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Abstract. A finite group is called P,-sequenceable if its nonidentity elements can be
listed T3, 2, ... , T¢ 5O that the product ZiZis1 - -~ Zi+n-1 Can be rewrilten in at least
one nontrivial way forall i. Itis shown that Sy, Ay, D, are P3-sequenceable, that every
finite simple group is P4 -sequenceable, and that every finite group is Ps -sequenceable.
It is conjectured that every finite group is P; -sequenceable.

1. Introduction

Miller and Friedlander [6] have defined a finite group G to be Z-sequenceable if
there exists a sequencing {z;} of the nonidentity elements of the group in which
each element appears once and only once, and z;z;+1 = ;1 7; for all 5. A group
is called strongly Z-sequenceable if it has a Z-sequencing (z1,22,..., Tp) Such
that z,,7; = T1Zm. If G is an abelian group, then every sequencing of the
nonidentity elements of G is a strong Z-scquencing. However, a group need
not be abelian in order to be Z-sequenceable; Miller and Friedlander demon-
strate that if |G/Z(G)| — 1 < |Z(G)), then G is Z-sequenceable, and that if
|G/Z(G)| < |1Z(G)|, then G is strongly Z-sequenceable. It is shown, moreover,
that there exist groups which are not Z-sequenceable, and that in particular, the di-
hedral groups D, (n > 3), the symmetric groups S, (n > 3), and the alternating
groups A, (n > 4) are not Z-sequenceable.

In this paper, we generalize these results by considering rewritability inthe place
of commutativity. A group G is said to be n-rewritable (1] if, for each n-clement
subset {z1, ... ,Z} of G, there are distinct permutations o, T € S, such that

ZTa(1)To(2) ** * To(n) = Tr(1) Tr(2) = Tr(n) -

If one of o, T can always be chosen to be the identity, then G is said to be totally
n-rewritable. Total n-rewritability is denoted by P, and this is the property which
will be termed “rewritability” in this paper. Considerable research ([1], [2], [3],
[5]) has been done recently on rewritability and total rewritability; one important
result is that a group G is totally 3-rewritable if and only if |G'] < 2.
Rewriteability is a generalization of commutativity: a group has property P,
if and only if the group is abelian. In light of this, a natural generalization of Z-
sequenceability arises as follows: define a finite group to be Py-sequenceable if
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there exists a sequencing {z;} of the nonidentity elements of the group in which
each element appears once and only once, and forall i,1 < 1 < |G| — n+
1, the product ;T;s1 - - - Zi+n-1 Can be rewritten in at least one nontrivial way
(Z-sequenceability is equivalent to P, -sequenceability.). A group will be called
strongly P,-sequenceable if the group has a P,-sequencing {z;} such that the
products Trm—nt2 ** * TmT1, Tm—n+3 * = T1T2,..., EmT1 - - - Tn-1 areall rewritable
in at least one nontrivial way. Intuitively, this means that the sequencing can be
thought of as a circular listing of the elements, so that z,, is followed by z,, z3, elc.
In this paper, we consider the following questions concerning P,-sequenceability:

1. Is there an integer n such that every finite group is P,-sequenceable?
2. If so, what is the smallest such #»? (Any group which is P,-sequenceable is
also P, -sequenceable, P,,2 -sequenceable, etc.)

Our main results are that every finite group is Ps-sequenceable, that every finite
simple group is P4-sequenceable, and that S,,, A,, and D, are P;-sequenceable
for all n. We conjecture that every finite group is in fact P; -sequenceable.

2. P3-Sequencing Results

Lemma 1. If the nonidentity elements of a finite group G can be divided into
disjoint sets, each containing two or more elements, so that all the elements in
each set commute with one another, then the group is strongly Ps -sequenceable.

Proof: Suppose that the elements of G have been partitioned into sets as above.
Then simply list the elements of one set, followed by the elements of the second
set, etc. For any three successive elements z;, Zis1,Zi+2, Where 1 <1 < n— 2,
either z;, z; are in the same set and hence commute, or .1, Zi2 are in the
same set and hence commute. The product z;z;+1%;+2 can therefore be rewritten
aS Ti+] TiTi+2 OF @S T;Ti+2 Ti+1. The same is true for the triples z,,_1, Zs, 21 and
Zm, T1, T2, SO this sequence is a strong P; -sequencing.

Proposition 1. If |Z(G)| > 1, then G is strongly Ps -sequenceable.

