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Introduction

A (k,n, f)cap K was defined by D’Agostini [1] to be a non-negative integer
valued function on the points P of a PG(2, ¢),

f: PG(t, 9 =»N

such that & of the points have positive values. We call f( P) the weight of the
point P € PG(t, g), and define the weight of the line £ to be F(£) = Y p¢, f.
Finally n = max, F(£). Fort = 2, K is called a (k, n, f)-arc. Such caps, are
studied in {2, 3]. We write max peg f = w, and denote the weight of the whole
capby W =} pcy f(P) The setof integers m) < mz < .. < m, < nsuch that
there is at least one line of weight m; in K is called the type of K. The number of
lines of weight s in PG(t, ¢) is denoted by 7, and the integers 7y, , Tmg , .-, Tm, »
T, are called the characters of K. As usual we write Q;; = 1+ g+ .. + ¢},
the number of lines through each point in PG(t, ¢), and by duality there are Q,_;
points on each line. The number of points (resp. lines) in PG(t,q) is Q;. We
note that if min f > 0, the study of a (k, n, f) — cap can be reduced to that
of a (k*, n*, f*) — cap defined by f*(P) = f(P) — min f. We can therefore
take min f = O without loss of generality, and it will be assumed in the following
work.

Some inequalities

This note is devoted to caps of type (m, n). Arcs with two characters were
studied in [4]. Consider a point of weight s, and let the number of lines of weights
m, n passing through it be denoted by V3, V;? respectively, V2 > 0,V? > 0.
Then counting lines and weights respectively,

Vt: + Vl: = Qt-l) (1)
mVi+aV? =W+ (Qey — 1)s. @

These equations give

(n—m)Vp = (n—8)Qr1 —WHs,(n—m)V)=W-s—(m—3)Qt-1. (3)
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Since the right hand sides are well determined, the numbers of lines of weights m,
n through every point of weight s are the same. Each value in the s - spectrum
gives a congruential relationship between W and Q) (mod n—m). In particular
since 0 always occurs, we have

W = mQi—1(mod n— m) = nQ¢_1(mod n— m) C))
By taking s = 0, w respectively in (2), since m < n, we have,
m Qi1 WL (n—w)Qr1 +w. )]

We note the extreme cases of this inequality. If W = mQ;_;, then V2 = Q;_1,
VY = 0 (i.e. every line through a point of weight 0 is of weight m), V¥ =
Q-1 —(wq/(n—m))Qi—2, Vg = (wg/(n—m))Qe—2. UW = (n—w)Q¢1+w
we have V¥ = 0, V¥ = Q;_1(i.e. every line through a point of maximum weight
has weight n), V0 = Qi1 —wqQe-2/(n—m), V0 = wgQi-2/(n— m). Now
V2 = 0 and V¥ = 0 are incompatible since there must be a line joining a pair of
points of weights 0 and w, hence at least one of the inequality signs in (5) must be
strict. By the congruence (4) the difference between its extremes must be at least
n—m,hencewQi) < (n—Mm)Qi1+w+n—m,orw < n—m.

Now consider the doubly extremal case where W has its minimum value mQ;_;
and w has its maximum value n — m. This implies from the above formulae that
Ve=1,V?=Q1—1.

Theorem 1. In a (k,n, f)-cap of type (m,n) with minimum weight W =
mQ:_1 and w = n— m, all the points of weight 0 and all those of weight w
lie on a single line, which has weight m.

Proof: Let Py, P, be points of weights 0,w respectively. Let A be a point of
weight 0 not collinear with them, if that were possible. Then Py P, and AP,
both have weight m since they pass through points of weight 0, but this implies
that two lines of weight m pass through P, which has weight w contrary to the
calculation above. Thus A lies on Py P,,. But if B were a point of weight w not
collinear with Py P,,, we would have two lines, Pp B and B A, each of weight m,
through B, which has been shown to be impossible.

An immediate consequence is that if ; denotes the number of points of weight
iinthecap,lo + b < Qi-1-
Theorem 2. In a (k,n, f)-cap of type (m,n) with maximum weight W =

(n— w)Qi-1 + w and w = n— m, all the points of weight 0 and all those of
weight w lie on a single line, which has weight n.

Proof: We definea cap K * dual to K by setting f*( P) = w— f(P).If K satisfies
the requirements of Theorem 2, then K'* satisfies those of Theorem 1. The result
follows from the duality.
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Corollary. Ina(k,n, f)-cap oftype (m,n) withminimum weight W = mQ¢—;
and w=n—m,ly < V3, andina (k,n, f) capof type (m,n) with maximum
weight W = (n—w)Qi1+wandw=n—m,L, < V8s=1,2,...,w—1.

Proof: The [y points of weight 0 are collinear, and every line through any of them
has weight m. Consider a point of weight s, and the V3 lines of weight m through
it. This gives the first result, and the second follows similarly or by duality.

Note that in this doubly extremal case, the weight can be writtenas W = (n—
w) Qi1 +w = mQe) + w.

Now let a denote the smallest non-zero value among the weights of points. On
taking s = ain (3), we find (n— m)VE = W - mQi1 + a(Qe-1 — 1) > 0,
so there is at least one line of weight n through each point of minimal non-zero
weight. The other ¢ points on this line (t=2) have weights between 0 and w, which
gives us the inequalities a < n < wg + « for « and w. Since there are always
points of weight zero we also have by considering the weight of a line through
such a point, n < wq.

