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Abstract. Using computer algorithms we found that there exists a unique, up to iso-
morphism, graph on 21 points and 125 graphs on 20 points for the Ramsey number
R(Ks —e,Ks5 —e) = 22. We also construct all graphs on n points for the Ramsey
number R(Ks —e,Ks —e) = 13 foralln < 12.

1. Introduction and Notation

The two color Ramsey number R(G, H) is the smallest integer nsuch that for any
graph F on n vertices, either F' contains G or F contains H. Recently Clapham,
Exoo0, Harborth, Mengersen and Sheehan [1] proved that R( Ks —e, Ks—e) = 22.
Working independently (but later) with the help of computer algorithms we have
obtained not only the value of R( Ks — e, Ks — e), but also the uniqueness of the
critical graph for the latter number, and full enumeration of all the graphs specified
in the abstract. All the critical graphs on 12 points for the number R( K4 —e, K5 —
e) were found by Faudree, Rousseau and Schelp in [2]. An extensive summary
on current knowledge of several kinds of Ramsey numbers can be found in [6].
Throughout this paper we adopt the following notation:

G - complement of graph G

Neg(z) - neighborhood of vertex z in graph G
(G,H)-good graph F - graph F not containing G, nor F containing H
(G,H ,n)-good graph - (G, H)-good graph on n vertices

G),e(@) - the number of vertices and edges in graph G

V(&), E(G) - vertex and edge sets of graph G

G=H - graphs G and H are isomorphic

HG) - the number of triangles in F', #(G) = ¢(G)

e(G,H,n) - minimum number of edges in any (G, H ,n) -good graph
E(G,H,n) - maximum number of edges in any (G, H ,n) -good graph
R(kll) 'R(Kk)Kl)

2. Construction
The (Ks —e, K5 —e, 21)-good graph described below is isomorphic to the graph
defined in [1], nevertheless we present it’s construction in order to point out some
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of its interesting properties. A graph F' = (V, E) on 21 vertices V = {z}U{y,7:
y € Z10}, such that F and F do not contain K's — e is defined as follows: let the
two cyclic graphs G = ({y: y € Zwo }, Eg) and H = ({¥ : y € Z10}, Ey) be
given by

{v,2} € BEgiff y— z=+1,4+4 mod 10, and

{v.2} € Eyiff y— 2=42,43,5 mod 10.

Then the set of edges of the graph F is E = EgU Ey U Egyg U {{z,y} : y €
V(G)}, where

{v,Z} € Egy iff y—2=0,+1,+3 mod 10.

One can easily observe that the graph F' is self-complementary with an isomor-
phism between F and F givenby z — zandy — §,7 — y fory € Zyo. Itis
also easy to verify that G = H, |[Aut(G)| = |Aut(H)| = 320, Aut(F) is iso-
morphic to the dihedral group D¢, where Aut(G) denotes the full automorphism
group of the graph G, and that the graph F is regular of degree 10 with 105 edges.
With the algorithm described in further sections we have found that F is, up to
isomorphism, the only ( K5 — e, Ks — e)-good graph on 21 vertices.

3. Limiting the Search Space

In order to perform an efficient search for all (Ks — e, K5 — e) -good graphs on
at least 20 vertices, the algorithm we will describe relies on the following general
theorems. Let n = |V (F')| and »; be the number of vertices of degree i in F.

(a) Monochromatic triangle count theorem (Goodman [3]):

n—1

HF) +¥(F) = (;‘) - %Ei-(n—i— 1)n.

i=0

(b) Theorem applied in the study of R(4,5) (Walker [8]):
If F is a (K, K, n)-good graph then

n—1
WP +1(F) < %,%; n [E( Ki-1, Ky, 4)

—e(Ki, Ki_y,n—i—1) + ("‘;"1 )] .

226



We will use (a) and a variation of (b) for forbidden graphs K ;—e and K;—e. Itis
easy to verify that the original proof of Walker is still valid for such generalization
of (b).

In this paper we are interested in the case of ( Ks — e, K5 — e, n) -good graphs
F = (V,E). Let z € V be a fixed vertex in F' and consider the two induced
subgraphs of F, G; and H,, where V(G:) = Np(z) and V(H,) =V — ({z}U
V(G:)). Note that G, and H, are (K4 — e, K5 — e)-good graphs. We define the
deficiency 8( z) of vertex z as

8(z) = E(Ks — e,Ks — ,n(G5)) — e(Gz)
+ E(Ks — e, Ks — e,n(H,)) — e(H,).