Proof: Let the sets of Lemma 1 be the cosets of Z(G). The elements of any coset
of Z(G) commute with one another. Since |Z(G)| > 1, these sets have order
at least 2, possibly excepting Z(G) itself, since the identity is excluded. But in
this case, since the central element commutes with every element of the group, it
may be placed in any other set; commutativity will be preserved in the set. The
hypotheses of Lemma 1 are thus satisfied, proving the proposition.

Proposition 2. If |G| is odd, then G is strongly P; -sequenceable.

Proof: Since |G| is odd, G contains no involutions; i.e. each element g € G has
an inverse g~! distinct from g. Divide the nonidentity elements of G into sets
of order 2, each consisting of an element and its inverse. These sets satisfy the
hypotheses of Lemma 1; hence, G is strongly P; -sequenceable.
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This proposition demonstrates that the question of P3 -sequenceability of a group
is largely concerned with sequencing the involutions. If the involutions in a group
can be partitioned into commuting sets as in Lemma 1, the group will be P;-
sequenceable regardless of the number of involutions. We now use this strategy
to sequence the symmetric and alternating groups:

Theorem 1. The symmetric group S, is strongly P, -sequenceable for all posi-
tive integers n.

Proof: Partition the nonidentity, non-involutions into sets consisting of inverse
pairs. Then consider the involutions: these are all products of disjoint 2-cycles.
First consider those involutions which consist of a single 2-cycle. Choose any
one of these and denote it by z. Then choose an involution y which is a product
of two or more disjoint 2-cycles, one of which is the 2-cycle z. (This is possible
when n > 4; note that S3 = Ds, so S3 can be sequenced as in the dihedral case
below.) Then from the set of involutions consisting of a single 2-cycle, take all
those 2-cycles which are factors of y. All of these 2-cycles, together with z and
y, form a commuting set as in Lemma 1.

Now, if any involutions consisting of a single 2-cycle remain, repeat this pro-
cess, at each step choosing one such involution z, and then choosing a y as above.
Form a commuting set from z, y, and any single 2-cycle factors of y which have
not yet been assigned to a set. Since all single 2-cycle factors of the involutions
y are accounted for at each step, there will always be sufficient such y to exhaust
the single 2-cycles.

To illustrate this process, consider S4. There are nine involutions: (1,2),
(1,3), (1,4), (2,3), (2,9, (3,4, (1,2)(3,4), (1,3)(2,4), (1,4(2,3).
Begin by choosing, for example, (1,2). The involution (1,2)(3,4) contains
this 2-cycle, so let the elements (1,2), (1,2)(3,4), and (3,4) (the other factor
of (1,2)(3,4)) form a commuting set. From the remaining 2-cycles, choose, for
example, (1,3). This is a factor of (1,3)(2,4),solet(1,3), (1,3)(2,4),and
(2,4) form a commuting sct. Finally, let the involutions (1,4), (1,4)(2,3),
and (2,3) form a commuting set.

In this example, when we had exhausted all the single 2-cycles, we found that
we had also exhausted the other involutions, but this will not be the case in general.
Now consider any involutions which are products of two or more disjoint 2-cycles
and have not yet been assigned to a set. Any such involution (a;, 1) (a2, b2)
...(Gm, bm) is the mth power of the 2m-cycle (a1, a2,... ,8m,b1,... ,bm) and
so commutes with this element and its inverse. Insert each such remaining invo-
lution into the set containing the corresponding 2 m-cycle and its inverse.

The nonidentity elements of S, have now been partitioned as in Lemma 1, so
simply listing these scts successively gives a strong P; -sequencing for S,.

Theorem 2. The alternating group A, is strongly Ps -sequenceable for all n.
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Proof: The procedure is similar to that for the symmetric groups. Divide the non-
identity, non-involutions into sets each consisting of an element and its inverse,
and then consider the involutions.

In the alternating groups, involutions are products of an even number of dis-
joint 2-cycles. First consider those involutions which are products of four or more
disjoint 2-cycles. For each such product of m disjoint 2-cycles (m even), con-
struct the single 2 m-cycle y as in the symmetric case. The element y is not in the
alternating group, but y? is. Also, [(y)| > 8. so |(y?)| > 4; thus y? is not an
involution. Take each such involution z and add it to the set containing y? and its
inverse.

Finally, consider those involutions which are products of two disjoint 2-cycles.
These may be partitioned into sets of order 3, for given any such involution
(a,b)(c,d), the two involutions (a,c)(b,d) and (a,d)(b,c) commute with it
and with each other. The nonidentity elements of A, have now been partitioned
as in Lemma 1, so listing the sets successively gives a strong P -sequencing for
A,.

