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We consider two seemingly related problems. The first concerns pairs of graphs G and
H containing endvertices (vertices of degree 1) and having the property that, although
they are not isomorphic, they have the same collection of endvertex-deleted subgraphs.
The second question concerns graphs G containing endvertices and having the property
that, although no two endvertices are similar, any two endvertex-deleted subgraphs of
G are isomorphic.

1. Preliminaries.

All graphs considered are finite, simple and undirected. We shall mostly
follow the graph theoretic terminology of (9], the most notable exception
being that here we use the terms vertex and edge instead of point and line
respectively.

For any graph G, the sets of vertices and of edges will be denoted
by V(G) and E(G) respectively. The order of G is |V(G)|. Two adjacent
vertices are said to be neighbours and the set of neighbours of a vertex vin G
is denoted by Ng(v). Asin [9)], two vertices u and v of G are similarif there
exists some automorphism « of G such that a(u) = v; they are removal-
similar if G — u and G — v are isomorphic, and they are pseudosimilar if
they are removal-similar but not similar. We recall that an endvertez is a
vertex whose degree equals 1.

For definitions and results related to the reconstruction problem the
reader is referred to [3]. In particular we note here that a subgraph of G
obtained by deleting a vertex v together with its incident edges is called a
vertez-deleted subgraph (and, if v is an endvertex, an endvertez-deleted sub-
graph) of G. The collection of vertex-deleted (endvertex-deleted) subgraphs
of G is called the deck (endvertez-deck) and is denoted by D(G) (D1(G)).

Finally, if T is a group of permutations acting on a set X, and R C X,
then T'(r) denotes the pointwise stabiliser of R under the action of T', and
T'(r} denotes the setwise stabiliser of R. The automorphism group of a
graph G is denoted by AutG.
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2. Endvertex-reconstruction

There are many variants of the reconstruction problem involving the re-
construction of a graph from a proper subcollection of its deck. We are
concerned here with the question of whether a graph is reconstructible
from its endvertex-deck. Trees form one notable class of graphs which are
endvertex-reconstructible. In [2] Bondy had conjectured that all graphs
with sufficiently many endvertices are endvertex-reconstructible. The prob-
lem was investigated by various authors [2, 8, 16] but the final coup de
grice was delivered by Bryant in [5] who showed that, for any k, there
exist nonisomorphic graphs G and H with & endvertices each and with

D](G) = 'DI(H)

But the story need not end here. Although a graph with an arbitrarily
large number of endvertices need not be endvertex-reconstructible, if the
proportion of endvertices is sufficiently large then it would be endvertex-
reconstructible. For example, if G is a graph with minimum degree at least
2 and G’ is obtained from G by attaching one endvertex to each vertex of
G, then G’ is endvertex-reconstructible. We shall show that, in this case,
if the number of endvertices added to G is greater than |V(G)| /2 then the
resulting graph G’ is endvertex-reconstructible.

What follows involves the straightforward application of techniques
which have now become standard in reconstruction since [19] and [21],
with slight adaptations to fit the present situation. We shall be consider-
ing graphs with endvertices such that the neighbour of any endvertex has
degree at least 3. First we require some definitions. Let G be a graph with
minimum degree at least 2 and let S = (v, v2,...,v) be an ordered set of
distinct vertices of G. Let s = (a;,as,...,a;) be an ordered set of nonde-
creasing positive integers. Then the graph obtained from G by attaching
a; endvertices to each vertex v; is denoted by G[S;s]. It is convenient to
consider G[S;s] as the graph G with labels on its vertices: the vertices in
V(G) — S are given the label 0 while each vertex v; in S is given the la-
bel @;. Considered this way, an endvertex-deleted subgraph of G[S;s] is a
labelled graph obtained from G[S;s] by reducing one of its positive labels
by 1. Two labelled graphs are isomorphic if there is an automorphism of G
which preserves labels.

