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Abstract

A pairwise balanced design (PBD) of index 1 is a pair (V, A)
where V is a finite set of points and A is a set of subsets (called
blocks) of V, each of cardinality at least two, such that every pair of
distinct points of V is contained in exactly one block of .A. We may
further restrict this definition to allow precisely one block of a given
size, and in this case the design is called a PBD ({X, k°},v) where
k is the unique block size, K is the set of other allowable block sizes,
and v is the number of points in the design. It is shown here that a
PBD ({5, 9"}, v) exists for all v = 9 or 17 mod 20, v > 37, with the
possible exception of 49, and that a PBD ({5, 13°}, v) exists for all
v = 13 mod 20, v > 53.

1 Introduction

A pairwise balanced design (PBD) of index 1 is a pair (V, .A) where V is
a finite set of points and A is a set of subsets (called blocks) of V, each
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of cardinality at least two, such that every pair of distinct points of V is
contained in exactly one block of A. We say that (V, A)is a PBD (K, v)if
| V |=vand | A |€ K for every A € A where K is a set of positive integers.

The notion of PBD closure dates back to Wilson ([27], [28], [30]) and is
defined thus: if K is a set of positive integers, then let B(K) denote the set
of positive integers v for which there exists a PBD (K, v). B(K) is called
the PBD closure of K. K itself is said to be PBD closed if B(K) = K.

The goal of this paper is to determine for what values of v there exists a
PBD ({5, 9°}, v) and for which values of v there exists a PBD ({5, 13"},v)
(here k* implies that there is exactly one block of size k in our design). We
note that, if there exists a PBD ({5, ¥*}, v), then v = k = 1 mod 4 and
v(v— 1) = k(k — 1) mod 5. For k = 9 this implies that v = 9 or 17 mod 20,
and for & = 13 this implies that v = 13 mod 20. Our strategy will be to
consider v =9, 29, 49, 69, 89, mod 100; v =17, 37, 57, 77, 97, mod 100;
and v = 13, 33, 53, 73, 93, mod 100.

Since we have only one block of a special size, this distinguished block
may also be thought of as a hole, and hence our structure may be alter-
natively considered as an incomplete PBD or IPBD. An IPBD is a triple
(X, Y, A) where X is a set of points, Y C X, and A is a set of blocks
which satisfies the following properties: 1) forany A € A, | ANY |< 1,
and 2) any two points z, y, not both in Y, occur in a unique block. Hence
Y is the hole. It is known that (X, Y, A) is an IPBD iff (X, AUY)isa
PBD [19].

Investigation into IPBD for block sizes three and four has been long and
thorough. Vital papers in this area include [7}, [11], [25], [26], and [19]. One
of the principal applications of IPBD’s is in the singular indirect product
(see [14] and [15]), a product that has been used extensively, notably in
(15], [16], and [19)]. ‘

2 Constructions

To obtain the required designs, we employ some thirteen constructions that
we shall describe. Fundamental to these constructions are a number of other
designs which we define now.

The first of these is the group-divisible design or GDD. A GDD is a
triple (V, G, B) with the following properties: 1) G is a partition of V into
subsets called groups, 2) B is a class of subsets of V (called blocks) such
that a group and a block contain at most one common point, and 3) every
pair of points from distinct groups occurs in a unique block. The group



type of a GDD is a listing of the group sizes using so-called “exponential”
notation, that is, 1°2°3¢... denotes a groups of size 1, b groups of size 2,
etc. Two particular GDD’s of which we will make extensive use are the
GDD with five groups of size four and all blocks of size five, and the GDD
with six groups of size four and all blocks of size five. The first GDD exists
by Lemma 2.1 below while the second is formed from the affine plane of
order five by deleting one point. The blocks from which a point was deleted
are now of size four and become our groups. The remaining intact blocks
become our blocks.

Very useful to our constructions is a special kind of GDD known as a
transversal design or TD. A TD (k, ») is a GDD on kn varieties with k
groups of size n and n? blocks of size k. It is well-known that a TD (k, n) is
equivalent to k —2 mutually orthogonal Latin squares. In this paper we will
be concerned mainly with TD (5, ») and TD (6, n); so we remind ourselves
of the values of n for which three MOLS and for which four MOLS exist.

Lemma 2.1 Ifn # 2, 3, 6, 10, then there ezist three MOLS of order n
(4], [22].

Lemma 2.2 Ifn # 2, 8, 4, 6, 10, 14, 18, 22, 26, 30, 34, 42, then there
ezxist four MOLS of order n [4], [23], [24], [21], [3], [1].

Related to a transversal design is an incomplete TD which is defined as
follows: a TD (k, v)— TD (k, u) is a quadruple (X, G, A, Y) where X is
a set of kv points, G = {G1, G2, ..., Gk} is a partition of X into k groups
of v elements each, Y is a set of ku points such that |[Y NG; |=u for1 <
i < k, and A is a set of subsets of X called blocks, each containing exactly
one element from each group such that each pair {z, y} of elements from
different groups is either contained in Y (which is called a hole) or occurs
in a unique block of A but not both [5]. Several criteria for determining
the existence of incomplete TD’s will be listed later. Note that neither
of the two TD’s in the “difference” need exist. For example, Horton has
constructed a TD (4, 6) -TD (4, 2) [10].