The deficiency 6(x) says how close to the extremal graphs are subgraphs G'; and
H, thus §(z) > 0. The theorem below, which generalizes lemma 3 in [1], gives
a strong condition which permits us to restrict the search space for possible graphs
F.

Theorem. If n; is the number of vertices of degree i ina (Ks —e, Ks —e,n) -
good graph F then

n-1
0< Y 8(z) =) m(B(Ks—e,Ks —e,i)
z€V(F) i=0
+E(Ky —e,Ks —e,n—1i—1)) = 3((F) + {(F)).

Proof: Observe that for all z € V(F) the number of triangles containing  is
t; = e(G.) and the number of 3-independent sets containing z is ¢, = e(H,).
Hence

B3R +UF) = Y (b +12)

zZ€V(F)
= ) (e(Gy) + e(Ho))
z€V(F)
= ) (B(Ks—e,Ks —e,n(G:))
zEV(F)
+ E(Ks —e,Ks —e,n(H;)) — 8(x)),
and so the theorem follows. B

In order to apply the above theorem to the development of algorithms, it is useful
toknow some of the ( K4 —e, K's —e) -good graphs. We constructed all such graphs

227



using the techniques and algorithms described in [4,5). The results are gathered
in table I. Note that one can easily read off the values of e( K4 — ¢, Ks — e,n)
and E(K4 — e, Ks — e, n) in this table by finding the row of the first and the last
entry in column 7, respectively. Lemma 2 in [1] consists of constructing graphs
contributing to the entries in table I for n= 11 and e = 24, 25.

edges number of vertices n
e 12345 6 7 8 9 10 11 12 total
0 1111 4
1 1 11 3
2 1 2 2 5
3 1 3 4 1 9
4 2 6 5 13
5 5 11 17
6 3 16 8 27
7 12 21 1 34
8 6 39 5 50
9 2 39 18 1 60
10 20 62 1 83
11 6 102 3 11
12 1 92 18 111
13 37 70 107
14 9 173 182
15 1 176 3 180
16 1 81 18 100
17 16 74 90
18 4 153 157
19 116 116
20 37 S5 42
21 6 19 25
2 39 39
23 32 k7
24 100 2 12
25 2 2 4
26 3 3
27 3 3
28 2 2
29 1 1
30 1 1
total T 2 4 9 20 53 135 328 543 407 107 14 1623

Table I. Number of (K4 — e, K5 — e)-good (n, e)-graphs.

Example:
Suppose that F is a regular (Ks — e, K's — e)-good graph of degree 10 on 21
points. The entry E( K4 — e, Ks — e, 10) = 21 in table I together with the last
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theorem and (a) gives 3.y 8(z) = 42. Thus there exists z € V(F) such
that 0 < 6(x) < 2. Table II shows the number of possible pairs of graphs G,
and H, for such z, broken into cases depending on &(z), e(G;) and €( H,). One
needs only to consider these pairs of graphs in order to obtain all of the desired
graphs F'.

A similar table can be constructed for all possible ( Ks — e, Ks — e, 22)-good
graphs, in which case the obtained solutions are the same as the possibilities con-
sidered in [1].

&(x) e(G,) graphs e(H,) graphs pairs of graphs
0 21 6 21 6 36
1 21 6 20 37 222
2 21 6 19 116 696
2 20 37 20 37 1369
Table II.
4. An Algorithmic Method

To find all (K5 — e, K's — e)-good graphs F on n points, for n = 22, 21 and 20,
perform the following tasks:

Task 1 - Construct all (K4 — e, K5 — e)-good graphs.

Task 2 - Find all possible parameters of pairs of graphs G., H..

Task 3 - For each feasible pair G, H reconstruct graph F.

Task 1 can be accomplished with the techniques described in [4]. The results are
given in table 1. Using the theorem and some elementary reasoning as in the above
example, one can easily complete task 2 for all possible degree sequences of F'.
We performed task 3 with a technically sophisticated, but natural algorithm, which
is sketched in the sequel. The computations for this task took from a moment for
n= 22 to several hours for n = 20.

The following results were obtained:

- No graph with more than 21 points was constructed.

- The graph F described in section 2 is the unique ( Ks — e, Ks — e)-good
graph on 21 points.

