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Abstract. In this paper, we give two constructive proofs that all 4 -stars are Skolem-
graceful. A 4.star is a graph with 4 components, with at most one vertex of degree
exceeding 1 per component. A graph G = (V, E) is Skolem-graceful if its vertices
can be labelled 1,2,... ,|V] so that the edges are labelled 1,2, ... ,| E|, where each
edge-label is the absolute difference of the labels of the two end-vertices. Skolem-
gracefulness is related to the classic concept of gracefulness, and the methods we de-
velop here may be uscful there.

Let G = (V, E) be a finite simple undirected graph with vertex set V and
edge set E. In [2], a Skolem-graceful labelling of G is defined to be a bijection
fiV —={1,2,...,|V|} such that the induced labelling fx: E — {1,2,...,|E|}
defined by f » (u,v) = |f(u) — f(v)]| is also a bijection. Such an f is called an
S-labelling of G, and if it exists, G is then said to be Skolem-graceful.

The only connected graphs that can be Skolem-graceful are the trees. It is easy
to see that a tree is Skolem-graceful if and only if it is graceful. For the clas-
sic concept of gracefulness and the conjecture that all trees are graceful, see [1].
Henceforth, we restrict our attention to graphs with at least two components.

We point out that the Skolem-gracefulness of one class of such graphs is com-
pletely seutled. A one-factor of order k consists of 2 k vertices joined in pairs by
k edges. It is Skolem-graceful if and only if £ = 0 or 1 (mod 4). This follows
from a result in [4] which states that a Nickerson sequence of order k exists if and
onlyifk =0 or1 (mod 4). Such a sequence consists of two copies of each of
1,2,...,ksuchthat for 1 < ¢ < k, there are exactly 1 — 1 other terms between
the two copies of 1.
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It is easy to see that a Nickerson sequence of order k induces an S-labelling of
a one-factor of order k, and vice versa. For instance, the sequence 23243114 and
the S-labelling in the following diagram induce each other.

() ———-- (3)
2 ~---- (5)
9 —---- (8)
6) —---- Q)

From now on, we shall replace the diagram with the equivalent notation (1 :
3)(2:5)(4:8)(6:7).

‘We now consider another class of disconnected graphs and attempt to determine
which of them are Skolem-graceful. We define a k-star St(a1,e2,... ,05) as a
graph with k components having ay,+1, a2 + 1,... ,ax + 1 vertices respectively,
such that all but one of the vertices in each component have degree 1. In each
component, the vertex of maximum degree is called the nucleus. If the component
has only two vertices, only one of them is considered the nucleus.

It is a trivial result that all 1-stars are Skolem-graceful. In [3], it is proved that
this is true for St(a;, a3 ) if and only if o ¢, is even, and for St(a;,az,a3) ifand
onlyifa;aeza; iseven. In[2], itis conjectured that all 4 -stars are Skolem-graceful.
In this paper, we give two proofs that the conjectured result is true.

Our first approach is via explicit constructions. We divide the 4 -stars into five
exhaustive but not mutually exclusive classes, and give a general construction of
an S-labelling for each class. That these are indeed S-labellings can be verified
in a routine manner.

We establish some notations. Let A, B, C and D be the respective nuclei of
St(a1,a2,a3,a4). Let W;, 1 < i < ey, be the vertices joined to A. Let X;,
1 < 1 < a2, be the vertices joined to B. Let Y¥;, 1 < 1 < a3, be the vertices
joined to C. Let Z;, 1 < i < aq, be the vertices joined to D.

Theorem 1. St(2p,2q,27,23s) is Skolem-graceful.