We also require the notion of an incomplete group—divisible design. An
incomplete group-divisible design (IGDD) is a quadruple S = (V, A4, B, F)
where V is a v-set, A = {G1,G3,...,G,} is a partition of V, that is,
V = Ui.;Gi, GinG; = @, for i # j (the sets G; are called groups),
B = {H,,H,,...,H,} is a collection of subsets of V, H; C G; (the sets
H; are called holes), and F is a family of subsets of V called blocks, which
satisfy the following requirements. Let 7 be any pair of distinct elements of
V; then (i) if 7 lies in a group, then = lies in no block of F; (ii) if = contains



elements from distinct groups, say = = {z, y} where z € G; and y € Gj;,
then (a) if z € H; and y € Hj, then 7 occurs in no block of F; otherwise
(b), there is a unique block of F' which contains .

An IGDD is said to be of type wf_,(gi,h:)® if there are a; groups of
size g; which contain a hole of size h;, i = 1,2,...,. An IGDD is said to
be a k-IGDD if all blocks of the design are of size k.

A familiarity with BIBD’s is presumed; however we define a resolvable
balanced incomplete block design or RBIBD to be a BIBD in which the
blocks of the design can be partitioned into classes, called resolution classes,
such that every element of the design occurs precisely once in each resolution
class. We also note here that there exists an RBIBD (12m + 4, 4, 1) for
all choices of m > 0 [8], and that there exists a BIBD (20m + 1, 5, 1) and
a BIBD (20m + 5, 5, 1) for all choices of m > 0 [9].

Finally we state Wilson’s Fundamental Construction as it proves so
useful.

Theorem 2.1 (Wilson’s Fundamental Construction) Let (X, G, A)
be ¢ master GDD and let a positive integral weight s; be assigned to each
point £ € X. Let (S; : ¢ € X) be pairwise disjoint sets with | S; |= 5.
With the notation Sy = Uzey Sz for Y C X, put X* = Sx, G* = {S¢ :
G € G}. For A € A, we have a natural partition 74 = (Sa, {Sz : = € A});
we suppose that for each block A € A, a GDD (Sa, {S: : ¢ € A},B4) is
given, and put A" = UpgcaBa. Then (X*, G*, A") is a GDD (29].

The following theorem is a special case of a straightforward extension
of Wilson’s Fundamental Construction for group—-divisible designs:

Theorem 2.2 Suppose that there ezists an IGDD of type wi_,(gi, hi)*
with blocks whose sizes lie in a set K. Suppose further that for some positive
integer n and for each s € K, there ezists a GDD of type n’ with blocks of
size k. Then there ezists a k—-IGDD of type wi_,(ngi, nh;)*:.

Proof: This is a simple modification of the proof of Wilson’s Fundamental
Construction [27]. O

Lemma 2.8 If a PBD ({5,k"},v) ezists, then v > 4z + 1.

Proof: Consider pairs which involve two elements not in the special
block of size k. There are precisely (*3*) such pairs, and they must occur
in the blocks of size five.
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An element from the block of size £ must occur in ‘"—;") blocks of size
five. Then (3) = 6 pairs are formed by the other elements in the block.
This is the case for all elements in the block of size k. Hence enumerating
all such pairs, we see there are at least 61:1%2 pairs involving elements
not in the block of size k. Hence

6k(v—k) < (v—k)

4 2
which implies that

3k
4k + 1

Lemma 2.4 If4t+1¢€ B(5, k*), if a TD (6, 5m) ezists, and if 5m > ¢t >
0, then 100m + 4t + 1 € B(5, k°).

Proof: Take a TD (6, 5m) and remove 5m — t varieties from the last
group to obtain a GDD of type (5m)%t! with blocks of size five and six.
Now employ Wilson’s Fundamental Construction, weighting all varieties by
four to obtain five groups of size 20m and one group of size 4¢. Replace the
blocks of size five with the blocks from a TD (5, 4) (see above) and replace
the blocks of size six with the blocks from a GDD with six groups of size
four and all blocks of size five (see above).

Add an extra point, 0o, to all groups, and replace the groups of size
20m + 1 by BIBD (20m + 1, 5, 1) and replace the group of size 41 + 1 by
the PBD ({5, k"}, 4¢+1). O

Lemma 2.5 If4t + 1 € B(5, k), if a TD (6, 5m + 1) ezists, end if
S5m+12>1t2>0, then 100m + 4t + 21 € B(5, k™).

Proof: Similar to the proof of Lemma 2.4, except that we replace groups
of size 20m + 5 with BIBD (20m + 5, 5, 1). O

Lemma 2.6 Ifa >0, ifa =9 or 89 mod 100, then a € B(5, 97) [15,
lemma 5.7].

Lemma 2.7 For any positive integer k, if there is a TD (5, 12n + a + 4)
which contains a TD (5, a) as a subdesign, where 0 < a < 4n + 1, and if
4n+4a+ 1€ B{5, k*}, then 64n + 4a + 21 € B{5, k*} [15, lemma 5.8].
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Note that, as stated on page 92 of [15], the TD (5, a) can be a hole.
To find the incomplete TDs we use the following result from [5).

Proposition 2.1 Let m > 1, suppose that ¢« TD (k+ 1, t), a TD (k, m),
and o TD (k, m + 1) ezist; suppose also that 0 < s < t. Then a TD
(k, mt + s)— TD (k, s) ezists. If, moreover, a TD (k, s) ezists, then a
TD (k, mt + s) ezists which contains a sub-TD (k, t), a sub-TD (k, m) if
s#t, asub-TD (k, m+1) if s #0, and a sub-TD (k, s).

Proposition 2.2 Let m > 1 and t > 1 and suppose that a TD (k + w, t),
a TD (k, m), and @ TD (k, m + 1) ezist. Then o TD (k, mt + w)— TD
(k, m + w) ezists.