We now move on to the question of P3-sequencing arbitrary groups.

Lemma 2. If a finite group G contains a self-centralizing involution (i.e. an
involution = whose centralizer is the subgroup generated by z), then G has an
abelian subgroup H of odd order which has index 2 in G, and G has a single
conjugacy class of self-centralizing involutions, namely the coset Hz.

Proof: Let K = (z) be the self-centralizing subgroup of order 2. We claim that
any coset Ky has at most one element of order 2. To see this, suppose that

y* = 1= (zy)?

Then
1

ysy=ylzy=z' =1z
Thus y centralizes z, and Ky = K, which clearly has only one involution. We
have shown that G has at most |G|/2 involutions, but the conjugates of z produce
exactly |G|/2 involutions.

The remaining elements pair off into {z, z~! }, except for the identity, so |G|/2
is odd; say |G| = 2m, m odd. It is well-known that G must contain a normal
subgroup H of order m. (Under the regular representation G — Sam, T must
map to an odd permutation. Consider G N Az n; let H be this subgroup.)

If y is a nontrivial element of H, then z~'yz # y, since y can not centralize z.
Thus the map T : y — z~'yz is a fixed-point-frec automorphism of H of order
2. Consider the map

y — vy~ T(y)
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defined on H. This map is one-to-one, and since H is finite, it is onto. Now
T(y~'T(v)) = T(y Dy = (y~' T(s) ™
andso T(z) =z~ ! forallz € H. Thus forz,y € H,
zy=T(z)T(y ) =Ty ) ="y )" =z
and H is abelian.

Theorem 3. If a finite group G contains a self-centralizing involution, then G is
strongly P, -sequenceable.

Proof: By Lemma 2, G has an abelian subgroup H of odd order of index 2 in G,
and a single conjugacy class of self-centralizing involutions, the coset Hz. We
construct a strong P; -sequencing for these groups as follows: let r = |(H)|. First
list the » — 1 nonidentity elements of H (denote the identity by ho), followed by
the r elements of Hz:

hi,ha,... ,he1,hoz, Z,... ,hr1Z

That this is a strong P;-sequencing is seen as follows:

1. Forl < i < v — 3, the product h;h;.1 h;y2 is rewritable in any nontrivial
way, because these elements commute,

2. The product (h,_2)(hy_1) (hox) is rewritable as (h,.;) (h,—2) (hoz), be-
cause h,_» and h,_; commute.

3. The product (h,_1)(hoz)(h1x) is rewritable as ( hox) (h1z)(h,-1), be-
cause (hox)(h1z) € H and hence commutes with h,_;.

4. For0 < 1< r -3, the product (h;z) (hi+12) (hss22) is an involution and
hence equal to its inverse, Since all three of its factors are also involutions,
it can be rewritten as (b2 1) (hiv1 2) (hiz).

5. The product (h,_2z)(h,—12)(h1) is rewritable as (k1) (hy—22)(h,—12),
because the product (h,_2z) (h,—1Z) € H and hence commutes with h;.

6. The product ( hy_y ) (h1) (h2) is rewritable as ( h,—y ) (h2) (h1), because
hy, ha commute.

Corollary. The dihedral group D,, is strongly P; -sequenceable for all n.

Proof: If nis even, then |Z( D,)| = 2, and Proposition 1 applies; if nis odd, then
every involution in D,, is self-centralizing, and Theorem 3 applies.

Theorem 4. If for every involution = € G, there exists an element y, with
Wyz)| > 2, such that (y:)* = z for some k > 1, then G is strongly P -
sequenceable. :

In particular, if there is no involution z € G such that C(z) is a 2-group, then
G is strongly P;-sequenceable, for if a € C(z) has order p with p odd, then
yr = az € C(z) satisfies (y;)?P = .
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Proof: For each involution z € G, choose a corresponding y.. Let {z,yz,y;'}
form a commuting set. The y,’s are distinct, for there is at most one involution
in (yz). Divide the remaining elements into inverse pairs; by Lemma 1, G is
strongly P3-sequenceable.

In light of these results, we conjecture the following:
Conjecture. Every finite group is strongly P -sequenceable.

In order to prove the conjecture, it remains to be shown that groups containing
involutions whose centralizers are 2-groups can be sequenced. It would be suffi-
cient to show that the union of these centralizers can be sequenced, and then the
remaining elements can be sequenced as in Theorem 4. Note that each of these
centralizers, having prime power order, has nontrivial center and hence can be
individually sequenced.