Proof: We define the S-labelling f as follows:

f(A) =3,

f(B) =2,

f(C) =1,

f(D)=2p+2q+27r+2s+4,

(W) =4+3
=i{+2¢+2r+2s+3

f(X)=1+p+3
=i+p+2r+2s8+1

for1<i<p,
for p+1<i< 2y,
for 1<1<q,
for g+1<i<q,
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f()=i+ptg+3
=i+p+q+2s+1 forr+1<<1<2r,

f(Z)=i+p+qg+r+3 for 1<i<2s-2ifs>1,
=p+g+2r+2s8+2 fori=23-1,
=p+2¢q+2r+2s+ 3for i=2s.

for1<i<,

Theorem 2. St(1,2gq,2r,s) is Skolem-graceful for s > 2.
Proof: We define the S-labelling f as follows:

f(A)=1, f(B)=3,

(W) =q+r+4,

J(C)=2g9+2r+7,

f(D) =4,

f(X)=2 for i=1,
=1i+3 for 2 <i1<qifg>1,
=1+2r+6 for g+1<t<2q,
f(Y)=i+q+3 for1<i<r,
=1+g+6 for r+1<i<2r,
f(Z)=i+qg+r+ 4 fori=1,2,

=i+2g¢+2r+5

for 3<i<sifs>2.

Theorem 3. St(2p—1,2q,27,3) is Skolem-graceful forp > 2.
Proof: We define the S-labelling f as follows:

f(A =3, f(B)=2, f(C)=2p+2q+2r+4,
f(wy) =1 for i=1,
=1+4 for 2<i<p—1ifp>2,
=i+2g¢+2r+4 for p<iL2p—-1,
f(X)=i+p+3 for 1 <i<yg,
=i+p+2r+2 for g+1< i< 2g,
f(Y)=i+p+g+3 for 1<i<2r—1,
=p+2¢q+2r+3 for i=2r,
fZ)=5 fori=1,

=1{+2p+2q+2r+3

for 2 <i<sifs> 1.
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Theorem 4. St(1,1,r,s) is Skolem-graceful.
Proof: We may assume that r» < s. We define the S-labelling f as follows:

f(A=1, f(By=3, f(C)=2r+6, f(D)=4,

f(W) =2,

F(X1)=2r+5,

f(Y))=2r+5-24 for 1<i<r,

f(Z)=2i+4 for 1<i<r,
=i+7r+6 for r+1<iLsifs> .

Theorem 5. St(2p—1,2¢—1,1,8) is Skolem-graceful for p > 2.
Proof: We define the S-labelling f as follows:

f(A)=1, f(B)=2p+29+r+3, f(C)=2, f(D)=4,

fFW) =1 for i=1,
=i+4 for 2<i<p—1ifp>2,
=i+2¢+7r+3 forp<i<2p-1,
F(X)=i+p+3 for 1<i<q—1lifg>1,
=i+p+r+3 for <1< 2¢g-1,
f(Yy)=i+p+g+2 for1<i<r,
f(Z) =5 fori=1,
=i+2p+2g9+7r+2 for 2 <1< sifs> 1.

Theorem 6. All 4 -stars are Skolem-graceful.

Proof: Consider St(a),a2,a3,as). Ifallof a1, a2, a3 and a4 are even, the result
follows from Theorem 1. If at least one but at most two of them are odd, the result
follows from Theorem 2 or 3. If at least two of them are odd, the result follows
from Theorem 4 or 5. [ |

In Table 1, we give examples of S-labellings of St(a,,a2,a3,a4) Witha; < 3
forl < i< 4anda; + a3 + a3 +a4 < 10. Some of these are based on
constructions as yet to be described.