Proposition 2.3 If TD (6, t) and TD (5, m + m;)—TD (5, m;) all ez-
ist and if a = E;.’:l myk;, where k; are positive integers salisfying t =
3 _1 kj, then there ezists TD (5, mt + a)—TD (5, a).

Lemma 2.8 ¢) If4u+k € B(5, k™) and a TD (6, u) ezists, then 24u-+k €
B(5, k). b) If4u+k € B(5, k7), if e TD (6, u)— TD (6, t) ezists, and if
a GDD of type (41)® with blocks of size 5 exzists, then 24u+k € B(5, k).

. Proof: a) Take a TD (6, u) and inflate each group by four using Wil-
son’s Fundamental Construction. Employ the same technique as in Lemma
2.4 to break up the blocks into blocks of size five. Add k new varieties,
z1, 3, ..., Tk, to each group, and construct a PBD ({5, k*}, 4u + k) on
each group with the block of size k as 2,2 . ..z in each case. Retain only
one copy of 2,23 ...zx and retain all blocks of size five.

b) Take a TD (6, u)— TD (6,t) and perform the steps as in a). The only
difficulty is that we lose those pairs which would have occurred but for the’
hole. To remedy the situation, make use of the GDD of type (41)%. Let the
groups in this GDD consist of the points in the hole (originally ¢ points per
group of the incomplete TD, now inflated to 4t points per group). Then if
we adjoin the resulting blocks from this GDD to our design, we capture all
omitted pairs. O

Lemma 2.9 Ifu € B(5, k™) and if a TD (5, u— k) ezists, then Su—4k €
B(5, k*).

Proof: Take a TD (5, v — k) and add the k varieties, z,, z3, ..., %, to
each group, making groups of size u. Then replace each group by a PBD
({5, k*}, u) where the block of size k in every group is 123 ...%z. Include
only one copy of z,z2...zx. Then all other blocks have size five and the
result follows. O
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Lemma 2.10 If4m+ 1€ B(5, k*), then 16m + 5 € B(5, k*) [17, lemma
3.3].

Lemma 2.11 If 4s + 1 € B(5, k"), if there ezists an RBIBD (20m +
5, 5, 1), and if 0 < s < 5m, then 80m + 21 + 4s € B(5, k*) [17, lemma
3.2].

The ingredients in this construction are RBIBD with £k = 5, A = 1.
The question then becomes: for which values of v does such a design exist.
From [13] we obtain the following parameters of RBIBD:

(65, 208, 16, 5, 1)
(85, 357, 21, 5, 1)

Lemma 2.12 (i) If there ezists a BIBD (v, 6, 1), then 4v—15 € B(5, 9%).
(ii) If there ezists a BIBD (v, 6, 1), then 4v — 11 € B(5, 137).

Proof: (i) Begin with a BIBD (v, 6, 1). Delete a point to get a GDD
with all groups of size five and all blocks of size six. Delete three points
from the last group, leaving two points.

Invoking Wilson’s Fundamental Construction, we weight all points by
four and replace the blocks as per Lemma 2.4. Adding oo to each group,
we replace the groups of size 21 by BIBD (21, 5, 1) and just leave the group
of size nine. O

(#2) Similar to (i) except that we delete two points from the last group
instead of three. D

Lemma 2.13 (i) Ifu € B(5, 9") and if a TD (5, u—2)— TD (5,7) ezists,
then 5u—8 € B(5, 97). (i) If u € B(5, 13") and ifa TD (5, u — 3)— TD
(5,10) ezists, then 5u — 12 € B(5, 137).

Proof: (i) Let a,, a2, a3, a4, as, ag, a7, be seven varieties in the
first group, by, by, bs, by, bs, be, bz, be seven varieties in the sec-
ond group, ¢,cz,¢3,¢4,Cs,Cs,C7, be seven varieties in the third group,
dy, d3, d3, d4, ds, dg, d7, be seven varieties in the fourth group, and
€1, €z, €3, €4, €5, e€g, €7, be seven varieties in the last group, where these
are the varieties whose pairs do not occur in the blocks, that is, they “occur”
in the hole of size seven.

Adjoin two new varieties zg and zg to each group. Replace each group by
the PBD ({5, 97}, u), ensuring that the blocks of size nine in the respective
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groups are @,a3a3a4asaea7Tae, b1babzbabsbebrzgzy, ¢1cacscscscecrzazy,
dyidadgdsdsdedrzgze, and ejezesesesegerzgzg. Remove the blocks of size
nine and add instead a PBD ({5, 97}, 37) (for the existence of this design
see Lemma 2.10) on the 37 points, a,, a2, a3, a4, as, ag, a7, b1, ba, bs, bs,
bs, be, b7, a1, ca, c3, ca, Cs, Ce, €7, dy, d2, ds, ds, ds, dg, d7, €1, €3, es,
e4, €5, €g, €7, Tg, To. This completes the construction. O

(%) Similar to (i) except that we distinguish ten varieties in each group,
add in three new points, and replace the blocks of size 13 by a PBD
({5, 137}, 53) (for the existence of this, see Lemma 2.10). D

Lemma 2.14 Suppose there is a BIBD (v, 5, 1) whick contains a flat
of order w. Let a be an integer satisfying 0 < a < w. If there ezists a
TD (5, v—a)- TD (5, w~ a), and if 5(w — a) + a € B(5, k*), then
5(v—a)+a € B(5, k™) [17, lemma 3.8].

Lemma 2.15 Ifm+8 € B(5, 9°) and if a TD (5, m) ezists, then 5m+8 €
B(5, 137).