If D1(G[S1;51]) = D1(G[S2;s2]) and |S1| = [Sz], then s3 = s2. There-
fore, in the sequel, S; and S» will always denote subsets of V(G) with
|S1] = |S2| and we shall drop the reference to s3 and sz, denoting the two
graphs by G[Si] and G[S,) respectively. If S3 C S; then G[S3] is the la-
belled graph obtained by giving to each vertex in S3 the same label as in
G[S1] and giving all the other vertices the label 0.
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The set of all isomorphisms from G[Sl] to G[S2] will be denoted by
(G[S1] — G[S2]). For X C S, (G[S1] = G[Sa]) will denote the set of

automorphisms o of G such that

(i) if u € S1 — X then the label of a(u) in G[S2] equals the label of u
in G[S1],

and (ii) if u € X then the label of a(u) in G[S2] does not equal the label
of u in G[S;].

The orders of these sets are denoted by
|G[Sl] — G[S:)| and |G'[.S'1] X, G[S2]| respectively.

The first lemma is the analogue of the well-known result commonly
referred to as Kelly’s Lemma.

Lemma 1. Let S3 C S; C V(G) and let D1(G[S1]) = D1(G[S2])). Then
s(G[S3], G[S1)) = s(G[Ss}, G[S3]), where s(G[Si}, G[S;]) denotes the num-
ber of subgraphs of G[S;] isomorphic to G[S;].

Proof. Let r be the total number of graphs isomorphic to G[Sa] which
appear as subgraphs of the graphs in D1(G[S1]) (and hence Dy(G[S2])).
Let p be the sum of the labels in G[S;] of all the vertices in 57 — S3.
Clearly p > 0 since |S3| < |S1| and the labels are positive. Then

r = p-s(S(G[Ss], G[S1]) = p - s(S(G[S5], G[S2])
and the result follows since p > 0. O
Corollary 1. If D,(G[S1]) = D1(G[S:]) and S5 C Si then

G183} — G[S1]| = |GISs] — GIS:|-

Proof. This follows easily from Lemma 1 since,

|G(S35] — G[Si]| = s(G[Ss), G[S1]) - |G[Ss] — GI[S3]]
= 5(G[S3], G[S2)) - |G[Ss) — GI[S3]|
= |G[Ss] — G[Sa]|-
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Lemma 2. Let X C S). Then

IG[S1] 2 GIS:)| = 3 (-)MG[(S) - X)u Y] — G[S,]|.
YCX

Proof. For u € X let A, denote the set (G[(S1 — X) U {u}] — G[S2)).
Note that

Nizy Au, = (GU(S1 — X) Uiz {wi}] — G[S2))-

Since |G[31] —)-(-* G[Sg]' = IG[Sl - X] — G[Sz]' - |Uu€XAu|, the result
O

follows by applying the inclusion-exclusion principle.

The next theorem is the analogue of the Nash-Williams Lemma in edge-
reconstruction.

Theorem 1. Let D,(G[S1]) = D1(G[S2)), and let X C S,. Then
|G[S1] — G[S:)| =
|GI81] — GIS1| + (~1)¥(|GS1) = GIS:]| - |GlSi] = GISul)).
Proof. By Lemma 2,

l6[5:] X GIS2)| = Y (-)MG[(S: - X)uY] — GISH)|
YCX

and

|G15:] X Gisi)| = Y (-
YCX

G[(S1 - X)UY] — GISi]|-

Subtracting these two equations, all terms on the right hand side cancel
(by Corollary 1) except for Y = X, giving the required result. m}
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Corollary 2. Let D1(G[S1]) = D1(G[S2]) and suppose that G[Si] is not
isomorphic to G[S;]. Let X C 5.

Then (i) if | X| is odd, then |G[S1] == G[S:]| > 0,

and (i) if | X| is even, then |G[Si] = G[Si]| > 0.

Proof. Since G[S1] # G[S2), |G[S1] — G[S2]| = 0. Therefore when | X|
is odd,

61511 X GIS:]| = |G[S1] — GlS1]| + |GI81] 5 Gl > 0,
and, when |X]| is even,
|G1S1] X5 G181]| = |G1S1] — GIS1]| + |G[S1) 2 GIS2)| > 0.
m]

Theorem 2. Let R C S be a set of vertices which are given the same label
in G[S]. If either |R| > |V(G)|/2 or |R| > 1 + log, |AutG|, then G[S] is

endvertex-reconstructible.

