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Abstract. A graph G is supereulerian if it contains a spanning eulerian subgraph. Let
n, m and p be natural numbers, m, p > 2. Let G be a 2-edge-connected simple graph
onn> p+ 6 vertices containing no Kp+1. We prove that if

|E(a)|z(""";'"")+(m-l>(";‘)+2p—4, o

where k = Lz';.LlJ , then either G is supereulerian, or G can be contracted to a non-
supereulerian graph of order less than p, or equality holds in (1) and G can be con-
tracted 10 K2 52 (p is odd) by contracting a complete m-partite graph T, p+1 of
order n— p+ 1 in G. This is a gencralization of the previous results in [3] and [5].

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops.

For a graph G, the order of the maximum complete subgraph of G is called clique
number of G and denoted by cl(G). A graphis eulerianif it is connected and every
vertex has even degree. A graph G is called supereulerian if it has a spanning eu-
lerian subgraph H. A cycle C of G is called a hamiltonian cycle if V(C) = V(QG)
and is called dominating cycle if E(G — V(C)) = 9. A graph is hamiltonian if it
contains a hamiltonian cycle. Obviously, hamiltonian graphs are special supereu-
lerian graphs.

There is rich literature on the following extremal graph theory problems: for a
given family F of graphs and for a natural number n, what is the maximum size
of simple graphs of order n which are not in F. For example, when F = {graphs
with clique number at least m}, this is Turdn’s Theorem. In this note, we consider
the family

F = {supereulerian graphs with clique number m}.

In fact, our results are related to Tur4n’s Theorem.

Let G be a graph, and let H be a connected subgraph of G. The contraction
G/ H is the graph obtained from G by contracting all edges of H, and by deleting
any resulting loops. Even when G is simple, G/ H may not be.

Here are some prior results related to our subject.
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Theorem A. (Ore[8) and Bondy [2)). Let G be a simple graph on n vertices. If

E@lz ("), @

then exactly one of the following holds:

(@) G is hamiltonian;
(b) Equality holds in (2),and G € { K1 V(K1 + K, 2), K2 + K§} (where K§
is the complement of K3 ).

|
Theorem B. (Veldman [10]). Let G be a 2-connected simple graph of order n.
If
IB(G)] > (";4) 11,
then G has a dominating cycle. |

Theorem C. (Cai[3]). Let G be 2-edge-connected simple graph on n vertices.
If

E@iz (") +s, @

then exactly one of the following holds:

(@) G is supereulerian;

®) G=Kzs;

(¢) Equality holds in (3), and either G = Q3 — v (the cube minus a vertex), or
G contains a complete subgraph H = K,,_4 suchthat G/H = K3 3.

Theorem D. (Catlin and Chen [S]). Let G be a 3-edge-connected simple graph
on n vertices, If

B@12 ("7 )+ 16,

then G is supereulerian. |

In this paper, following closely the method of [S], we shall generalize Theorem
C and Theorem D. In particular, we found that if a graph G is K3 -free or has small
clique number then the lower bound of the inequalities in Theorem C and Theorem
D can be improved.
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2. Notation and Turan’s Theorem
Let n and m be natural numbers, we define ¢(m, n) as the following;

t(m,n)=(ﬂ;k)+( )(k+l)

where k = | Z]. Itis easy to see thatif m = norm > nthenk=1o0rk =0,
repectively, and so the right side of the equation above is equal to (7). If m = 2

then 2 .
H2.m) { 5 ifn iseven; @
)=
2=l jfn is odd.

Note that for m > n,
t(2,m<t3,m) < ---<t{n—1,n) <t(nn =t(m,n = (;) )

One can see that t(/m, n) is related to the Turdn numbers below.
For m < m, denote by T, , the complete m-partite graph of order n with

ln J n+1 ln+ m—1
mi'l m |77 m
vertices in the various independent classes. Note that Ty, , is the unique complete

m-partite graph of order n whose independent classes are as equal as possible and
Ton = Ky Letk = | 2], itis known that the size of T  is

BTl =t = (5 F) ¢ m- (53 ).