Proof: Begin with a TD (5, m). Let the points in the first group
be @3, az,...,@m, the points in the second group be by, bs,...,bn, etc.
Without loss of generality, suppose a bicidie; is a block. Adjoin eight
points z;, Z2, %3, %4, &5, Te, 7, Tg to each group. Then replace
each group with a PBD ({5, 9"}, m + 8) where the block of size nine
in the first group is a1z12223z425ze272s, the block of size nine in the
second group is b x;T2z3T4TsxeT7Ts, the block of size nine in the third
group is ¢, T23T4T5Tex7Ts, the block of size nine in the fourth group
is dyz1z2z3T4T5T6T7Ts, and the block of size nine in the last group is
e1x1x223x4TsTeT7¢s. Finally, replace all the blocks of size nine and the
block a;bicidier by the block aybicidierzizzzzszsTez723—a block of
size 13. We have 5m + 8 € B(5, 137). O

Lemma 2.16 If there ezists a TD (11, m), if there ezists ¢ BIBD (4m +
1,5,1), ifa+b<m(a,b>0), and ifz = 120 + 4b + 1 € B(5, k), then
40m + z € B(5, k7).

Proof: Take the TD (11, m) and apply Wilson’s Fundamental Construction.
Weight 10 of the groups with 4. For the eleventh group, weight a of the
points by 12, b of the points by 4, and ¢ of the points by 0, so that a+b+c =
m. Now consider any block. Ten of its points are weighted by 4, while the
last point is weighted by 12, 4, or 0. Depending on which case we are
dealing with we will need a GDD (419, 5, 1), a GDD (4'!, 5, 1) or a GDD
(4'°12, 5, 1).

14



The first GDD is obtained from the BIBD (41, 5, 1) by deleting a
point. The second is obtained from the BIBD (45, 5, 1), also by deleting
a point. Adjoin a point to each group. The third is manufactured from
the PBD ({5, 13"}, 53) (for the existence of this see Lemma 2.10). This
PBD is constructed by taking a BIBD (40, 4,1), partitioning it into 13
resolution classes, adjoining a different a; to each class, and including the
block ajazasasasasarasasaioaiiaizars in the design. To obtain our GDD
we have only to omit one a;. The resulting design is a GDD (4!°12!, 5, 1).
Since there exists a BIBD (4m+1, 5, 1), we can replace each of the first 10
groups. Since 12a +4b+0c+ 1= 12a + 4b+ 1 € B(5, k"), we can replace
the last group by a PBD ({5, k*},12a +4b+1). O

Lemma 2.17 If4t + 1 € B(5, k*), if a TD (6, 5m + 4) ezists, and if
S5m+4>t>1, then 100m + 4t + 81 € B(5, k7).

Proof: Take a TD (6, 5m + 4) and remove 5m + 4 — t + 1 varieties from
the last group to obtain a GDD of type (5m + 4)%(¢ — 1)} with blocks of
size 5 and 6. Now employ Wilson’s Fundamental Construction, weighting
all varieties by 4 to obtain 5 groups of size 20m + 16 and one group of size
41— 4.

Add an extra block ajazazasas to all groups and replace the groups of
size 20m + 21 by BIBD (20m + 21, 5, 1) and replace the group of size 4¢+ 1
by the PBD ({5, k"}, 4¢+1). D

Lemma 2.18 If 4t + 5 € B(5, k°), if a TD (6,m) ezists, if a BIBD
(4m + 5, 5, 1) ezists, and ift < m, then 20m + 41 + 5 € B(5, k°).

Proof: Take a TD (6, m) and remove m—1 points from one group. Inflate by
4, replacing blocks as in Lemma 2.4. Adjoin 5 new points a;, a3, az, a4, as
to each group, and replace the groups now of size 4m+5 by BIBD (4m+5,
5, 1), each with one copy of the block ajazazasas. Replace the group of size
4145 by a PBD ({5, ¥}, 4¢+5), ensuring that there is a block a;azaza4as.
Retain only one copy of this block in the entire design. O

Lemma 2.19 There ezists a PBD ({5, 97},169) and a PBD ({5, 13"},
173).

Proof: For j = 1,2, construct an IGDD of type (8,1)%(j,0)! with blocks
of sizes in {5, 6} by taking a TD (6, 8), deleting 8 — j elements from one
side of its groups, and then deleting a block of size five. Since there exists
a GDD of type 4* with blocks of size five for s = 5, 6, then by Theorem 2.2
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there exists a 5-IGDD of type (32,4)5(47,0). Let the groups of size 32 be
G1,G3,...Gs, and let Gg denote the group of size 4. Let H; denote the
hole of size 4in G;, ¢t = 1,2,...,5, and let W denote a set of five points
which do not appear in the 5-IGDD. Now for i = 1,2,...,5, define a PBD
({5, 97}, 37) on the set G; UW in such a way that the block of size 9 is the
set H; UW. Let C; denote the collection of blocks of size 5 which occur in
this design, and adjoin the blocks of C;, i = 1,2,...,5, to the blocks of the
5-IGDD to form a set S of blocks. Now define a copy of a BIBD (25, 5, 1)
on the set Uf=1 H; UW in such a way that the set W occurs as a block.
Delete this block from the block set of the BIBD to obtain a set of blocks
C, and adjoin these blocks to the collection S to obtain a collection T. To
the blocks of T, adjoin a block consisting of Gg¢ U W. The result is a PBD
({5, 9"}, 169) for j = 1 and a PBD ({5, 13"}, 173) for j = 2. O

3 Theorems

Theorem 8.1 Let v be a positive inleger such that v = 29 mod 100. If
v #29, then v € B(5, 9°), and if v =29, then v g B(5, 97).

