

(i) 8(G) > A(G) — 1, unless G is an odd circuit,
(ili) N(Ga) ={vld(v)=A(G)-1,veV(A}.
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Theorem 2. Let G be a simple connected graph, G be a cycle, and A(G) 2>
(JV(G)| + 3)/2. Then G is Class 2 if and only if G is just overfull.

The following conjecture was made by Chetwynd and Hilton:

Conjecture [3]: Let G be a simple graph with A(G) > |V(G)|/3. Then G is
Class 2 if and only if G contains an overfull subgraph H with A(G) = A(H).

Theorem 3. Let G be a simple Class 2 connected graph, let G be a cycle and
IletA(G) > |[V(G)|/3. Ifthe above conjecture is true, then A(G) 2 ([V(G) |+
3)/2.

Theorem 4. Let G be a simple connected graph. Let G be a family of disjoint
cycles. And suppose that A(G) — 2 =|V(G)| - [V(G»)|.(A(G) >3). Then
G is Class 2 if and only if G is just overfull,

2. Some useful lemmas
The first of these is Vizing’s Adjacency Lemma [6]. For v € V(G), letd*(v) be
the number of vertices of V(Ga) to which v is adjacent in G.

Lemma 1. Let G be a critical simple graph, let uv = e € E(G). Then d*(u) +
d(v) > A(G)+1 ifd(v) < A(G);d*(v) +d(v) > A(G)+2 if d(v) = A(G).

The next lemma can be proved easily by Lemma 1:
Lemma 2. If G is a simple graph and G, is a forest, then G is Class 1.
The next lemma is a consequence of Lemma 1:

Lemma 3. Foragraph G, let e = uwv € E(G) be such that d(v) < AG) -
d*(uv). If A(G — €) = A(G), then X'(G — €) = X'(G).

Proof: If G is Class 1, we know that A(G) = x'(G) > x'(G—¢e) 2 A(G—e),
then the lemma is done.

If G is Class 2, let H be any critical subgraph of G with A(H) = A(G). We
claim that e ¢ E(H). Otherwise, suppose that e € E(H). Since dj(u) <
d*(u), dj(v) < d(v), then by the Vizing Adjacency Lemma, we know that

s(u) >A — (A —d*(u)) +1=d"(uv) + 1,if d*(u) > 1;and d}(u) > 2,if
d*(u) = 0. This is a contradiction. Then x'(G — e) = x'(G). 1

A star-multigraph G contains a vertex v, called the star centre, with which each
non-simple edge is incident. The following two conclusions proved in [2] are
useful in this paper.

Lemma 4 [2). If G is a star multigraph, then x'(G) < A + 1.

Lemma 5 [2). Let G be a critical star-multigraph with star centre v*, where
d(v*) = A(G). Let u and w be adjacent vertices, w # v. Then, d*(w) +d(u) >
A(G) + 1 if d(u) < A(G);d*(w) > 2 if d(u) = A(G).

The proof of the next lemma is similar to the proof of Lemma 3 by using
Lemma 4 and Lemma 5.
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Lemma 6. Let G be a star-multigraph with star center v*, and let v* be a vertex
of maximum degree.
(1) Letd*(w) <1 forsomew € V(G) — {v*}. IfA(G) = A(G - w), then
X(@) = x'(G-w).
(2) Letedge e =uv € B(G), and {u,v} C V(G) — {v*},d(v) < A(G) —
d*(u), where d*(u) > 2. Then,A(G) = A(G - ¢) = x'(G) = X'(G -
e).

Lemma 7 [2). Let G be a star-multigraph with star center v*, and let G have
at most two vertices, v* (possibly v, ), of high degree, If v* and v, are joined by
more than one edge, let there be a vertex w such that w is joined to vy but not to
v*. Let G not contain a subgraph on three vertices with A(G) + 1 > 3 edges.
Then G is Class 1.

Finally we give a result due to Berge [1], generalizing a well-known theorem
of Chvatal [5].

Lemma 8 [S]). Let G be a simple graph of order n with degrees d, < d <
- £ d,. Let g be an integer, with 0 < ¢ < n— 3. If, for every k with
g < k < (n+ q) /2, the following condition holds:

dk_qSk#dn_k >n—k+q.

Then, for each set F of independent edges with |F| = g, there exists a Hamilto-
nian circuit containing F.

3. Proof of Theorem 1

Let k denote the number of vertex-disjoint cycles of Ga.

