(k, n, f) caps of type (m, n) in PG(t, q)

A.O. Philips

Department of Mathematics and Statistics
Birkbeck College
Malet Street
London WC1E 7HX
England

Introduction

A (k, n, f)-cap K was defined by D'Agostini [1] to be a non-negative integer valued function on the points P of a PG(t, q),

$$f: PG(t, q) \rightarrow N$$

Some inequalities

This note is devoted to caps of type (m, n). Arcs with two characters were studied in [4]. Consider a point of weight s, and let the number of lines of weights m, n passing through it be denoted by V_m^s , V_n^s respectively, $V_m^s \ge 0$, $V_n^s \ge 0$. Then counting lines and weights respectively,

$$V_m^s + V_n^s = Q_{t-1}, \tag{1}$$

$$mV_m^s + nV_n^s = W + (Q_{t-1} - 1)s.$$
 (2)

These equations give

$$(n-m)V_m^s = (n-s)Q_{t-1} - W + s, (n-m)V_n^s = W - s - (m-s)Q_{t-1}.$$
 (3)

Since the right hand sides are well determined, the numbers of lines of weights m, n through every point of weight s are the same. Each value in the s - spectrum gives a congruential relationship between W and $Q_{t-1} \pmod{n-m}$. In particular since 0 always occurs, we have

$$W \equiv mQ_{t-1} \pmod{n-m} \equiv nQ_{t-1} \pmod{n-m} \tag{4}$$

By taking s = 0, ω respectively in (2), since m < n, we have,

$$m Q_{t-1} \le W \le (n-\omega)Q_{t-1} + \omega. \tag{5}$$

We note the extreme cases of this inequality. If $W=mQ_{t-1}$, then $V_m^0=Q_{t-1}$, $V_n^0=0$ (i.e. every line through a point of weight 0 is of weight m), $V_n^\omega=Q_{t-1}-(\omega q/(n-m))Q_{t-2}$, $V_m^\omega=(\omega q/(n-m))Q_{t-2}$. If $W=(n-\omega)Q_{t-1}+\omega$ we have $V_m^\omega=0$, $V_n^\omega=Q_{t-1}$ (i.e. every line through a point of maximum weight has weight n), $V_n^0=Q_{t-1}-\omega qQ_{t-2}/(n-m)$, $V_m^0=\omega qQ_{t-2}/(n-m)$. Now $V_n^0=0$ and $V_m^\omega=0$ are incompatible since there must be a line joining a pair of points of weights 0 and ω , hence at least one of the inequality signs in (5) must be strict. By the congruence (4) the difference between its extremes must be at least n-m, hence $\omega Q_{t-1} \leq (n-m)Q_{t-1}+\omega+n-m$, or $\omega \leq n-m$.

Now consider the doubly extremal case where W has its minimum value mQ_{t-1} and ω has its maximum value n-m. This implies from the above formulae that $V_m^{\omega} = 1, V_n^{\omega} = Q_{t-1} - 1$.

Theorem 1. In a (k, n, f)-cap of type (m, n) with minimum weight $W = mQ_{t-1}$ and $\omega = n - m$, all the points of weight 0 and all those of weight ω lie on a single line, which has weight m.

Proof: Let P_0 , P_ω be points of weights 0, ω respectively. Let A be a point of weight 0 not collinear with them, if that were possible. Then P_0P_ω and AP_ω both have weight m since they pass through points of weight 0, but this implies that two lines of weight m pass through P_ω which has weight ω contrary to the calculation above. Thus A lies on P_0P_ω . But if B were a point of weight ω not collinear with P_0P_ω , we would have two lines, P_0B and BA, each of weight m, through B, which has been shown to be impossible.

An immediate consequence is that if l_i denotes the number of points of weight i in the cap, $l_0 + l_{\omega} \leq Q_{i-1}$.

Theorem 2. In a (k, n, f)-cap of type (m, n) with maximum weight $W = (n - \omega)Q_{t-1} + \omega$ and $\omega = n - m$, all the points of weight 0 and all those of weight ω lie on a single line, which has weight n.

Proof: We define a cap K^* dual to K by setting $f^*(P) = \omega - f(P)$. If K satisfies the requirements of Theorem 2, then K^* satisfies those of Theorem 1. The result follows from the duality.

Corollary. In a (k, n, f)-cap of type (m, n) with minimum weight $W = mQ_{t-1}$ and $\omega = n - m, l_0 \le V_m^s$, and in a (k, n, f) cap of type (m, n) with maximum weight $W = (n - \omega)Q_{t-1} + \omega$ and $\omega = n - m, l_\omega \le V_n^s$, $s = 1, 2, ..., \omega - 1$.

Proof: The l_0 points of weight 0 are collinear, and every line through any of them has weight m. Consider a point of weight s, and the V_m^s lines of weight m through it. This gives the first result, and the second follows similarly or by duality.

Note that in this doubly extremal case, the weight can be written as $W = (n - \omega)Q_{t-1} + \omega = mQ_{t-1} + \omega$.