Proof: Lemma 2.5 with 4t + 1 = 9 yields all values v = 29 mod 100
except 29, 129, 629. The case v = 29 ¢ B(5, 9°) by Lemma 2.3. The
case v = 129 may be constructed as follows. The points are one special
point, X, the 120 ordered pairs (g, h), and the eight ordered pairs [z, j),
where g is an integer modulo 60, k and i are integers modulo 2, and j is
an integer modulo 4. Let o be the automorphism that maps (g, k) onto
(g+1, h), [i, j) onto [i+1, j], and X onto itself. The block of size nine is

X [0,0 [0,1] [0,2] ([0,3] ([1,0] ([1,1] ([1,2] (1,3]

The blocks of size five are 822 distinct blocks obtained by applying powers
of o to the following 15 base blocks:
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X (0,0) (30,00 (0,1) (30,1) (period 30)
(0,0) (12,0) (24,0) (36,0) (48,0) (period 12)
(0,00 (1,00 (6,0) (15,0) (16,1)

(0,0) (20) (20,0) (52,0) (45,1)
(0,0) (31,0) (35,0) (40,1) (55,1)
(0,0) (3,0) (16,00 (7,1) (35,)
(00) (210) (38.0) (21.1) (50.1)
(0,0) (26,0) (2,1) (48,1) (52,1)
(0,0) (37,0) (11,1) (18,1) (3L,1)
(0,0) (21,1) (33,1) (38,1) (59,1)
(0,1) (16,1) (49,1) (52,1) (58,1)
(0,0] (0,0) (41,0) (23,1) (58,1)
[0,1]  (0,0) (11,0)  (8,1) (39,1)
[0,2) (0,0) (7,0) (3,1) (44,1)
(0,3 (0,0) (27.0) (13.1) (14,1)

Lemma 2.16 (with m =11, a =7, b = 1) and Lemma 2.6 yield 529. D

Theorem 3.2 Letl v be a positive integer such that v = 37 mod 100; then
v € B(5, 97).

Proof: By Lemma 2.10 we have 37 € B(5, 9*). The case v = 137 can
be constructed explicitly as follows. The points are the 128 points i, the
eight points (7), and a point X at infinity, where i is an integer modulo
128, and j is an integer modulo 8. Let ¢ map i into i + 1, (j) into (5 + 1),
and X into itself. Let G be the group generated by ¢. Our blocks are

X (0 (1) @ G @ ¢6) 6 ™M

and the 928 distinct blocks obtained by applying the elements of G to the
following eight blocks:

X 0 32 64 96 (period 32)
(©) 0 4 17 18
(0) 6 67 69 103
16 40 49 68
42 69 72 80
20 66 73 123
26 41 47 84
23 77 106 116

oo oOooOo

Then Lemma 2.4 with 4t + 1 = 37 gives all values v = 37 mod 100
except 137, 237, 637.
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Lemma 2.7 with » = 3, a = 6 requires a TD (5, 46) — TD (5, 6), which
exists by Prop. 2.2 with m = 4, ¢ = 11, w = 2. This gives 237. Lemma
2.18 with m = 29 and ¢t = 13 provides 637. Note that the case v = 57
required here is discussed in Theorem 3.3 and proved in [12]. O

Theorem 8.3 Let v be a positive integer such that v = 57 mod 100; then
v € B(5, 97).

Proof: The case v = 57 is a special case from [12]. The case v = 157
may be constructed as follows. The points are the 148 points h, the four
points (i), the four points [j], and a point X at infinity, where h is an
integer modulo 148, and i and j are integers modulo four. Let o map h
into h + 1, (¢) into (i + 1), [5] into [j + 1], and X into itself. Let G be the
group generated by o. Our blocks are

X (0) (1) (2 ) [0 [1) (2 (3]

and the 1221 distinct blocks obtained by applying the elements of G to the
following nine blocks:

X 0 37 74 111 (period 37)
(0 o 7 58 137
0] o 1 23 114
27 42 44 142
30 38 116 119
14 54 66 109
76 101 122 132
28 64 73 T1°
41 61 124 129

OO OO OO

Lemma 2.5 with 42 + 1 = 37 gives us all values of v = 57 mod 100
except 557. Lemma 2.4 with 4¢ + 1 = 57 provides 5§57. D

Theorem 8.4 Let v be a positive integer such that v = 77 mod 100; then
v € B(5, 97).

Proof: The case v = 77 appears below. The points are nine special
points, A, B, C, D, E, F, G, H, I, and the 68 ordered pairs (¢, j) where i is
an integer modulo 17 and j is an integer modulo 4. The block of size 9 is
ABCDEFGHI and the blocks of size 5 are:
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(0,00 (1,00 (3,0) (7,0) (0,1) mod (17,)
(00) (500 (0,2) (1,2) (3.2) mod (17,)
(0,00 (80) (03) (1,3) (11,3) mod (17,-)
(000 (1,1) (21) (41) (81) mod (17,-)
(00) (22) (7.2) (53) (14,3) mod (17,-)
(1) (51) (22) (62) (13,2) mod (17,)
(0,1) (81) (53) (7,3) (10,3) mod (17,)

(0.1) (7.2) (152) (43) (83) mod (17,-)
A (0,00 (31) (82) (12,3) mod (17,-)
B (00) (51) (92) (83) mod(17,)
C (0,00 (61) (16,2) (4,3) mod (17,-)
D (00) (7,0) (10,2) (2,3) mod (17,)
E (0,0) (9»1) (4s2) (15:3) mod (17:')
F (000 (11,1) (1,2) (7,3) mod (17,)
G (050) (1211) (6,2) (6’3) mod (171')
H (0,00 (13,1) (52) (13,3) mod (17,)
I (0,0) (151) (14,2) (16,3) mod (17,)

Then 77 with Lemma 2.4 gives all values of v = 77 mod 100 except 177,
277, 377, and 677. These appear in the following table.

v | Authority Parameters
177 | Lemma 2.8 | 4u+9 =37
277 | Lemma 2.13 | » = 57, TD (5, 55) — TD (5, 7)
Prop. 2.1: m=4,t=12,s=7
377 | Lemma 2.5 | 4t 41 = 57
677 | Lemma 2.5 | 4t + 1= 57

Theorem 3.5 Let v be a positive integer such that v = 49 mod 100. If
v # 49, then v € B(5, 97).