Proof. Suppose G[S] is not endvertex-reconstructible and let G[S’] be
an endvertex-reconstruction of G[S], not isomorphic to G[S]. Then taking
X = R in Corollary 2 implies that there is a T C V(G) disjoint from R
such that G[(S — R)UT] ~ G[S), if |S| is even, or G[(S — R)UT] =~ G[5],
if |S| is odd. But this is impossible if [S] > |V(G)| /2.

Also, if G[S] is not endvertex-reconstructible then, by Corollary 2(ii),
for every even subset X of R, |G[S] N G[S]| > 1. There are 2IR1-1 even

subsets of R and, since the sets (G[S] =~ G[S]) are disjoint for different
X, it follows that [AutG| > 2IRI-1, Therefore if |R| > 1+ log, |AutG|, then
G[S] is endvertex-reconstructible. a

Corollary 3. Let G be a graph with minimum degree at least 2 and let
G' be obtained from G by attaching one endvertex to each of k distinct
vertices of G. If either k > |V(G)|/2 or k > 1 + log, |AutG|, then G’ is
endvertex-reconstructible. O

(Note: The second condition of Corollary 3 can also be obtained as a
special case of Corollary 2.4 of [1].)

Bryant’s counterexamples to Bondy’s conjecture are, in fact, graphs
like G/, that is, having endvertices no two of which have a common neigh-
bour and none adjacent to a vertex of degree 2. In view of this and of
the corollary, the natural question to ask is: If G’ is as in Corollary 3,
what is the largest value of |k]/|V(G)| for which G’ can be not endvertex-
reconstructible?
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3. Mutually pseudosimilar endvertices

The connection between pseudosimilarity and the reconstruction prob-
lem has become part of the folklore of graph theory since it was reported in
[10] that a purported proof of the reconstruction conjecture failed because it
assumed that removal-similar vertices are necessarily similar. Although this
has drawn on pseudosimilarity the suspicion that it might possibly account
for the eventual falsity of the conjecture, there does not seem to be much
concrete evidence that the concept of pseudosimilarity might help in settling
the problem one way or the other. Possible pointers in this direction could
be the facts that a tree is reconstructible both from its endvertex-deck and
its end-cutvertex-deck (an end-cutverter is a vertex having only one neigh-
bour with degree greater than 1) and that endvertices and end-cutvertices
cannot be pseudosimilar in a tree (see [12], for example).

The following simple result gives a tenuous link between pseudosim-
ilarity and reconstruction. Here, a vertex u in a graph G is said to be
replaceable if, for some set A of neighbours of u, there is a set B of vertices
of G not adjacent to u such that G is isomorphic to the graph obtained by
removing all the edges in {ua : a € A} and replacing them by the edges in
{ub: b € B}; u is irreplaceable if it is not replaceable.

Theorem 3. Let u be an irreplaceable vertex in a graph G. Then u cannot
be pseudosimilar to any vertex to which it is not adjacent. Also, if d(u) > 2
and u has minimum degree in G then G is edge-reconstructible.

Proof. Suppose first that v is a vertex of G not adjacent to u and
that u and v are pseudosimilar. Note that, since u and v are not adjacent,
Ng-v(u) = Ng(u)and Ng_u(v) = Ng(v). Let us denote Ng(u) and Ng(v)
by N(u) and N(v) respectively. (Note that |N(u)| = |[N(v)|, since u and
v are pseudosimilar.) Now let a be an isomorphism from G — u to G — v.
If a(N(u)) = N(v), then « can be extended to an automorphism of G
mapping v into v. Since u and v are pseudosimilar this is not possible.
Therefore, letting X = a~'(N(v)), the sets A = N(u) — X and B =
X — N(u) are not empty. But, since G is obtained from G — v by adding
a new vertex and joining it to N(v), and since a(X) = N(v), then G is
isomorphic to the graph obtained from G — u by adding a new vertex and
joining it to the vertices in X; that is, G is isomorphic to the graph obtained
by removing, from G, all the edges in {ua : a € A} and replacing them by
the edges in {ub : b € B}, contradicting the fact that u is irreplaceable.
Therefore u and v cannot be pseudosimilar.