Theorem E. (Twrdn [9]1). Let m and n be natural numbers, m > 2. Then every
graph of order m and size greater than | E(Tp, )| contains a K 1. Furthermore,
T'm » is the only graph of order n and size | E(Tm ») | that does not contain a Kee1 .

1

Remark. Let G be a graph of order n with maximum size that does not contain
a Kme1. If m > nthen |E(G)| = (3). If m < nthen by Theorem E | E(G)| =
|E(Tm.n)|. Thus, if G is a graph containing no K41 then |E(G)| < t(m,n).
For convenience, we define

Ho o = Tmn fm<m
™ K, ifm>n

3. Catlin’s Reduction Method
The following concept was given by Catlin [4].
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For a graph G, let O(G) denoted the set of vertices of odd degree in G. A
graph G is called collapsible if for every even set X C V(@G) there is a spanning
connected subgraph Hx of G, such that O( Hx) = X. The trivial graph K, is
both supereulerian and collapsible. The cycles C, and Cs are collapsible, but C;
isnotif ¢ > 4. In fact, if G is collapsible then G contains a spanning ( u, v)-trail
for any u,v € V(G). In particular, a collapsible graph is supereulerian.

In (4], Catlin showed that every graph G has a unique collection of disjoint
maximal collapsible subgraphs H,, H3,..., H.. Define G’ to be the graph ob-
tained from G by contracting each H; into a single vertex, (1 < 1 < ¢). Since
V(G) = V(H1) U---UV(H,.), the graph G’ has order c. We call the graph G’
the reduction of G. Any graph G has a unique reduction G' [4]. A graph G is
reduced if G = G'.

We shall make use of the following theorems:

Theorem F. (Catlin [4]) Let G be a graph. Let G’ be the reduction of G.

(a) Let H be a collapsible subgraph of G. Then G is collapsible if and only if
G/ H is collapsible. In particular, G is collapsible if and only if G' = K.

(b) G is supereulerian if and only if G’ is supereulerian.

(¢) If G is a reduced graph of order n, then G is simple and K3 -free with
8(@) < 3 and either G € {K1,Ka} or

|IE(G)| <2n—4.
1
Theorem G. (Catlin, Han and Lai [6}). Let G be a connected reduced graph of
order n. Then |E(G)| = 2n—4 ifandonly if G = Ky p-3 . |

4. Main Result and Consequences

The set of natural numbers is denoted by N. Let K be a graph. A graph G is
called K -free if it contains no subgraph K.

Theorem 1. Let G be a 2-edge-connected simple K -free graph of order n and
letpe N-{1}. If

|E(@|242,n—p+1) +2p—4, ©)

then exactly one of the following holds:
(@) The reduction of G has order less than p;
(b) Equality holds in (6) and G contains a subgraph H = T3 n-p+1 such that
the reductionof G isG' = G/H = Kj p 3;
(¢) G is areduced graph of order n such that p+ 1< n<p+ 6 and
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2n—-4 ifn=6+p;
2n-5 ifn=5+p;
2n—6 ifa=i+p,i€{2,3,4};
2n-5 ifn=1+p.

Proof: Let G' be the reduction of G and let [V(G')] = ¢. If ¢ = 1 then G is
collapsible and (a) of Theorem 1 holds. Suppose that ¢ > 1. Since G is 2-edge-
connected and by the definition of contraction, we have x'(G') > £'(G) > 2.
Let V(G') = {v1,v,...,v.}, and let H; denote the preimage of v; (1 < i < c).
Suppose that G has the maximum size among all K3 -free graphs which have the
reduction G'. Then at most one H; is a nontrivial K3-free subgraph of G with
order n— c+ 1. Therefore, by the remark following Theorem E and by Theorem

F(c),

2n—4 > |B(Q)| 2

|E(G)| < |E(H)| + |E(G)| < t(m,n—c+ 1) +2c—4, Q)
with equality only if G has a complete bipartite graph H; of order n— c+ 1, and
its reduction graph G' has size 2¢c — 4. By (6) and (7)

t(2,n—p+1)+2p—-4 <|B(@)|<t(2,n—c+1)+2c—4 (8)
t(2,n—-p+1)+2p <H2,n—c+ 1) +2¢. 9

Note that if ¢ < p then (a) of Theorem 1 holds. If ¢ = p then equality holds in (8).
Therefore, |E(G')| = 2c— 4 = 2p— 4. By Theorem G, G' = K3 ;3. Thus (b)

of Theorem 1 holds.
In the following we consider the case

c>p. (10)
By (4) and (9)

- 2 _ - 2
(n—p+1) 1+2p<(n c+1)

2 < 2 +2ec.