Case 1. k = 1. Since G is Class 2, we claim that the vertices of N(Gs) have
degree at least A — 1. Otherwise, there exists a vertex v (v € N(G4)) such that
d(v) < A-2,edgee = uv € E(G),andd(u) = A(G). Byusing Lemma 3, the
edge e is not critical, sox'(G) = x'(G—e). Butin graph G—e,dg_.(u) = A -1,
itis easy to see that [G — €], is a forest, it follows that G — e is Class 1, this is a
contradiction.

Nowlet Vi = V(Ga) UN(Gy) and V2 = V(G) — V;. Weclaim that V3 = ¢.
Otherwise, since G is connected, it follows that [V;, V3] # ¢, where [V}, V3] =
{uv € E(G)|u € Vi,v € V1 }. Lete; = uyv; € [V}, V3], thend(uy) <A —1
and d(v;) < A — 1. Obviously, d*(v;) = 0. ByLemma 3, x'(G) = x'(G—e1).
Butdg (1) <A —2,and[G —e1]a isacycle,u; € N([G—e1]a). By the
above proof, G — e is Class 1. This is a contradiction. Then V, = ¢. Therefore,
8(G) 2 A —1,and N(Ga) = {v|d(v) = A(G) - 1}.

Now we show that G is critical. If e is an edge which is adjacent to the vertex of
maximum degree, we claim that x'(G — €) < x'(G). Since [G — el, is a forest
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in this case, it follows that x'(G — €) = A(G) < x'(G). If e is an edge which
is not adjacent to any vertex of maximum degree, we want 10 show that G — e is
Class 1. Otherwise, assume that G — e is Class 2. In this case, there exist two
vertices of degree A — 2 in G — e, and [G — el is still acycle. Since G-—eis
Class 2 and is connected, it follows that (G — €) > A — 1 by the previous proof.
This is a contradiction. Therefore G — e is Class 1.

Case 2. We use induction on k by assuming that the theorem is true if the number
of cycles of G isatmostk — 1. LetGa = Gy U --- UGy, (k > 1). Without
loss of generality, assume that N(Ga) # ¢. Since G is Class 2, we claim that the
vertex degree of N(G,) is A — 1 in G. Otherwise let v € N(G) be such that
d(v) < A —2,ande = uv € B(G), d(u) = A(G). Without loss of generality,
suppose that u € V(Ci). By Lemma 3, x'(G) = x'(G —e). Butingraph G —e,
we know that dg_.(u) = A — 1,then [G —e]la = C1U---UCk1 U(Ci — ).
Clearly, Ci — u is a path. By using Lemma 3 again and again, it easily follows that
x'(G) = X'(G—e—E(Cy—1u)),and [G—e— E(Cy—u)la =C1 U---UC-1.
We claim that G — e — E(Cj — u) is disconnected. Otherwise, by induction, we
know that (G —e — E(Ci—u)) > A — 1, which contradicts the structure of Ga
and connectedness of G. Since G — e — E(Cy — u) is disconnected, one of the
components must be Class 2. Now let Gy be a component of G—e— E(Cy—u)
such that G, is Class 2. Obviously, [G11a is a family of disjoint cycles and the
number of the disjoint cycles of [G1]a, i less than k. By induction hypothesis
applied to G, we know that 5(G1) > A — 1, which also contradicts the structure
of G, in G and connectedness of G.

NowletV; = V(Ga) UN(Ga),and V3 = V(G) — V1. Weclaim that V3 = ¢.
Otherwise, since G is connected, then [V, V4] # ¢. Lete = uv € [V1, V2], then
d(s) < A-1,andd(v) < A-1,d'(v) =0. ByLemma3,x'(G) = x'(G—e),
and dg_.(u) < A — 2. By using the same argument, we have that xX(@) =
x'(G — V). By the above conclusion, we know that G — V3 is disconnected.
One of the components must be Class 2, say G'. By induction hypothesis applied
to G', 8(G") > A — 1. This contradicts the connectedness of G. Therefore
5(G) >A —1,and N(Ga) = {v|d(v) =A - 1,vE V(G)} in this case.

We can also prove the fact that G is critical. The proof of criticality is similar
to the proof of case 1.

This completes the proof. |

4, Proof of Theorem 2

It is obvious that if G is overfull, G is Class 2. Conversely, let G be Class 2, we
want to show that G is just overfull. We consider two cases:

Case 1. |[V(G)| is even. In this case, we claim that G must be Class 1. Oth-
erwise, assume that G is Class 2. Let V(Gy) = {a1,...,0,} and G = C =
a1az ...a,a1, (a cycle). By Theorem 1, G is critical and 6(G) > A(G) — 1.
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Because |V (G) | is even, we have that A(G) > (|V(G)| + 4) /2. Consider

8(G - {a1,02}) 2 A -3 ¢
=(lv(@)+4/2-3 €)
= (@] -2)/2 “)

By Dirac’s theorem, G — {a1, 62 } has a Hamilton cycle. Then G has a 1-factor F
containing the edge ajaz. Now A(G — F) =A(G) — 1. Obviously [G — Fa—1
is a forest, therefore G — F' is Class 1. Since x'(G) < x'(G— F) + 1= A(GR),
this is a contradiction.