Our second approach is via recursive constructions. In fact, we shall prove a
result which is stronger than the conjecture, that every 3 -star has aPSL. A PSL, or
a punctured S-labelling, of a k-star is defined in essentially the same way as an S-
labelling, except that the range of the bijection fis {1,... ,k,k+2,...,|V|+ 1}
instead. For instance, (1: 3)(2: 5)(6:7) isaPSL of St(1,1,1).
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Itiseasy tosee thataPSL of St( a1, a2, a3) induces an S-labelling of St(a1, a2,
a3, as) for any a4. For instance, the above PSL of St(1,1, 1) induces the S-
labelling (1:3)(2:5)(6:7) (4:8,...,2+4) of St(1,1,1,2) forall £

For each St(a1, a2, a3), we shall construct a PSL such that there exists a non-
nucleus vertex labelled z > 4 which has the following properties:

(@) The edges joining two vertices both with labels less than x or both with
labels greater than z have induced labels 1,2, ... , e, where e is the number
of such edges.

(b) The edge incident with the vertex labelled z has induced label e + 1,

Such a PSL is said to be good, with respect to the vertex labelled z. We call it
a GPSL. For instance, the PSL (1 : 3)(7 : 6)(2: 5) of St(1,1,1) is good with
respect to the vertex labelled 5.

We now describe the two basic techniques we employ in our proof.

The Splitting Lemma. If St(a1,a2,03) has a GPSL with respect to a veriex in
the third component, then so does St(a),a2,a3 + s) forany s.

Proof: Suppose the GPSL is with respect to the vertex u labelled z. Let it be
joined to the nucleus v. We split u into s + 1 vertices and join each new vertex
only to v. We modify the labelling as follows. All original vertices with labels
less than z are unaffected. All original vertices with labels greater than z have
their labels increased by s. The new vertices are labelled z,z + 1,... ,z+ s. Itis
routine to verify that this is a GPSL of St(a,, a2, a3 + s) with respect to any of
the new vertices. 1

The Switching Lemma. If St(a),a2,a3) hasaGPSL (.:...) (z:...)(y:...,
2,...) withrespect to the vertex labelled z = (z+y) /2, then so does St(a),az +
1,a3 — 1).

Proof: We replace the edge joining the vertices with labels y and z by an edge
joining the vertices with labels = and z. The labelling is unchanged. It is clear
that this is a GPSL of St(a;,a; + 1,a3 — 1) with respect to the vertex labelled
2. | |

Applying the Splitting Lemma to the GPSL (1 : 3)(7 : 6)(2: 5) of St(1,1,1),
the GPSL (1: 3)(2t+6:2t+5)(2:5,...,2t+ 4) of St(1,1,2t) can be
obtained for all ¢. Applying the Switching Lemma to this, the GPSL (1 : 3)(2:
Syeee 43,8 4+5,...,2t+4) (2t+6:t+4,2t+ 5) of St(1,2t—1,2)
can be obtained. Applying the Splitting Lemma again, we obtain for all » the
GPSL (1 :3)(2:5,...,t+3,n+t+3,...,n+2t+2) (n+2t+4:
t+4,...,n+t+2,n+2¢t+3) of St(1,2¢ —1,n).

Some St(a1,a2,a3) wherea; + a3 + a3 Z 1 (mod 3) have a GPSL with the

following properties:

(a) The three nuclei are labelled 1,2 and e + a3 + a3 + 3.
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(b) Ife; + az + a3 = 61, then the vertex labelled 3¢ + 2 is joined to the nucleus
labelled ay + a2 + a3 + 3. If o} + a2 + a3 = 61+ 2, then the vertex labelled
3¢+3 is joined to the nucleus labelled 1. Suppose a; +a2+a3 = 6t+3. Then
the vertex labelled 3¢ + 4 is joined to the nucleus labelled a) + az + a3 + 3.
Ifa; + a2 + a3 = 6t + 5, then the vertex labelled 3¢ + 5 is joined to the
nucleus labelled 2.

Such a GPSL is said to be excellent, and we call it an EPSL. From the GPSL
(1:3)(6:7(2:5)of St(1,1,1), we can obtain from the Splitting Lemma
the GPSL (1 : 3)(8:9)(2:5,6,7) of St(1,1,3). Here 1 + 1+ 3 is of the
form 6t + 5 witht = 0, and the vertex labelled ¢t + 5 = 5 is joined to the nucleus
labelled 2. Thus, we have an EPSL.

