On Affine (μ_1, \ldots, μ_t) -resolvable (r, λ) -designs

Sanpei Kageyama Department of Mathematics Hiroshima University

Shinonome, Hiroshima 734, Japan

D.V.S. Sastry Bombay 400025, India

Abstract. Affine (μ_1, \dots, μ_t) -resolvable (τ, λ) -designs are introduced. Constructions of such designs are presented.

1. Introduction.

An (r, λ) -design is a binary block design with parameters v, b, r, k_j (j = 1, ..., b) such that every pair of treatments occurs exactly in λ blocks. In particular, when $k_1 = ... = k_b$, the (r, λ) -design is a balanced incomplete block (BIB) design.

A block design with parameters v, b, r, k_j $(j=1, \ldots, b)$ is said to be (μ_1, \ldots, μ_t) resolvable if the blocks can be separated into $t(\geq 2)$ sets of m_1, \ldots, m_t (≥ 1) blocks such that the set consisting of m_i blocks contains every treatment μ_i (≥ 1) times $(i=1,\ldots,t)$. Here $r=\sum_{i=1}^t \mu_i$. When $\mu_1=\ldots=\mu_t$ $(=\mu, \text{say})$, the design is called μ -resolvable. In particular, when $\mu=1$, it is called simply resolvable.

In order to introduce the affine (μ_1, \ldots, μ_t) -resolvability, attention will be restricted to only those (μ_1, \ldots, μ_t) -resolvable block designs which have a constant block size with each set. The constant block size within the ℓ th set may be denoted by k_ℓ^* for $\ell = 1, \ldots, t$. For other cases it is hard to introduce such property (see Mukerjee and Kageyama [2]).

A (μ_1, \ldots, μ_t) -resolvable block design with a constant block size in each set is said to be affine (μ_1, \ldots, μ_t) -resolvable if:

- (i) for $\ell = 1, ..., t$, every two distinct blocks from the ℓ th set intersect in the same number, say $q_{\ell\ell}$, of treatments;
- (ii) for $\ell \neq \ell' = 1, \ldots, t$, every block from the ℓ th set intersects every block of the ℓ' th set in the same number, say $q_{\ell\ell'}$, of treatments.

It is evident that for affine (μ_1, \ldots, μ_t) -resolvable block designs

$$q_{\ell\ell}(m_\ell-1)=k_\ell^\star(\mu_\ell-1),\;q_{\ell\ell'}m_\ell'=k_\ell^\star\mu_{\ell'}\quad (\ell\neq\ell'=1,\ldots,t).$$

In this paper, we consider some constructions of affine (μ_1, \ldots, μ_t) -resolvable (r, λ) -designs.

The definitions of BIB designs and group divisible designs can be found in Raghavarao [3].

2. Construction.

Four methods of construction of affine (μ_1, \ldots, μ_t) -resolvable (r, λ) -designs are provided by using some BIB designs and group divisible designs. The proofs are straightforward. The following notations are used: $\mathbf{1}_s$ is an s-dimensional column vector with all elements unity, I_v is the identity matrix of order v, and \otimes denotes the Kronecker product of matrices.

Method I (trivial): Let N be the $v^* \times b^*$ incidence matrix of an affine resolvable BIB design with parameters v^* , b^* , r^* , k^* , λ^* . Then for an integer $p \ge 1$ $[N: \mathbf{1}_v \mathbf{1}'_p]$ is an affine resolvable $(r^* + p, \lambda^* + p)$ -design with $q_{\ell\ell} = k^{\star^2} / v^*$, k^* , or v^* .

Method II. Let N be the $v^* \times b^*$ incidence matrix of an affine resolvable semi-regular group divisible design with parameters $v^* = mn$, $b^* = v^* + r^* - m$, r^* , k^* , $\lambda_1, \lambda_2 = \lambda_1 + 1$. Then $[N: I_m \otimes \mathbf{1}_n]$ produces an affine resolvable $(r^* + 1, \lambda_2)$ design with $q_{\ell\ell} = 0$, $q_{\ell\ell'} = k^{*2}/v^*$ or k^*/m .

Note that when $k^* = n$, the design constructed by Method II is an affine resolvable BIB design and then it can be further utilized for an application of Method I.

Method III. Let N be the $v^* \times b^*$ incidence matrix of an affine resolvable BIB design with parameters $v^* = s^2$, $b^* = s(s+1)$, $r^* = s+1$, $k^* = s$, $\lambda^* = 1$. Then $[N': I_{s+1} \otimes \mathbf{1}_s]$ gives an affine (s, 1)-resolvable (s+1, 1)-design with $q_{11} = 1$, $q_{12} = 1$, $q_{22} = 0$.

Note that there always exists the above design if s is a prime or a prime power.

Method IV. Let N be the $v \times v$ incidence matrix of a symmetric BIB design with parameters v = b, r = k, and λ . Without loss of generality, we can put

$$N = \begin{bmatrix} \mathbf{1'_r} & \mathbf{0'_{b-r}} \\ N_1 & N_2 \end{bmatrix}.$$

Then $[\mathbf{1}_{v-1}\mathbf{1}_{r}' - N_1: N_2]$ gives an affine $(r-\lambda)$ -resolvable $(2(r-\lambda), r-\lambda)$ -design with $q_{11} = v - 2k + \lambda$, $q_{12} = k - \lambda$, $q_{22} = \lambda$.

3. Some remarks.

We shall present some characterization of (r, λ) -designs with two different block sizes k_1 , k_2 . Let N be the $v \times b$ incidence matrix of an (r, λ) -design, and N_i is a sub-incidence matrix corresponding to blocks of size k_i for i = 1, 2. In this case, referring the definition of variance-balanced block designs to Mukerjee and Kageyama [2], we can obtain the following.

Proposition. An (r, λ) -design is variance-balanced if and only if off-diagonal elements of $N_1 N'_1$ (or $N_2 N'_2$) are constant.

This observation can be used to construct affine resolvable (r, λ) -designs through affine resolvable variance-balanced designs discussed in Mukerjee and Kageyama [2], and Kageyama [1].

References

- 1. S. Kageyama, Two methods of construction of affine resolvable balanced designs with unequal block sizes, Sankhyá B 50 (1988), 195-199.
- 2. R. Mukerjee and S. Kageyama, On resolvable and affine resolvable variance-balanced designs, Biometrika 72 (1985), 165-172.
- 3. D. Raghavarao, "Constructions and Combinatorial Problems in Design of Experiments", Dover, New York, 1988.