Therefore,

(c=p)(2n—p—-c+2) <8(c—p)+1,

2'ng6+p+c+c_p. (11)
Case 1. ¢ = n. Then G is a reduced graph. By (11)
1
n<6+p+ . (12)

n—p
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If n= p+ 1 then (c) of Theorem 1 holds. If n > p+ 1 then it follows from (12)
that n < 6 + p. By routine computation, one can see that (c) of Theorem 1 holds.
Case 2. ¢ < n. Since G is K3-free, G has no nontrivial collapsible subgragh

of order less than 6. Hence,
c+S5<m 13)

By (11) and (13), we obtain
c+5<n<l+p+ 0—1—5S2+p$ 1+ ¢,

a contradiction. The proof is complete. 1
An immediate consequence of Theorem 1 is the following,

Corollary 2. Let G be a 2-edge-connected simple K -free graph of order n and
letpe N—-{1}. If |[E(®)| > t(2,n— p+ 1) + 2p — 1, then the reduction of
G has order less than p. | |

Lemma 3. Lef a, b, and m be integers with a > 2,b >3, m > 3. Then
t(m,a+ b—1) > 1(2,a) + t(m,b) + e(m,a,b),
where
1 ifa=2andb=m-3,
g(m,a,b) = { 2 ifa=2 andmax{b,m} > 3,
3 ifa>2.

Proof: Let Gy and G be graphs such that G1 & T 5, Gy ¥ Tppp and [V(G1) N
V(G2)| = 1. Then |V(G1) UV(G2)| = a+ b—1and G; UG, is Kp-free. Itis
easily seen that e(m, a, b) edges can be added to G; U G in such a way that the
resulting graph G is still K,,-free. Hence by Theorem E,

t(m,a+b—1) > |B(G)| = |E(G1)| + |E(G2)| + e(m,a,b)
=1(2,a) +t(m,b) + e(m,a,b).

Theorem 4. Let n, m and p be natural numbers, m,p > 2. Let G be a 2-edge-
connected simple graph of order n with cl(G) = m. If

|[B(@)| >tm,n—p+1)+2p—4, (14)

then exactly one of the following holds:
(@) The reduction of G has order less than p;
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(b) Eguality holds in (14), p > 4 and G contains a subgraph H = Hyp 5 p+1
such that the reductionof G is G' = G/H = Kz 5 2;

© cl(G)=3,n=p+3,p> 3 and G contains a subgraph H = K3 such
that G'= G/H = K2 p-1;

(d) G is areduced graph with order nsuchthatn> 4 and p+1 < n<p+6
and

2n—4 ifa=6+p;

2n—-5 ifa=5+p;

2n—6 ifn=i+p,i€{2,3,4};

2n—5 ifn=1+p.

Proof: Assume the conditions of Theorem 4 are satisfied. If m = 2, then we are

done by Theorem 1. Hence assume m > 3.

Let G be the K;-free graph obtained from G by repeatedly contracting trian-
gles until none remains. Setn, = |V(G))|. Let G’ be the reduction of G and G,
and set ¢ = [V(G")|. Similar to the argument of the first paragraph in the proof of
Theorem 1 before (7), now we have

|[E(@®|Lt(mn—c+1)+2c—4, (15)

with equality only if G has a complete m-partite subgraph H of ordern—c + 1,
and its reduction G has size 2¢ — 4.

Note that if ¢ < p then (a) of Theorem 4 holds. If ¢ = p then by (14) and (15),
itis easy to see that (b) of Theorem 4 holds.