Proof: Lemma 2.9 with u = 37 provides 149. Lemma 2.4 with 4 + 1 =
149 gives v = 49 mod 100 for all values of v > 949. The remaining values
are provided by the following table.

v | Authority Parameters
249 | Lemma 2.9 | u =57
349 | Lemma 2.11 | 20m + 5=85, s=2
H 449 | Lemma 2.16 [ m=11,a=0,b=2
549 | Lemma 2.16 { m=11,a=9,5=0
649 | Lemma 2.7 | n =9, a =13, TD (5, 125) — TD (5, 13)
Prop. 2.1: m =17, 1t =16, s = 13.
749 | Lemma 2.16 | m=16,a=9, =0
849 | Lemma 2.9 | u= 177
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Theorem 8.8 Let v be a positive integer such that v = 69 mod 100; then
v € B(5, 97).

Proof: The case v = 69 can be constructed as follows. The points are
nine special points, A, B, C, D, E, F, G, H, I, and the 60 ordered pairs
(¢, 7) where i is an integer modulo 15 and j is an integer modulo 4. The
block of size nine is ABCDEFGHI and the blocks of size 5 are the six blocks
(,3) (E+3,5) (+6,5) (i+9,7)
where i = 0,1,2 and j = 2, 3; and the 225 blocks:

(0,0) (1,0)
(0,0) (2,0)
(0,0) (6,0)
(0,1) (1,1)
(0,1) (3,1)
(0,2) (2,2)
(0,0)
(0,0)
(0,0)
(0,0)
(0,0)
(0,0)
(0,0)
(0,0)
(0,0)

—~ZOmMEUDQW>

(4,0)
(7,0)
(0,3)
(6,1)
(1,.1)
(7.2)
(3,1)
(4,1)
(5,1)
(6,1)
(7.1)
(8,1)
(9,1)
(10,1)
(12,1)

(0,2)
(0,2)
(2,3)
(0,2)
(7.3)
(7,3)
(6,2)
(2,2)
(7,2)
(12,2)
(11,2)
(5:2)
(10,2)
(3.2)
(4,2)

(2,1)
(1,2)
(10,3)
(11,2)
(8,3)
(11,3)
(12,3)
(1,3)
(8,3)
(5,3)
(13,3)
(3,3)
(7,3)
(6,3)
(14,3)

(i+12,5)

mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15,-)
mod (15 -)
mod (15,-)
mod (15 -)
mod (15,-)
mod (15,-)
mod (15,-)

Lemma 2.4 with 4t + 1 = 69 yields all v = 69 mod 100 except 169, 269,

369, 669. The remaining values appear in the table:

Prop. 2.2: m=16,t =8, w=2.

v | Authority Parameters
169 | Lemma 2.19 [ =1
269 | Lemma 2.11 | 20m + 5 = 65, s = 2
369 | Lemma 2.12 | v = 96
669 | Lemma 2.7 [ n=29, a = 18, TD (5, 130) — TD (5, 18),

Theorem 3.7 Let v be a positive integer such that v = 97 mod 100; then
v € B(5, 97).

Proof: The case v = 97 can be constructed as follows. The point set is

V = Zgg U{z;,z;,..
and the 462 blocks of size five are:
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00 0 22 44 66 mod 88
k 1+k 34+k T+k Tkmods (k € Zgs)
k 54k 254+k 394k Z(k+3)mods (k € zsg)
0

8 24 37 65 mod 88
0 9 19 55 67 mod 88
0 11 26 43 61 mod 88

The case v = 197 can be constructed as follows. Brouwer has shown in
{4] that there exists a 5~GDD of type 8%. By deleting a block of size 5, a
5-1GDD of type (8,1)%(8,0)! is created. By applying Theorem 2.2 using
a GDD of type 4° with blocks of size 5, a 5~-IGDD of type (32,4)%(32,0)!
is created. Now let W be a set of 5 points not contained in this 5-IGDD,
and let G; denote the set of groups containing holes H; of size 4, for i =
1,2,...,5, and let Gg denote the remaining block. Now fori = 1,2,...,5,
define a PBD ({5, 9"}, 37) on the set G; UW in such a way that the block
of size 9 is the set H; UW. Let C; denote the collection of blocks of size 5
which occur in this design, and adjoin the blocks of C;, i = 1,2,...,5, to
the blocks of the 5-IGDD to form a set S of blocks. Now define a copy of a
BIBD (25, 5, 1) on the set U ;=1 HiUW in such a way that the set W occurs
as a block. Delete this block from the block set of the BIBD to obtain a
set of blocks C, and adjoin these blocks to the collection S to obtain T. To
the blocks of T, adjoin the blocks of a PBD ({5, 9"}, 37) defined on the
set G¢ UW. The result is a PBD ({5, 9"}, 197). O

Lemma 2.4 with 4¢ + 1 = 97 provides all v = 97 mod 100, except v =
297, 397, 497, and 697. Lemma 2.5 with 41 + 1 = 77 supplies v = 497 and
v = 697.