Now suppose that d(u) > 2 and that G is not edge-reconstructible.
It then follows from the Nash-Williams Lemma in edge-reconstruction (see
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(3]) that any set containing an even number of edges of G can be replaced
by non-edges to give a graph still isomorphic to G. That is, given two
neighbours a;, a2 of u, there are two vertices by, b not adjacent to u such
that G ~ G — ua; — uas + ub; + uby (since u has minimum degree in
G), again contradicting the fact that u is irreplaceable. Hence G is edge-
reconstructible. (|

But rather than because of any possible link with the reconstruction
problem, pseudosimilarity has been studied mainly for its own independent
interest. One question which has been considered (7, 11, 13, 15, 17] is the
construction of graphs with large sets of mutually pseudosimilar vertices
(the vertices in a set S C V(G) are mutually pseudosimilar if any two of
them are removal-similar but no two are similar).

In [17] a construction of [15] was extended to give a family of graphs
having 3! mutually pseudosimilar pseudosimilar endvertices for ¢ > 1. This
construction uses as its basis a graph containing exactly three endvertices
all of which are mutually pseudosimilar, and it yields a sequence of graphs
each having k& = 3' mutually pseudosimilar endvertices and a total of
O(k'o87/1083) vertices. This suggests two problems. The first one is to find,
for » > 4, a graph all of whose » endvertices are mutually pseudosimilar.
The second is to use this graph as the basis of a construction of a sequence
of graphs having k = r* mutually pseudosimilar endvertices and O(k!*¢)
vertices, with ¢ as small as possible. We now consider these problems for
r=4,.

First, suppose that G’ is a graph with » endvertices, all of which are
mutually pseudosimilar. Let R be the set of neighbours of the endvertices of
G’ (note that no two endvertices can have a common neighbour, therefore
|R}| = r), and let G be obtained from G’ by removing all its endvertices.
Let I' = AutG. Then,

(i) Tiry = Teny,

and (ii) for any two (|R| — 1)-subsets A, B of R, there is a permutation
a in T such that a(A) = B

The converse of this is also true, that is, if I" is a group of permutations
acting on some set X and, for some R C X, the above two conditions
hold, then one can construct a graph G with minimum degree at least 2
and to which |R| endvertices can be attached such that all are mutually
pseudosimilar. This is possible because of the following result from [4], a
short proof of which can be found in [20; Prob. 12.21].
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Theorem 4. Let T be a permutation group acting on a set X. Then
there exists a graph G such that X C V(G), X is invariant under the
action of AutG and the restriction of AutG to X gives a permutation group
equivalent to T'.

(Note. As observed in [5], one can always carry out the construction of G
in such a way that it has minimum degree at least 2.)

Therefore all we have to do is to find a permutation group satisfying
conditions (i) and (ii) above. For r = |R| = 4, we can let T be the group
of affine transformations of the field GF(8). Although this group is not 3-
transitive, it is 3-homogeneous [18] (that is, any two 3-sets are related under
the action of I on the set of 3-subsets of GF(8)). Therefore all we need is a
4-set R such that T'(py = I(p). If we represent GF(8) as Zz[z}/p(z), where
p(z) is the primitive, irreducible (over Z5) polynomial 2® + z + 1, and if
we let R = {0,1,z,z%}, then one can check that the only permutation in T’
which fixes R setwise is the identity, therefore certainly I'(gy = ['(r). We
can then obtain the graph G of Theorem 4 with X being the set GF(8). If
the graph G’ is then obtained from G by attaching an endvertex to every
vertex in R, then G’ would be a graph with four endvertices, all of which
are mutually pseudosimilar.

The construction now proceeds using G as a basis. Let G, = G’ and
let H; be G, less one of its endvertices. Having constructed G, let H; be
G, less one of its pseudosimilar endvertices. Then, starting with G, G141
is obtained by attaching a copy of G; to each vertex in R C V(G) and a
copy of Hy to each of the other vertices in X — R = GF(8) - R C V(G).
(By attaching a copy of G (or H,) to a vertex v of G we mean joining v
to every vertex of G, (or H;) which is not an endvertex.)