Case 2. [V(G)] is odd. In this case, we claim that G’ must be just overfull if G
is Class 2. Suppose that G is Class 2. Let G4 = C = a; ...a,a;. By Theorem 1,
G is critical and §(G) > A(G) — 1. Thus

2|B(@)|=ra +(V|-m)(A -1) ®)
=([VI-D+(A-|V]|+7) (6.

Then |E(G)| = A[|V|/2] + 1 ifand only if A(G) — 2 = |[V(G)| - r. We
want to prove the fact that A — 2 = |V(G)| — r. By contradiction, suppose that
A -2 < |V|—-r. Thereisavertex u € V(G) — V(G4), such thata, u ¢ E(G).
Lete = a1a2 € E(Ga). We claim that G — u has a 1-factor F' containing the
edge a;az. Consider two subcases:

Subcase 1. A(G) > (V]| + 4)/2. Since

8(G - {a1,02}) 2 8(G) -2 ()]
=A(G)-1-2 @®
> ([Vl-2)/2 ©)

By Dirac’s theorem, G — {a;, 62} has a Hamilton cycle. Since [V|— 2 is odd,
then G — u has a 1-factor F containing the edge a; a3, as required.

Subcase 2. A(G) = (|[V(G)| + 3)/2. By Theorem 1, the degree sequence of
Gis(A-1,...,A-1,A,...,A), where the number of vertices of degree A — 1
is |V| — r. The degree sequences of G —uis (A —2,...,A -=2,A ~1,...,A),
where the number of vertices of degree A —2 is atmost A —3 because d*(u) > 2.
Now we use Lemma 8. Taking n= |V'| - 1, ¢ = 1, we must verify that, for every
k satisfying 1 < k < |V'|/2, we have

di_1 Sk=>dn-k2|Vl—k.

Obviously, when k < A — 2, there is no such k satisfying d,_; > k. When
k=(|JV|-1)/2,itiseasytosecthatk=A —2,and if dy_y = ds_3 > A — 2,
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we have that

dn-k = diy}-1-(a-2) (10)
= diy|-a+1 an
=dsy_ (12)
=A-1 (13)
2lV|-(a-2 (14)
=n—k+gqg (1s.)

Therefore the condition of Lemma 8 is satisfied. Then G — u has a Hamilton cycle
containing the edge ajaz. It follows that G — u has a 1-factor F containing the
edge ajaz, as required.

Note that A(G — F) = A(G) — 1, we want to show that G — F is Class 1.
Clearly, the set of maximum degree vertices of G — F is {a1,62,...,ar,u}. Let
Go = G- F. Andlet [G — Fla—1 = Gy, thendg,(a1) = 1,dg (a2) < 2,
dg,(a;) <3.for3 < i< r. Weclaim that

(Ng,(01) N Ng,(8:)) N(V(G) = (V(G»)) # §for2 <i<r...(%)
This follows if [V(Ga)| > 4, since

(A-3)+(A—-3)=24-6 (16)
>|V|-3 an
>|V|-r (18)

So (*) is true in this case. If [V(Ga)| = 3, we know that A > 2|V'|/3 since
@ is critical. Then (*) is again true.

It follows that we can find a family of edges a;z;(2 < i < r), where z; €
Ng,(a1) N(V(G) — V(Ga)), and a;z; € E(G) — F,for2 <1 < r. Let
G; = G — F — a;. Then x'(Go) = X'(G2). In graph G, the vertex degree of
Ng,(81)N(V—=V(Ga)) isatmostA —3. Note thatA —3 = A(G—-F) —2,and
dg,(82) < 2, the edge az 7, is not critical in G, by Lemma 3. Then x'(G2) =
X' (G2 — az212).

Denote G3 = G2 — axx2. In G, the vertex a3 is adjacent to at most two
maximum degree vertices. The edge a3z3 is not critical in G3 (by Lemma 3
again). Then

X' (G2) = X' (G2 — 6232 — a373).