The other values are given in the following table.

v | Authority “Parameters
297 | Lemma 2.8 | 4u+9 = 57
397 | Lemma 2.11 | 20m + 5 = 85, s = 14

Theorem 3.8 Let v be a positive integer such that v = 17 mod 100. If
v # 17, then v € B(5, 9°), and if v = 17, then v ¢ B(5, 97).

Proof: The case v = 17 ¢ B(5, 9*) by Lemma 2.3. The case v = 117
can be constructed explicitly. The points are the 108 points k, the four
points (i), the four points [j], and a point X at infinity, where k is an
integer modulo 108, and i and j are integers modulo 4. Let o map & into
h +1, (i) into (i + 1), [j] into [j + 1], and X into itself. Let G be the group
generated by . Our blocks are
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X (0 (1) 2 @ [ [ 2 6

and the 675 distinct blocks obtained by applying the elements of G to the
following 7 blocks:

X 0 27 54 81 (period 27)
0 o0 1 15 74

[0 o 13 38 99

0 12 20 36 76

0 6 48 77 103

0 4 50 67 69

0 18 21 28 &1

Lemma 2.5 with 42 + 1 = 97 yields v = 17mod 100 for all values
v > 717. The other values are provided in the following table.

v | Authority Parameters
217 | Lemma 2.17 | m=1,1=9
317 | Lemma 2.7 | n =4, a = 10, TD (5, 62) — TD (5, 10),
Prop. 2.1: m =4, t =13, s = 10.
417 | Lemma 2.7 [ n=6, a=3, TD (5, 79) — TD (5, 3),
Prop. 2.1: m=4,1t=19, s =3.
517 | Lemma 2.17 | m=4,1=9
617 | Lemma 2.7 | n=9, a=5, TD (5, 117) — TD (5, 5),
Prop.2.1: m=14,t =28, s = 5.

4 v=13mod 20

Theorem 4.1 Let v be a positive integer such that v = 53 mod 100; then
v € B(5, 137).

Proof: The case v = 53 follows from Lemma 2.10. Lemma 2.4 with
4t +1 = 53 provides all v = 53 mod 100 except 153, 253, 653. Lemma 2.15
with m+ 8 = 37 gives 153. Since [6] provides a TD (6, 10)— TD (6, 2) and
a GDD of type 8% with blocks of size 5, lemma 2.8 with 4u 4 13 = 53 gives
253. Lemma 2.7 with n = 9, a = 14, requires a TD (5, 126) — TD (5, 14)
which exists by Prop. 2.2 with m = 14, 1 = 9, w = 0. This gives 653. Note
that the case v = 93 required here is discussed in Theorem 4.5 and proved
in [12]. O

Theorem 4.2 Let v be a positive integer such that v = 13 mod 100; then
v € B(5, 137).
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Proof: The case v = 13 is trivial. Lemma 2.4 with 42 + 1 = 13 gives all
v = 13 mod 100 except 213 and 613. Lemma 2.10 with 4m + 1 = 53 gives
213. Lemma 2.8 with 4u 4 13 = 113 provides 613. O

Theorem 4.3 Let v be a positive integer such that v = 33 mod 100. If
v # 33, then v € B(5, 137), and if v =33, then v ¢ B(5, 9%).

Proof: The case v = 33 is not possible by Lemma 2.3. The case v = 133
may be constructed as follows. The points are the 120 points g, the four
points (k), the four points (3], the four points {;} and a point X at infinity,
where g is an integer modulo 120, and A, %, and j are integers modulo 4.
Let o map g into g + 1, (h) into (h + 1), [i] into [i + 1], {j} into {5 + 1},
and X into itself. Let G be the group generated by o. Our blocks are

X (0 (1) (2 ) [0 (1 2 8] {0} {1} {2} {3}

and the 870 distinct blocks obtained by applying the elements of G to the
following eight blocks:

0 30 60 90 (period 30 )
0 0 1 26 75
0 11 50 73
0 33 42 99
24 76 104 108
10 17 48 117
2 8 67 85
15 29 34 56

Lemma 2.5 with 42 + 1 = 13 yields all v = 33 mod 100 except 533.
Lemma 2.7 with n = 7, a = 16 requires a TD (5, 104) — TD (5, 16) which
exists by Prop. 2.3 with mo =0, m; =2, ko= 3, k; = 8 (Note that a TD
(5, 10) — TD (5, 2) exists by [6]). This gives 533. D

Theorem 4.4 If v is a positive integer suck that v = 73 mod 100, then
v € B(5, 13%).

Proof: Lemma 2.5 with 53 gives all ¥ = 73 mod 100 except 73, 173,
273, 573. The case v = 73 has been done [2). Lemma 2.19 gives 173.
Lemma 2.11 with 20m + 5 = 65, s = 3 gives 273. Lemma 2.14 with
v = 121, w = 25, a = 8 requires that there exist a BIBD (121, 5, 1) with
a flat of order 25 (which does exist and may be constructed by adjoining a
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point to each group of the TD (5, 24) and replacing the groups of size 25
by copies of a BIBD (25, 5, 1)) and that there exists a TD (5, 113) — TD
(5, 17) (which does exist by Prop. 2.1 with m = 16, t = 7, s = 1). This
gives 573. Note that the case v = 93 which is required here is discussed in
Theorem 4.5 and proved in [12]. O

Theorem 4.5 Let v be a positive integer such that v = 93 mod 100 then
v € B(5, 13*).