Each graph G, so obtained has 4' mutually pseudosimilar endvertices
and O(8*) vertices. Therefore, if k = 4 is the number of pseudosimilar end-
vertices, then the total number of vertices in G, is O(k'88/108%) = O(£3/2).
Therefore this construction does better at “packing” pseudosimilar endver-
tices than both the one in [17) mentioned above, and the one in [15] which

produced graphs with £ = 2! mutually pseudosimilar endvertices and order
O(kl°83/ log 2)'

The most interesting feature about the above procedure is perhaps
the construction of the graph G via a group of permutations I satisfying
conditions (i) and (ii). We have here exploited the fact that the group
used is 3-homogeneous. One cannot, however, hope to do this in general
since, as shown in [18], if a group of permutations acting on a set X is
s-homogeneous with 5 < s < |X|/2, then I' is s-transitive, and since the
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only s-transitive groups with s > 6 are the symmetric and the alternating
groups. We therefore single out the following problem.

Problem. Forr > 5, find a group of permutations I' acting transitively on
a set X such that X contains an r-subset R with the following properties:
(i) T(ry = L(r); and (ii) if A, B are two (r — 1)-subsets of R, then there is
a permutation « in I' such that a(A) = B.

(Note. The requirement that I' be transitive imposes no extra restriction
because if I' and R satisfy (i) and (ii) then all the elements of R are in
the same orbit of T' acting on X. Therefore, if I is not transitive one can
always restrict its action to the orbit containing the elements of R.)

As we saw in the previous discussion, this problem is equivalent to
finding a graph G containing r endvertices all of which are mutually pseu-
dosimilar. Peter Cameron [6] has constructed examples of permutation
groups with the above properties. A slightly simplified version of his con-
struction runs as follows. Let X = F™—1, the vector space of dimension r—1
over the finite field F, and let I' be the group of all linear automorphisms
of X. Let B = {ej,ea,...,6,_1} beabasisof X, f = 3" a;e; an element of
X and R = BU{f}. Suppose the following conditions on the a; hold:

(1) ai #0,1<i<r -1

(2) ai # aj,i # J;

(3) aig; #1,1<4,j<r—-1,

(4) ai+ajar #0,1<4,5,k<r—1.

Then I and R have the required properties (i) and (ii). For since none
of the a; is zero, any two r — 1-subsets of R are bases of X, therefore similar
under the action of I'. Hence condition (i) holds. Also, if, for some a € T’
not equal to the identity, a(R) = R then, since the a; are distinct, we
cannot have a(B) = B and a(f) = f; therefore, for some j, a(e;) = f,
a(f) = ex) and a(e;) = eq(p for i # 7, where 7 is a permutation of
{1,2,...,7r— 1}. But then, since f = )_ ase;, we have

er(j) = Z aien(i) + a; f.
vy

This gives a; + ajaygy = 0 and @jar;) = 1, contradicting (3) and (4).
Therefore the only permutation o with a(R) = R is the identity, and hence
condition (ii) also holds.

If ¢ = |F| is greater than some quadratic polynomial in », then it
is always possible to choose the ¢; satisfying the above conditions since,
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if a;,as,...,am_1 have been chosen (m < » — 1), then a, must avoid
the solution of a finite number of equations involving at most two of the
a;,as,...,a;,_1. Therefore we have a group with the required properties if
|X| = O(r®"). The question which now arises is whether there are groups of
substantially smaller degree having these properties. The size of X would
certainly have to be larger than |R|, since otherwise (i) and (ii) cannot
both hold. In fact one can say a little more. Let R = {1,2,...,r} and
let R; denote R —i,1 < i < r. For any R;,2 < i < r, there is an a; €
T such that a;(R;) = R,. By (i), ai(i) € R; also, for i # j, a;i(i) #
a;(j), otherwise a;‘la,-(R) = R, and the action of ozj‘la',- on R is nontrivial,
contradicting (i). Therefore |X| > |R|+ |{@2(2),...,a:(r)}| = 2r—1. This
crude estimate shows that, if the above constructions are employed to give
a sequence of graphs G; having k = 7* mutually pseudosimilar endvertices,

then the total number of vertices of G, is O (k"w R ) which must be at
least O (klo o )
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