Now let α denote the smallest non-zero value among the weights of points. On taking $s=\alpha$ in (3), we find $(n-m)V_n^\alpha=W-mQ_{t-1}+\alpha(Q_{t-1}-1)>0$, so there is at least one line of weight n through each point of minimal non-zero weight. The other q points on this line (t=2) have weights between 0 and ω , which gives us the inequalities $\alpha \leq n \leq \omega q + \alpha$ for α and ω . Since there are always points of weight zero we also have by considering the weight of a line through such a point, $n \leq \omega q$.

Let us fix attention on a particular line ℓ , and let a_i be the number of points of weight i on ℓ , $i=0,1,\ldots,\omega$. Then $\sum_{0}^{\omega}a_i=q+1,\sum_{0}^{\omega}ia_i=f(\ell)$. On subtracting the first equation from the second and transposing a term we have $\sum_{2}^{\omega-1}ia_{i+1}=a_0+f(\ell)-q-1$. Since the left hand side is non-zero, we have the following result:

Theorem 3. In a (k, n, f)-cap of type (m, n), the number of points of weight zero on a line of weight m (resp. n) is at least q - 2 - m (resp. q - 2 - n).

We have seen that in some extremal cases, all the points of weight 0 or ω are collinear. We now look at the consequences of a weaker form of the converse requirment, namely that all the points of weight 0 are collinear. Suppose they lie on a line ℓ . Now there is at least one point of non-zero weight on ℓ . Let $\alpha_{\ell}, \omega_{\ell}$ be the minimal non-zero, and maximal value respectively among the weights of points on ℓ , and let P, Q be points of ℓ having weight α_{ℓ} and ω_{ℓ} respectively. Through P, Q pass at least one line of weight m and one of weight n, neither of which contains any point of weight 0. By counting the weights of points on these lines we obtain a dual pair of inequalities.

Theorem 4. In a (k, n, f)-cap of type (m, n) in which all the points of weight zero are collinear, we have $\omega_{\ell} + \alpha q \leq m$, $\alpha_{\ell} + \omega_{\ell} \geq n$.

This result can be strengthened in the case where all the points of weight 0 and those of weight ω are collinear. Let $\omega_{K-\ell}$ be the maximal weight of points not on ℓ . Calculations similar to the above give us:

Theorem 5. In a (k, n, f)-cap of type (m, n) in which all the points of weights zero and ω are collinear, we have $\alpha_{\ell} + q\omega_{K-\ell} \ge n$.

An Example: We now describe an example of a (k, n, f) cap of type (m, n) in which all the points of weight 0 are collinear. The underlying geometry is

PG(2,9), and f takes the values 0,1,2. In this example α is an element in the Galois field F_9 used in the construction of PG(2,9). The weights of the points, denoted by coordinates (x,y,z), are as follows:

Weight 1: All other points.

There are thus 3 points of weight 0, 66 of weight 1, and 22 of weight $2(=\omega)$. This gives rise to an (11, 14) cap with W=110. It has 58 lines of weight 11 and 33 lines of weight 14. The line x=0, which has weight 11, is distinguished, as the three points of weight 0 are collinear on it. The other lines can be further classified as follows. In addition to x=0 the lines of weight 11 include 27 that intersect x=0 in a point of weight 0, contain 7 points of weight 1 and 2 of weight 2. These are the lines not included in the lists below. A further 18 contain 9 points of weight 1, one of which is the intersection with x=0, and 1 point of weight 2. They are, in terms of line coordinates (ℓ, m, n) derived from the equation $\ell x + my + nz = 0$:

The remaining 12 intersect x = 0 in a point of weight 2, and their other 9 points are of weight 1. Their line coordinates are:

The lines of weight 14 all contain 6 points of weight 1 and 4 of weight 2. They fall into two classes: the 9 that intersect x = 0 in a point of weight 1, which are:

$$(0,1,\alpha^3)$$
 $(0,1,\alpha^4)$ $(0,1,\alpha^5)$ $(1,1,\alpha^3)$ $(1,1,\alpha^4)$ $(1,1,\alpha^5)$ $(1,\alpha^4,1)$ $(1,\alpha^4,\alpha)$ $(1,\alpha^4,\alpha^7)$

and the 24 that intersect it in a point of weight 2, namely:

It can be verified that this example is consistent with the above theorems. It is immediately obvious that the points of weight 1 form a (66,9) arc of type (3,6,7,9), and those of weight 2 form a (22,4) arc of type (1,2,4).

References

- 1. E. D'Agostini, Sulla characterizzazione delle (k, n, f) Calotte di Tipo (n-2, n), Atti Sem. Mat. Fis. Univ. Modena 39 (1980), 263-275.
- 2. E. D'Agostini, Alcune Osservazioni sui (k, n, f) Archi di un piano finito, Atti Acad. Scienze Bologna 6 (1979), 211-218.
- 3. E. D'Agostini, On caps with weighted points, J. Statist. Planning and Inference 3 (1979), 279–286.
- 4. M. Scafati Talini, (k, n)-archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri, Rend. Acc. Naz. Lincei 40, 812–818.