Proof: The case v = 93 is a special case constructed in [12]. Lemma 2.4
with 4t 4+ 1 = 93 gives all v = 93 mod 100 except 193, 293, 393, 493, 693.
Lemma 2.5 with 4t + 1 = 73 yields 493 and 693.

The other cases follow in the table.

v | Authority Parameters
193 | Lemma 2.17 | m=1,t=3
293 | Lemma 2.12 | v =176
393 | Lemma 2.11 | 20m + 5 = 85, s = 13

5 Conclusion

Every v = 9, 13, 17,mod 20 belongs to at least one of B (5, 9°) or B
(5, 13") except 17, 29, 33, and possibly 49.

References
(1) Abel, R.J.R. “Four Mutually Orthogonal Latin Squares of Orders 28
and 52.” J. Comb. Th. A, 58 (1991), 306-309.

[2] Assaf, A.M., W.H. Mills, and R.C. Mullin. “On Tricovers of Pairs by
Quintuples: v = 1(mod4).” Ars Comb., 33 (1992), 179-191.

[3) Beth, T., D. Jungnickel and H. Lenz. Design Theory. Bibliographis-
ches Institut, Zurich, 1985.

[4] Brouwer, A.E. Mutually Orthogonal Latin Squares. Math. Centr. Re-
port ZN 81, August 1978.

(5] Brouwer, A.E. and G.H.J. van Rees. “More Mutually Orthogonal
Latin Squares.” Discrete Math. 39 (1982), 263-281.

24



[6] Brouwer, A.E. “Four MOLS of order 10 with a hole of order 2.” J.
Statist. Planning and Inference 10 (1984), 203-205.

[7] Doyen, J. and R.M. Wilson. “Embeddings of Steiner Triple Systems.”
Discrete Math. 5 (1973), 229-239.

(8] Hanani, H., D. K. Ray—Chaudhuri, and R. M. Wilson. “On Resolvable
Designs.” Discrete Math. 3 (1972), 343-357.

[9] Hanani, H. “Balanced Incomplete Block Designs and Related De-
signs.” Discrete Math. 11 (1975), 255-369.

[10] Horton, J.D. “Sub-Latin squares and Incomplete Orthogonal Arrays.”
J. Comb. Th. A. 16 (1974) 23-33.

[11] Huang, C., E. Mendelsohn, and A. Rosa. “On Partially resolvable
t-partitions.” Annals of Discrete Math. 12 (1982), 169-183.

[12] Lamken, E. R., W. H. Mills, and R. M. Wilson. “Four Pairwise Bal-
anced Designs.” Designs, Codes, and Cryptography. 1 (1991), 63-68.

.[13] Mathon, Rudolf and Alexander Rosa. “Tables of Parameters of
BIBD’s with r < 41 including Existence, Enumeration, and Resolv-
ability Results. An Update.” Ars Combinatoria. 30 (1990), 65-96.

[14] Mullin, R. C. “A Generalization of the Singular Direct Product with
Applications to Skew Room Squares.” J. Comb. Th. A. 29 (1980),
306-318.

(15] Mullin, R. C., P. J. Schellenberg, S. A. Vanstone, and W. D. Wallis.
“On the Existence of Frames.” Discrete Math. 37 (1981), 79-104.

[16] Mullin, R.C. and D.R. Stinson. “Pairwise Balanced Designs with
Block Sizes 6t + 1.” Graphs and Combinatorics. 3 (1987), 365-377.

[17] Mullin, R.C. “On the Determination of the Covering Numbers C (2,
5, v).” J. of Comb. Math. and Comb. Comp. 4 (1988), 123-132.

(18] Mullin, R.C. “Finite Bases for Some PBD-Closed Sets.” Discrete
Math. 77 (1989), 217-236.

[19] Rees, Rolf, and D.R. Stinson. “On the Existence of Incomplete De-
signs of Block Size Four Having One Hole.” Utilitas Math. 35 (1989),
119-152.

[20] Rees, Rolf, and D.R. Stinson. “On Combinatorial Designs with Sub-
designs.” Discrete Math. 77 (1989), 259-279.

25



[21] Roth, R. and M. Peters. “Four Pairwise Orthogonal Latin Squares of
Order 24.” J. Comb. Th. A. 44 (1987), 152-155.

[22] Todorov, D.T. “Three Mutually Orthogonal Latin Squares of Order
14.” Ars Comb. 20 (1985), 45-48.

[23] Todorov, D.T. “Four Mutually Orthogonal Latin Squares of Order
20.” Ars Comb. 27 (1989), 63-65.

[24] Todorov, D.T. Private Communication.

[25] Wei, R. and L. Zhu. “Embeddings of Steiner Systems S(2, 4, v).”
Annals of Discrete Math. 34 (1987), 465-470.

[26) Wei, R. and L. Zhu. “Embeddings of S(2, 4, v).” Europ. J. Comb. 10
(1989) 201-206. ‘

[27] Wilson, R.M. “An Existence Theory For Pairwise Balanced Designs,
I: Composition Theorems and Morphisms.” J. Comb. Th. A. 13
(1972), 220-245.

(28] Wilson, R.M. “An Existence Theory For Pairwise Balanced Designs,
II: The Structure of PBD-Closed Sets and the Existence Conjectures.”
J. Comb. Th. A. 13 (1972), 246-273.

[29] Wilson, R.M. “Constructions and Uses of Pairwise Balanced De-
signs.” Math. Cent. Tracts. 55 (1974), 18-41.

[30) Wilson, R.M. “An Existence Theory for Pairwise Balanced Designs,
III: Proof of the Existence Conjectures.” J. Comb. Th. A. 18 (1975),
71-79.

26