Suppose we start with an EPSL. Then the Switching Lemma can be applied. It
is routine to verify that if we split the vertex which has just been switched into an
even number of vertices whena; +a2 +a3 =2 (mod 3) andinto an odd number
of vertices when a; + a2 + a3 = 0 (mod 3), the resulting GPSL is excellent.

We now complete our proof that every 3 -star has a PSL, in fact, a GPSL, via
six constructions. The first four are to be carried out in cyclic order.

Theorem 7. St(m,m, m + 2) has an EPSL for all m.

Proof: We have taken care of the case m = 1. For m = 2t, we shall ob-
tain from Theorem 10 the GPSL (2:...)(6t+ 3:...) (1:...,3t+ 2,...) of
St(2t,2t,2t). We split the vertex labelled 3t + 2 into three vertices to obtain the
EPSL(2:...)(6t+5:...) (1:...,3t+2,3¢t+3,3t+4,...) of St(21,2¢,2t+
2). Form = 2t + 1 > 1, we shall obtain from Theorem 10 the GPSL (1:...)
(6t+6:...)(2:...,3t+4,...) of St(2t+ 1,2t + 1,2t + 1). We split the
vertex labelled 3t + 4 into three vertices to obtain the EPSL (1:...)(6¢+8:...)
(2:...,3t+4,3t+5,3t+6,...) of St(2t + 1,2t + 1,2t + 3). |

Theorem 8. St(m,m+ 1, m+ 1) has a GPSL forall m.

Proof: For m = 2t, we switch to the nucleus labelled 6¢ + 5 the vertex labelled
3t + 3 in the EPSL of St(2¢,2t,2t + 2) obtained in Theorem 7. This yields
the GPSL (2:...)(1:...)(6t+ 5:...,3t+ 3,...) of St(2¢,2t+ 1,2t + 1).
For m = 2t + 1, we switch to the nucleus labelled 6¢ + 8 the vertex labelled
3t+ 5 inthe EPSL of St(2t + 7,2t + 1,2t + 3) obtained in Theorem 1. The
GPSL (1:...)(2:...) (6¢t+8:...,3t+5,...) of St(2t+ 1,2t + 2,2t + 2) is
obtained. |

Theorem 9. St(m,m+ 1, m + 2) has an EPSL for all m.

Proof: For m = 2t, we split into two vertices the vertex labelled 3¢ + 3 in the
GPSL of St(2t,2t + 1,2t + 1) obtained in Thecorem 8. This yields the EPSL
(2:...)(1:...) (6t +6:... ,3t+3,3t+4,...) of St(2¢,2t+ 1,2t + 2). If
m = 2t + 1, we split into two vertices the vertex labelled 3¢ + 5 in the GPSL of
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Table 2

Stars Theorems Punctured S-Labellings

st(2,2,2) - (2:7,8)(9:6,10)(1:3,5)

st(2,2,4) 7 (2:9,10)(11:8,12)(1:3,5,§,7)

st(2,3,3) 8 (2:9,10)(1:3,5,7)(11:§,8,12)

st(2,3,4) 9 (2:10,11)(1:3,5,8)(12:6,1,9,13)

st(3,3,3) 10 (1:3,5,8)(12:6,9,13)(2:1,10,11)

st(3,3,5) 7 (1:3,5,10)(14:6,11,15)(2:7,§,9,l2,l3)

St(3,4,4) 8 (133,5,10)(2:7,9,12,13)(14:6,2,11,15)

st(3,4,5) 9 (1:3,5,11)(2:7,10,I3,14)(15:6,§,9,12,16)

st(4,4,4) 10 (2:7,10,13,14)(15:6,9,12,16)(1:3,5,8,11)

St(3,4,4) - (1:3,5,10)(2:7,9,12,13)(14 6,§,I1,15)