- There are exactly 125 nonisomorphic ( Ks — e, K5 — e)-good graphs on
20 points with the number of edges ranging from 90 to 100. 17 of these
graphs are self-complementary with 95 edges. As suggested by the referee,
we have found that among them there are 22 ( Bs, Bs)-good graphs, out of
which 4 are self-complementary (Bs = K, + K5 is the so called 5-book
graph). One of the latter graphs was found by Rousseau and Sheehan in
their proof of R(Bs, Bs) = 21 [7].
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Algorithm for task 3

Given: G and H, (K4 — e, Ks — e)-good graphs, G = (V;, Eg) on N points

and H = (V2, Ex) on N3 points.

Goal: Constructall (Ks —e, Ks —e)-good graphs F = (V, E) on Ny + N3 + 1

points such that V = {z}UViUVz and E = E, U EgU Ey U Egy,
where E; = {{z,y} : y € Vi} and Egy is the set of edges joining V;
and V2.

Constructing the set of edges Eqy

L

II

118

For each X C V) and an expansion vertex z, z # z and z ¢ V;, define the
graph

A(X,2) = ({z,2} UV, B;UEgU {{2,9} : y € X}).

Calculate the family of sets S = {X C Vi : A(X,2) is(Ks —e, Ks —e)-
good } by checking all subsets of V;. Sets X € S represent possible sets
of edges between a vertex in V5 and entire V; and A(X, z)’s represent all
possible graphs induced in F' by vertices V; U {z, z} for some z € V5.
For each pair of sets X;,X> € S and two distinct expansion vertices z; and
z define the graph

A(Xltngzl:ZZ) = ({Z,ZI,ZZ}UVI,E(A(XI,ZI))
UE(A(X3,22))).

Mark a pair of sets X, X, as possibly nonadjacent if the graph A(X;, X3,
21,22) is (Ks — e, Ks — e)-good, and mark it as possibly adjacent if the
graph B(X,,X>,2, 22), obiained from A(X,, X3, z1, 2,) by adding the
edge 21,22, is (Ks — e, Ks — e)-good. Create the list L of good pairs
of sets, formed by the pairs X, X, which have been marked once (possi-
bly adjacent or possibly nonadjacent) or twice (possibly adjacent and pos-
sibly nonadjacent). At this point every graph induced in F by vertices V; U
{z, 21,22}, wherez,, z; € V5, isidentical to some graph A(X;, X3, 21, 23)
if {z1,2,} ¢ B(H) orto B(X1,X2,21,22) if{21,22} € E(H), forsome
good pair X, X, onlist L.

Calculate all the triplets of sets X, X2, X3 € S, such that each two of them
were “possibly adjacent” on the list L, and such that the graph with vertices
VI U {1-’.21,22,23} andedges

3
T = JB(A(Xi, 2)) U{{z1, 2}, {22, 3}, {21, 2 }}

i=1
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is (K5 — e, Ks — e)-good. Such T’s as above represent all possible sub-
graphs induced in F by vertices Vi U{z, 21, 22, 23 }, for some 21, z; and 23
forming a triangle in H.

Note 1: Since R(K3,K4 —e) =7, R(K4 — e,Ks — e) = 13 [cf. 6],
n(F) > 20, and thus N; > 7, then the graph H has triangles.

Note 2: For each graph G the steps 1, I and III are done only once, and then
S, L and T"’s are used in step IV for all H’s forming a feasible pair with G
in Task 3. The above calculations do not depend on graph H.

IV. Find a triangle z; 25 23 in H. Construct recursively Egy starting from all
possible T"’s obtained at step III. Continue by adding as elementary units
sets of edges stored in S, and assigning them to each vertex in H, which is
not in the chosen triangle. We enter the next level of recursion if the last
added set from S respects “possible adjacency” relation recorded on list L in
step 11, according to the adjacency of those vertices in H, which have been
already assigned edges to V; at higher levels of recursion. If the assignment
is successful for all vertices of H, check whether the constructed graph is
(K5 — e, Ks — e)-good.

Following the construction it is easy to verify that this procedure generates all
the desired graphs. In the implementation of the algorithm, checking whether a
recursively constructed graph is (K5 — e, Ks — e)-good was done by keeping
the current lists of K,’s and K4s and using the condition that a graph contains
Ks — e if and only if it contains two K ’s sharing a triangle. We also used in this
work graph isomorphism and other graph manipulation algorithms developed in
[4].
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