Let us fix attention on a particular line £, and let a; be the number of points
of weightion 2,4 = 0,1,...,w. Then Y ga; = ¢+ 1, §ia; = f(£). On
subtracting the first equation from the second and transposing a term we have
5" iai1 = ao + f(£ — g — 1. Since the left hand side is non-zero, we have
the following result:

Theorem 3. Ina (k,n, f)-cap of type (m,n), the number of points of weight
zero on a line of weight m (resp. n) is at least ¢ — 2 — m (resp. ¢ — 2 — n).

We have seen that in some extremal cases, all the points of weight 0 or w are
collinear. We now look at the consequences of a weaker form of the converse
requirment, namely that all the points of weight O are collinear. Suppose they lie
on a line £. Now there is at least one point of non-zero weight on £. Let ap,w;
be the minimal non-zero, and maximal value respectively among the weights of
points on £, and let P,Q be points of £ having weight o, and w, respectively.
Through P, Q pass at least one line of weight m and one of weight n, neither of
which contains any point of weight 0. By counting the weights of points on these
lines we obtain a dual pair of inequalities.

Theorem 4. Ina (k,n, f) cap of type ('m,n) in which all the points of weight
zero are collinear, we have wg+ ag < m, ag+ wg > n.

This result can be strengthened in the case where all the points of weight 0 and
those of weight w are collinear. Let wg _¢ be the maximal weight of points not on
£. Calculations similar to the above give us:

Theorem 5. Ina (k,n, f)-cap of type (m,n) in which all the points of weights
zero and w are collinear, we have ay + qug.-g > n

An Example: We now describe an example of a (k,n, f) cap of type (m,n)
in which all the points of weight O are collinear. The underlying geometry is
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PG(2,9), and f takes the values 0, 1,2. In this example « is an element in the
Galois field Fy used in the construction of PG(2, 9). The weights of the points,
denoted by coordinates (z, y, z) , are as follows:

Weight 0:(0,1,0%) (0,1,&°) (0,1,a%)

Weight 2:(0,0,1)  (0,1,0)  (0,1,0*) (0,1,a*) (1,¢,0)
(1,0,0%)  (1,@,@’) (1,6%,6%) (1,0%,0%) (1,d%,a?)
(1,6°,0%) (1,6,0%) (1,6%,0%) (1,0°,8%) (1,&°,0%)
(1,&8,6*) (1,e5,1) (1,0%,0%) (1,a%,@") (1,4',1)
(1,&',a%) (1,d',a")

Weight 1: All other points.

There are thus 3 points of weight 0, 66 of weight 1, and 22 of weight 2(= w).
This gives rise to an (11, 14) cap with W = 110. It has 58 lines of weight 11
and 33 lines of weight 14. The line z = 0, which has weight 11, is distinguished,
as the three points of weight O are collinear on it. The other lines can be further
classified as follows. In addition to z = 0 the lines of weight 11 include 27 that
intersect z = 0 in a point of weight 0, contain 7 points of weight 1 and 2 of
weight 2. These are the lines not included in the lists below. A further 18 contain
9 points of weight 1, one of which is the intersection with z = 0, and 1 point
of weight 2. They are, in terms of line coordinates (£, m, n) derived from the
equation £z + my + nz=0: _
(1,a,0%) (1,,0°) (1,a,0®) (1,6%,0°) (1,0%,0%) (1,0%,d7)
(1,&2,1) (1,62,0%) (1,02,0") (1,64,1) (1,&%,0) (1,0°,0%)
(1,a%,0) (1,0%,0%) (1,a%,6%) (1,d",0*) (1,0’,6%) (1,d’,a?)
The remaining 12 intersect z = 0 in a point of weight 2, and their other 9
points are of weight 1. Their line coordinates are:

(0,0,1)(0,1,0) (0,1,1) (0,1,8) (1,0,a%) (1,0,a7)
(1,1,00(1,1,1) (1,L,@) (1,a*,00 (1,a%,a*) (1,a%,a°)

The lines of weight 14 all contain 6 points of weight 1 and 4 of weight 2. They
fall into two classes: the 9 that intersect z = 0 in a point of weight 1, which are:
(0,1,6°) (0,1,a*) (0,1,0°) (1,1,68) (1,1,a%) (1,1,a°)
(1,e*,1) (1,6%,0) (1,a%,4")

and the 24 that intersect it in a point of weight 2, namely:

(1,0, (1,0,8) (1,0,@*) (1,0,a*) (1,0,0°) (1,0,a®)
(1,6,00 (l,a,0) (l,a,0?) (1,6%,0) (1,6%,0®) (1,d%,0a%)
(1,a2,00 (1,0%,6%) (1,0%,6%) (1,&°,00 (1,&2,6°) (1,0°,0f)
(1,a%,0) (1,6%,0%) (1,a%4") (1,&7,00 (1,a",) (1,d,@))
It can be verified that this example is consistent with the above theorems. It

is immediately obvious that the points of weight 1 form a (66,9) arc of type
(3,6,7,9), and those of weight 2 form a (22, 4) arc of type (1,2,4).
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