St(3,4,7) 11 (1:3,5,13)(2:7,12,15,16)
(17:6,8,9,10,11,14,18)

st(4,6,4) 12 (2:7,12,75,16)(17:6,8,10,11,14,18)
(1:3,5,9,13)

st(4,6,6) 12 (2:7,14,17,18)(19:6,8,12,13,16,20)
(1:3,5,9,10,11,15)

St(2t+1,2t+ 2,2t + 2) obtained in Theorem 8. This yields the EPSL (1:...)
(2:...)(6t+9:...,3t+5,3t+6,...) of St(2t+ 1,2t + 2,2t + 3). |

Theorem 10. St(m+ 1,m+ 1,m+ 1) hasa GPSL forall m.

Proof: We have settled the case m = 0. Form = 2t > 0, we switch to the
nucleus labelled 2 the vertex labelled 3¢+ 4 in the EPSL of St(2t,2t+1,2¢+ 2)
obtained in Theorem 9. The GPSL (1:...)(6t+6:...) (2:...,3t+4,...) of
St(2t+1,2t+ 1,2t + 1) is obtained. For m = 2t + 1, we switch to the nucleus
lablled 1 the vertex labelled 3¢ + 5 in the EPSL of St(2t+ 1,2t + 2,2t + 3)
obtained in Theorem 9, The GPSL (2:...)(6t+ 9:...) (1:...,3t+5,...) of
St(2t+ 2,2t + 2,2t + 2) is obtained. 1

Theorem 11. St(m, m+ 2t — 1,7n) has an EPSL for all m, t and n > m.

Proof: By Theorem 10, we have a GPSL of St(m, m, m) for all m. We apply
the Splitting Lemma to obtain an EPSL of St(m,m, m + 2t) for all ¢, then the
Switching Lemma to obtain a GPSL of St(m,m+ 2t —1, m+ 1), and finally the
Splitting Lemma to obtain an EPSL of St(m,m + 2t — 1,7n) foralln> m. 1

Theorem 12. St(m,m + 2t,7n) has a GPSL forall m, t and n > m.

Proof: We have taken care of thecase m = 1. Form > 1, Theorem 11 guarantees
an EPSL of St(m — 1, m, m + 2t + 1) for all m and t. We apply the Switching
Lemma to obtain a GPSL of St(m, m + 2¢, m), and then the Splitting Lemma to
obtain a GPSL of St(m, m + 2t,7n) foralln > m. 1

Theorem 13. Every 3 -star has a GPSL.

Proof: We may assume that a; < a2 < e3. If @) + a is even, the result follows
from Theorem 12. If not, it follows from Theorem 11. |

In Table 2, we illustrate the cyclic applications of Theorems 7 to 10, as well as
the constructions based on Theorem 11 and Theorem 12.
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We have seen that k = 0 or 1 (mod 4) is a necessary condition for all k-
star to be Skolem-graceful. A natural question is whether this condition is also
sufficient. The case k = 1 is trivial, and we have settled the case k = 4. However,
our method does not seem promising even for the nextcase k = 5.

We have a partial result, that the k-star St(1,1,...,1,£) is Skolem-graceful
forallZifk =0 or1 (mod 4). Thisis because the (k—1)-star St(1,1,...,1)
hasaPSLforallk = 0or1 (mod 4). Thisisinduced by a Nickerson sequence of
order k with one copy of k appearing at one end of the sequence. For k = 4¢, those
constructed in [4] have this property. We conclude this paper with our construction
of the desired Nickerson sequences for k = 4% + 1.

Odd terms Positions
1 t+1,t+2

3 2t+1,2t+4

2t -1 t+3,3t+2

2t+ 1 2t+2,4t+3

2t+3 t, 3t+3
4t+1 1,4t+2

Even terms Positions
2 6t+2, 64

4t—2  4t+4,8t+2

41 2t+3,6t+3
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