Now we may assume ¢ > p. Since m > 3, we have n > n; + 2 and hence
n—mn; +1 > 3. Furthermore, ny —p+ 1 > 2,sincen; > ¢ > p+ 1. By Theorem
EandLamma3 (witha=n —p+ landb=n—-mn + 1),

|E(G))| > |B(G)| —t(m,n—m + 1)
Stmun—p+ 1) +2p—4 —t(mn—m + 1)
>2t(2,m—p+1)+2p—4+e(mmnm —p+1l,n—m+1).
(16)

Sete=eg(m,n —p+1,n—m + 1). Since e > 0, @, is reduced by Theorem 1,
i.e.,m = c. If ¢ = 3, then we are done by Corollary 2. Now assume ¢ = 1. Then
m=3,m—p+1=2andn—n + 1= 3. By(16),

|E(G1)| > 1(2,2) +2p—3=2p—2=2n —4.

2n—-4 2 |E(G)| 2

By Theorem G, G’ = G1 = K22 = K3 p—1, Whence (c) of Theorem 4 holds.
Finally, assume ¢ = 2. Thenn; — p+ 1 = 2, so by (16),

|IB(G)|2>t(2,2)+2p—2=2p—1=2m -3,
contradicting Theorem F(c). |
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Corollary 5. (Catlin and Chen [5)). Let G be a 2-edge-connected simple graph
ofordernandletp € N — {1}. If

n—p+1

B@12 ("5 )+ 204, ar)

then exactly one of these holds:

(@) The reduction of G has order less than p;
(b) Egquality holds in (17), G has a complete subgraph H of order n—p + 1,
and the reductionof G isG' = G/H = K3 p-3.
(¢) G is areduced graph such that either
|E(G)| € {2n—4,2n—-5}andne {p+ 1,p+ 2}

or
|IE(G)|=2n—4 andn=p+ 3.

Proof: Choose m in Theorem 4 so that m > n—p+ 1. Then (5) and (14) together
imply (17). Note that m > n— p + 1 implies that Hp,pps1 = Kppe1. Now
Corollary 5 is an immediate consequence of Theorem 4. [ |

Remark. The case p = 5 of Corollary 5 is Theorem D which is a main result of
Cai [3]. The case p = 10 of Corollary 5 for 3-edge-connected graph is Theorem E
(Catlin and Chen [S]), which was a conjecture of Cai [3]. In the following we give
some more results which improve the lower bounds of the inequalities in Theorem
C and Theorem D.

Corollary 6. Let G be a 2-edge-connected simple K -free graph of order n. If
n> 12 and
|E(G)| 2 ¢(2,n—4) +6, (18)
then exactly one of the following holds:
(@) G is supereulerian;

(b) Equality holds in (18) and G containsa H = T 5,4 such that the reduction
of GisG'=G/H =Ky 3.

Proof: Setp = 5 in of Theorem 1. Sincen > 12 = p+ 7, (c) of Theorem 1
is impossible. Corollary 6 now follows from Theorem 1, and the fact that any
2-edge-connected simple graph on ¢ < 4 vertices is supereulerian. 1

Corollary 7. Let G be a 3-edge-connected simple K -free graph on n vertices.
If n> 16 and
|E(G)| > t(2,n—9) + 16, (19)

then G is collapsible.

Proof: Since G is 3-edge-connected, the reduction of G is either 3-edge-connected
or trivial. Itis known that the Petersen graph is the only 3-edge-connected reduced
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graph of order at most 11 [7]. Combination of these facts with Theorem F(a) and
the case p = 10 and n > 16 of Theorem 1 yields the desired result. 1

Remark. Let G be the simple graph obtained from the Petersen graph and
the complete bipartite graph T3 , 9 = K| [(n—9)/2],[(n-9)/2] withn—9 > 6 by
identifying one vertex from each graph. Then G is a 3-edge-connected graph of
ordern= (n—9) + 10 — 1. The size of G is

|E(G)| = t(m,n—9) + 15.

Since the reduction of G is the Petersen graph, G is not collapsible. Hence, (19)
is sharp.
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