3. Other Sequencing Results

While we have not yet been able to show that all finite groups are P -sequenceable,
we can demonstrate some slightly weaker properties. One important case is that of
the simple groups. We have already demonstrated one large class of simple groups,
namely the alternating groups, which are P;-sequenceable. We now show that all
finite simple groups are P4 -sequenceable; this is a corollary of the following:

Theorem 5. Every finite group G with less than |G|/3 involutions is strongly
P, -sequenceable.

Proof: Let § = {ti,%2,...,ts} be the set of all mvoluuons of G. The other
elements can be divided mlo at least n inverse pairs {g1,97"'},... ,{gn,95'}-
List the elements as follows:

01,070,41,92,95" 82, 1 0n 05 s tns

followed by any remaining inverse pairs. Any four successive elements in the
sequence include an adjacent inverse pair of elements which commute, so any
product of four consecutive elements is rewritable by interchanging this pair. This
is a strong P4 -sequencing of G.

Corollary. Every finite simple group G is strongly P, -sequenceable.

Proof: We show that the number of involutions in G is less than |G|/3. Let nbe
the number of involutions in G, and let k be the number of conjugacy classes in
G. Itis proved in [7] (pp. 110-112) that

k-1

n = alG: C(z)),

i=0
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where z; is an element of the ith conjugacy class, and ¢; is the number of ordered
pairs of involutions (u, v) such that uv = =z;. It is also shown that

¢ < |C(z)]

for all 1. Then we have that

k-1
? < S ICEIIE : Oz,

i=0
Hence
k-1
w* <Y |Gl = k|G].

=0

Since G is simple, the number of conjugacy classes k < |G]/12 [4]; hence, we
have
2 < |GI*/12,

and

n < |G|/V12 < |GI/3.

Even in an arbitrary group, we can find an upper bound on the number of non-
commuting involutions:

Lemma 3. If 3 group G does not contain a self-centralizing involution, then the
number of involutions in G which cannot be divided into commuting sels is less
than |G|/2.

Proof: We show that any involutions in excess of |G|/2 — 1 can be inserted into
commuting sets as follows: partition the nonidentity, non-involutions into inverse
pairs as in the proof of Proposition 2. Suppose there are exactly |G|/2 involutions
in G, and let z be any involution. By our hypothesis, there is another element in
G which commutes with z. If there is another involution y which commutes with
z, then let {z, y} form a commuting set. Otherwise, there is a non-involution z
which commutes with z; put z in the set containing z and 2~!.

Now suppose there are more than |G|/2 involutions in G. Two involutions
commute if and only if their product is an involution. Let S be the set of involu-
tions in G, and let ¢ be any involution in G. Since |S| > |G|/2, the intersection
SNtS is nonempty; i.e. there exists an involution u # t such that tu is an involu-
tion, and hence tu = ut. If |G|/2 is odd, then let {u, ¢, ut} form a commuting set.
If|G|/2 is even, then let {u, t} form a commuting set. Repeat this process, letting
S be the set of involutions which have not yet been assigned to a set. However,
after the first step, put only two involutions in each set, regardless of the parity of
|G|/2 . (The initial step was constructed in this way to ensure strict inequality.) It
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is easily seen that this process may be continued until the number of involutions
remaining is less than |G|/2.

Using this result, we can now answer in the affirmative our question as to the
existence of an integer n such that every finite group is P,-sequenceable:

Theorem 6. Every finite group is Ps -sequenceable.

Proof: Ifa group G contains a self-centralizing involution, then G is P; -sequence-
able and so is Ps-sequenceable. Suppose that G does not contain a self-centralizing
involution. By Lemma 3, there are less than |G|/2 nonidentity elements of the
group which cannot be placed in commuting sets (and at most one of these sels is
not of order 2, as in the above lemma). Denote these elements by 2, ... , Tr. De-
note the sets of commuting elements by (r1,31),...,(7s,8,) (possibly the last
setis (7a, 8q,1a)). Since m < |G|/2, we have that 2n > m. Then the sequence

Z1,%2,7T1,81,%3,24,72,82,+« yTm,

followed by the remaining commuting sets (we have shown that at least one such
setremains) is a strong Ps -sequencing of G: any five consecutive elements contain
an adjacent commuting pair, and their product may be rewritten by exchanging
these two elements.
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