By the same argument, we know that

X(G-F)=x(G—-F—a) Q19)
=x(G—F—01—0a33 — - — G, Ty) (20)

=A(G) - 1. (21)

Then, x'(G) < x'(G — F) + 1 = A(G), a contradiction. This completes the
proof. 1
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5. Proof of Theorem 3

Let G be a Class 2 connected graph. Then G is critical by Theorem 1. Assume
the conjecture is true, then G is overfull. Thatis, |E(G)| > A||V]/2]. By
Theorem 1,

2[E(@)|=rA+([V[-7)(A -1) (22)
=A(V|-1)+ (A —[V]+7 (23.)

Therefore, A —2 > |V|—r (wherer = [V(Ga)|). Because thereare atmost A —2
edges between a maximum degree vertex and the vertices of V(G) —V(Gs), we
have A —2 = |V| — r. Thus d*(u) = r, for u € V(G) — V(Ga). Then
A—-1-72>0.SinceA -2+ A —1 > |V],itfollows that2A —3 > |V|. That
is,A(G) > ([V|+3)/2.

This completes the proof. [ |

6. Proof of Theorem 4

We want to show that if G is Class 2, then G is just overfull. Now assume that G
is Class 2, therefore G is critical and 6(G) > A(G) — 1 by Theorem 1. If |V(G))
is odd, then

2|E(G)| = A + ([V|—7)(A = 1) 24
=([VI-D+(A—-|V]+7) (25)
=A(V]-1)+2 (26)

Then, G is just overfull.

If [V (G)| is even, we claim that G is Class 1 in this case. Otherwise, assume
that G is Class 2. We claim that A (G) —2 = O (mod 2). In fact, let G5 _; denote
the graph induced by the vertices of degree A — 1 in G. Then the number of the
edges between Ga, and G 1 must be

A=) =(V|-D(A-D- ) dg_(u). @n

u€V(Ga-1)

Note that, if A —2 = 1 (mod 2),then A — 2 = |V| — r = 1 (mod 2), where
r = |V(Ga)| Because |[V(G)| = 0 (mod 2), we know that r = 1 (mod 2),
issuch that

@...7(A —-2) =1 (mod 2).

®)...(A —1) =0 (mod 2).

©-- 'ZHEV(GA-I) dg,_,(uv) =0 (mod 2)

Therefore (a) # (b) - (). This contradiction shows that A — 2 is even.

Now we construct a new star-multigraph from G as follows: V(G*) =V(G)U
(w0} et V(Gac) =ViUVa; VinVa = g and | = |Va = (A —
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2)/2,let By = {u*vjv € V1},and B; = {v*vJv € V2}, let E; denote (A +
2)/2 multiple edges between u* and v* and E(G*) = E(G) UE, U B U
E;. Obviously, G* is a A -regular star-multigraph. G, is a collection of dis-
joint cycles, say Ga = C1 U---UCk, k > 1. Let C1 = ajaz ...ama1 (where
m > 3). The set of maximum degree vertices of G* — a; is contained in the set
{03,...,8m, V(C2),...,V(Ci),u*, v*}. By Lemma 6,

X(G* —a) =X (G- V(C1)).

The vertex of Ga_; has degree at most A — 3 inG* — V(C)). Let V(Ga) —
V(C)) = {am+1,.--,0r}, sinCE A — 2 = |V| — 7, we can find a family of edges,
say a;z;, m+ 1 < i < r, such that z; € V(Ga-1). Because d*(a;) < 2, the
edge a;x; is not critical in G* — a; by Lemma 6. Then

X(G* - a1) = X' (G - V(C1)) (28)
=x'(G"-V(C) - | ez 29

f=m+1
=A(Q) (30.)

As the graph G* — V(C1) — UL, 6iz; has only two vertices with A degree, the
conclusion is true by Lemma 7.

Now we prove that G is Class 1. Suppose that G*—a, is colored by A (G*) col-
ors. The graph G* —a, has A (G*) vertices of degree A (G*) — 1 and |[V(G —a1)|
is odd. Therefore each color is missing from exactly one vertex and each vertex
of degree A (G) — 1 has exactly one color missing from it. Therefore, e, and the
edges on a; can be restored, with each edge a1 v(v € V(G* — a1), dge—o, (v) =
A — 1) having the color previously missing at v. Therefore, x'(G*) = A. Then
x'(G) = A. A contradiction. This completes the proof. |

The authors wish to thank the referees for their helpful suggestions.

Note added in Proof

The authors have generalized the results in this paper. Theire results are in “The
chromatic index of graphs where core has a maximum degree two” to appear in
Discrete Math., and “A sufficient condition for a regular graph to by Class I”,
submitted.
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